-
1
-
-
85035287783
-
-
C. P. Williams and Scott H. Clearwater, Explorations in Quantum Computing (Springer, New York, 1998)
-
C. P. Williams and Scott H. Clearwater, Explorations in Quantum Computing (Springer, New York, 1998).
-
-
-
-
2
-
-
85035306327
-
-
A. Steane, e-print quant-ph/9708022.
-
-
-
Steane, A.1
-
6
-
-
0027660531
-
-
S. Lloyd, Science 261, 1569 (1993).
-
(1993)
Science
, vol.261
, pp. 1569
-
-
Lloyd, S.1
-
12
-
-
0032516167
-
-
I. L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, and S. Loyd, Nature (London) 393, 143 (1998).
-
(1998)
Nature (London)
, vol.393
, pp. 143
-
-
Chuang, I.L.1
Vandersypen, L.M.K.2
Zhou, X.3
Leung, D.W.4
Loyd, S.5
-
13
-
-
85035257990
-
-
D. G. Cory, R. Laflamme, E. Knill, L. Viola, T. F. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negreverenge, M. Pravia, Y. Sharf, G. Teklemariam, Y. S. Weinstein, and W. H. Zurek, e-print quant-ph/0004104.
-
-
-
Cory, D.G.1
Laflamme, R.2
Knill, E.3
Viola, L.4
Havel, T.F.5
Boulant, N.6
Boutis, G.7
Fortunato, E.8
Lloyd, S.9
Martinez, R.10
Negreverenge, C.11
Pravia, M.12
Sharf, Y.13
Teklemariam, G.14
Weinstein, Y.S.15
Zurek, W.H.16
-
17
-
-
85035252402
-
-
R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, and S. J. Glaser, e-print quant-ph/9905087.
-
-
-
Marx, R.1
Fahmy, A.F.2
Myers, J.M.3
Bermel, W.4
Glaser, S.J.5
-
19
-
-
0034704748
-
-
E. Knill, R. Lflamme, R. Martinez, and C.-H. Tseng, Nature (London) 404, 368 (2000).
-
(2000)
Nature (London)
, vol.404
, pp. 368
-
-
Knill, E.1
Lflamme, R.2
Martinez, R.3
Tseng, C.-H.4
-
21
-
-
5744237957
-
-
A. Barenco, D. Deutsch, A. Ekert, and J. Jozsa, Phys. Rev. Lett. 74, 4083 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 4083
-
-
Barenco, A.1
Deutsch, D.2
Ekert, A.3
Jozsa, J.4
-
22
-
-
34748841353
-
-
A. Barenco, B. Benett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).
-
(1995)
Phys. Rev. A
, vol.52
, pp. 3457
-
-
Barenco, A.1
Benett, B.2
Cleve, R.3
DiVincenzo, D.P.4
Margolus, N.5
Shor, P.6
Sleator, T.7
Smolin, J.A.8
Weinfurter, H.9
-
23
-
-
85035256288
-
-
A. Barenco, e-print quant-ph/9505016.
-
-
-
Barenco, A.1
-
24
-
-
85035251182
-
-
R. Marx, A. F. Fahmy, J. M. Myers, W. Bermel, and S. J. Glaser, e-print quant-ph/9905087.
-
-
-
Marx, R.1
Fahmy, A.F.2
Myers, J.M.3
Bermel, W.4
Glaser, S.J.5
-
25
-
-
85035308376
-
-
L. A. Openov, e-print cond-mat/9906390.
-
-
-
Openov, L.A.1
-
35
-
-
3843146888
-
-
Q. Turchette, C. Hood, W. Lange, H. Mabuchi, and H. Kimble, Phys. Rev. Lett. 75, 4710 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 4710
-
-
Turchette, Q.1
Hood, C.2
Lange, W.3
Mabuchi, H.4
Kimble, H.5
-
38
-
-
0033594510
-
-
L. B. Ioffe, V. B. Geshkenbein, M. V. Feigel’man, A. L. Fauchere, and G. Blatter, Nature (London) 398, 679 (1999).
-
(1999)
Nature (London)
, vol.398
, pp. 679
-
-
Ioffe, L.B.1
Geshkenbein, V.B.2
Feigel’man, M.V.3
Fauchere, A.L.4
Blatter, G.5
-
41
-
-
0027266749
-
-
C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, Nanotechnology 4, 49 (1993).
-
(1993)
Nanotechnology
, vol.4
, pp. 49
-
-
Lent, C.S.1
Tougaw, P.D.2
Porod, W.3
Bernstein, G.H.4
-
46
-
-
78349298198
-
-
IEEE Computer Society Press, Dallas, TX
-
C. S. Lent, P. Tougaw, and W. Porod, PhysComp ’94: Proceedings of the Workshop on the Physics of Computing (IEEE Computer Society Press, Dallas, TX, 1994), pp. 5–13.
-
(1994)
PhysComp ’94: Proceedings of the Workshop on the Physics of Computing
, pp. 5-13
-
-
Lent, C.S.1
Tougaw, P.2
Porod, W.3
-
47
-
-
0004738849
-
-
G. Tóth, C. S. Lent, P. D. Tougaw, Yu. Brazhnik, W. Weng, W. Porod, R. Liu, and Y. Huang, Superlattices Microstruct. 20, 463 (1996).
-
(1996)
Superlattices Microstruct.
, vol.20
, pp. 463
-
-
Tóth, G.1
Lent, C.S.2
Tougaw, P.D.3
Brazhnik, Y.4
Weng, W.5
Porod, W.6
Liu, R.7
Huang, Y.8
-
50
-
-
85035286270
-
-
G. Tóth and Yu. Brazhnik (unpublished)
-
G. Tóth and Yu. Brazhnik (unpublished).
-
-
-
-
51
-
-
0030879276
-
-
A. O. Orlov, I. Amlani, G. H. Bernstein, C. S. Lent, and G. L. Snider, Science 277, 928 (1997).
-
(1997)
Science
, vol.277
, pp. 928
-
-
Orlov, A.O.1
Amlani, I.2
Bernstein, G.H.3
Lent, C.S.4
Snider, G.L.5
-
52
-
-
0000657626
-
-
A. O. Orlov, I. Amlani, G. Tóth, C. S. Lent, G. H. Bernstein, and G. L. Snider, Appl. Phys. Lett. 73, 2787 (1998).
-
(1998)
Appl