메뉴 건너뛰기




Volumn 134, Issue , 2014, Pages 197-203

Performance prediction of a hybrid microgeneration system using adaptive neuro-fuzzy inference system (ANFIS) technique

Author keywords

Adaptive neuro fuzzy inference system (ANFIS); High efficiency condensing furnace; Hybrid microgeneration system; Internal combustion engine; Seasonal performance

Indexed keywords

FUZZY SYSTEMS; HYBRID SYSTEMS; INTERNAL COMBUSTION ENGINES; TEMPERATURE; TRACKING (POSITION);

EID: 84906512655     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2014.08.022     Document Type: Article
Times cited : (32)

References (27)
  • 1
    • 34249320887 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential micro-generation installation
    • Entchev E., Yang L. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential micro-generation installation. J Power Sources 2007, 170:122-129.
    • (2007) J Power Sources , vol.170 , pp. 122-129
    • Entchev, E.1    Yang, L.2
  • 2
    • 84874747026 scopus 로고    scopus 로고
    • Application of hybrid micro-generation system - thermal and power energy solution for Canadian residences
    • Entchev E., Yang L., Szadkowski F., Armstrong M., Swinton M. Application of hybrid micro-generation system - thermal and power energy solution for Canadian residences. Energy Build 2013, 60:345-354.
    • (2013) Energy Build , vol.60 , pp. 345-354
    • Entchev, E.1    Yang, L.2    Szadkowski, F.3    Armstrong, M.4    Swinton, M.5
  • 3
    • 84896897140 scopus 로고    scopus 로고
    • Energy and cost analyses of a hybrid renewable microgeneration system serving multiple residential and small office buildings
    • Yang L., Entchev E., Ghorab M., Lee E.J., Kang E.C. Energy and cost analyses of a hybrid renewable microgeneration system serving multiple residential and small office buildings. Appl Therm Eng 2014, 65:477-486.
    • (2014) Appl Therm Eng , vol.65 , pp. 477-486
    • Yang, L.1    Entchev, E.2    Ghorab, M.3    Lee, E.J.4    Kang, E.C.5
  • 4
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference systems
    • Jang J. ANFIS: adaptive-network-based fuzzy inference systems. IEEE Trans Syst, Man, Cyber 1993, 23(3):665-685.
    • (1993) IEEE Trans Syst, Man, Cyber , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.1
  • 5
    • 0029273384 scopus 로고
    • Neuro-fuzzy modeling and control
    • [March]
    • Jang J., Sun C.T. Neuro-fuzzy modeling and control. Proc IEEE 1995, [March].
    • (1995) Proc IEEE
    • Jang, J.1    Sun, C.T.2
  • 7
    • 84906513078 scopus 로고    scopus 로고
    • The MathWorks Inc. Fuzzy logic toolbox, user's guide. Version 2.2.3
    • The MathWorks Inc. Fuzzy logic toolbox, user's guide. Version 2.2.3; 2006.
    • (2006)
  • 8
    • 84880389322 scopus 로고    scopus 로고
    • ANFIS modelling of the performance and emissions of a diesel engine using fuel and biodiesel blends
    • Hosoz M., Ertunc H.M., Karabektas M., Ergen G. ANFIS modelling of the performance and emissions of a diesel engine using fuel and biodiesel blends. Appl Therm Eng 2013, 60:24-32.
    • (2013) Appl Therm Eng , vol.60 , pp. 24-32
    • Hosoz, M.1    Ertunc, H.M.2    Karabektas, M.3    Ergen, G.4
  • 9
    • 79954582425 scopus 로고    scopus 로고
    • An effectiveness model for an indirect evaporative cooling (IEC) system: comparison of artificial networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and fuzzy inference system (FIS) approach
    • Kiran T.R., Rajput S.P.S. An effectiveness model for an indirect evaporative cooling (IEC) system: comparison of artificial networks (ANN), adaptive neuro-fuzzy inference system (ANFIS) and fuzzy inference system (FIS) approach. Appl Soft Comput 2011, 11:3525-3533.
    • (2011) Appl Soft Comput , vol.11 , pp. 3525-3533
    • Kiran, T.R.1    Rajput, S.P.S.2
  • 10
    • 27944497885 scopus 로고    scopus 로고
    • Modelling and control PEMFC using fuzzy neural networks
    • Sun T., Yan S., Cao G., Zhu X. Modelling and control PEMFC using fuzzy neural networks. J Zhejiang Univ Sci 2005, 6A(10):1084-1089.
    • (2005) J Zhejiang Univ Sci , vol.6 A , Issue.10 , pp. 1084-1089
    • Sun, T.1    Yan, S.2    Cao, G.3    Zhu, X.4
  • 11
    • 80054819075 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system
    • Oǧuz Y., Üstün S.V., Yabanova I., Yumurtaci M., Güney I. Adaptive neuro-fuzzy inference system to improve the power quality of a split shaft microturbine power generation system. J Power Sources 2012, 197:196-209.
    • (2012) J Power Sources , vol.197 , pp. 196-209
    • Oǧuz, Y.1    Üstün, S.V.2    Yabanova, I.3    Yumurtaci, M.4    Güney, I.5
  • 12
    • 77957854962 scopus 로고    scopus 로고
    • ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system
    • Esen H., Inalli M. ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system. Expert Syst Appl 2010, 37:8134-8147.
    • (2010) Expert Syst Appl , vol.37 , pp. 8134-8147
    • Esen, H.1    Inalli, M.2
  • 13
    • 49149096916 scopus 로고    scopus 로고
    • Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS
    • Esen H., Inalli M., Sengur Abdulkadir, Esen M. Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS. Build Environ 2008, 43:2178-2187.
    • (2008) Build Environ , vol.43 , pp. 2178-2187
    • Esen, H.1    Inalli, M.2    Sengur, A.3    Esen, M.4
  • 14
    • 50349092400 scopus 로고    scopus 로고
    • The effect of boost pressure on the performance characteristics of a diesel engine: a neuro-fuzzy approach
    • Al-Hinti I., Samhouri M., Al-Ghandoor A., Sakhrieh A. The effect of boost pressure on the performance characteristics of a diesel engine: a neuro-fuzzy approach. Appl Energy 2009, 86:113-121.
    • (2009) Appl Energy , vol.86 , pp. 113-121
    • Al-Hinti, I.1    Samhouri, M.2    Al-Ghandoor, A.3    Sakhrieh, A.4
  • 15
    • 79751499078 scopus 로고    scopus 로고
    • ANFIS based modelling for photovoltaic power supply system: a case study
    • Mellit A., Kalogirou S.A. ANFIS based modelling for photovoltaic power supply system: a case study. Renew Energy 2011, 36:250-258.
    • (2011) Renew Energy , vol.36 , pp. 250-258
    • Mellit, A.1    Kalogirou, S.A.2
  • 17
    • 78650561071 scopus 로고    scopus 로고
    • Error analysis of short term wind power prediction models
    • De Giorgi M.G., Ficarella A., Tarantino M. Error analysis of short term wind power prediction models. Appl Energy 2011, 88:1298-1311.
    • (2011) Appl Energy , vol.88 , pp. 1298-1311
    • De Giorgi, M.G.1    Ficarella, A.2    Tarantino, M.3
  • 18
    • 4944220254 scopus 로고    scopus 로고
    • HVAC system optimization - in-building section
    • Lu L., Cai W., Xie L. HVAC system optimization - in-building section. Energy Build 2005, 37:11-22.
    • (2005) Energy Build , vol.37 , pp. 11-22
    • Lu, L.1    Cai, W.2    Xie, L.3
  • 19
    • 49449112411 scopus 로고    scopus 로고
    • Micro combined heat and power home supply: prospective and adaptive management achieved by computational intelligence techniques
    • Matics J., Krost G. Micro combined heat and power home supply: prospective and adaptive management achieved by computational intelligence techniques. Appl Therm Eng 2008, 28:2055-2061.
    • (2008) Appl Therm Eng , vol.28 , pp. 2055-2061
    • Matics, J.1    Krost, G.2
  • 20
    • 79151472440 scopus 로고    scopus 로고
    • Prediction of building energy needs in early stage of design by using ANFIS
    • Ekici B.B., Aksoy U.T. Prediction of building energy needs in early stage of design by using ANFIS. Expert Syst Appl 2011, 38:5352-5358.
    • (2011) Expert Syst Appl , vol.38 , pp. 5352-5358
    • Ekici, B.B.1    Aksoy, U.T.2
  • 21
    • 36348985409 scopus 로고    scopus 로고
    • Using adaptive network based fuzzy inference system to forecast regional electricity loads
    • Ying L., Pan M.C. Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energy Convers Manage 2008, 49(2):205-211.
    • (2008) Energy Convers Manage , vol.49 , Issue.2 , pp. 205-211
    • Ying, L.1    Pan, M.C.2
  • 22
    • 84871718651 scopus 로고    scopus 로고
    • Electricity demand estimation using an adaptive neuro-fuzzy network: a case study from the Ontario province - Canada
    • Zahedi G., Azizi S., Bahadori A., Elkamel A., Alwi S.R.W. Electricity demand estimation using an adaptive neuro-fuzzy network: a case study from the Ontario province - Canada. Energy 2013, 49:323-328.
    • (2013) Energy , vol.49 , pp. 323-328
    • Zahedi, G.1    Azizi, S.2    Bahadori, A.3    Elkamel, A.4    Alwi, S.R.W.5
  • 23
    • 79959853427 scopus 로고    scopus 로고
    • A neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: the cases of Bahrain, Saudi Arabia, Syria and UAE
    • Azadeh A., Asadzadeh S.M., Saberi M., Nadimi V., Tajvidi A., Sheikalishahi M. A neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: the cases of Bahrain, Saudi Arabia, Syria and UAE. Appl Energy 2011, 88:3850-3859.
    • (2011) Appl Energy , vol.88 , pp. 3850-3859
    • Azadeh, A.1    Asadzadeh, S.M.2    Saberi, M.3    Nadimi, V.4    Tajvidi, A.5    Sheikalishahi, M.6
  • 24
    • 79959826777 scopus 로고    scopus 로고
    • Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    • Mohandes M., Rehman S., Rahman S.M. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy 2011, 88:4024-4032.
    • (2011) Appl Energy , vol.88 , pp. 4024-4032
    • Mohandes, M.1    Rehman, S.2    Rahman, S.M.3
  • 25
    • 84906484866 scopus 로고    scopus 로고
    • TRNSYS. The transient energy system simulation tool. [accessed March 2014].
    • TRNSYS. The transient energy system simulation tool. [accessed March 2014]. http://www.trnsys.com.
  • 26
    • 84877860359 scopus 로고    scopus 로고
    • Investigation of a hybrid renewable - microgeneration energy system for power and thermal generation with reduced emissions
    • Ribberink H., Lombardi K., Yang L., Entchev E. Investigation of a hybrid renewable - microgeneration energy system for power and thermal generation with reduced emissions. Proc IMechE Part A: J Power Energy 2012, 227(1):62-72.
    • (2012) Proc IMechE Part A: J Power Energy , vol.227 , Issue.1 , pp. 62-72
    • Ribberink, H.1    Lombardi, K.2    Yang, L.3    Entchev, E.4
  • 27
    • 84906484863 scopus 로고    scopus 로고
    • EnergyPlus, Weather Data, EnergyPlus Energy Simulation Software, U.S. Department of Energy. [accessed December 2013].
    • EnergyPlus, Weather Data, EnergyPlus Energy Simulation Software, U.S. Department of Energy. [accessed December 2013]. http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=4_north_and_central_america_wmo_region_4/country=3_canada/cname=CANADA.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.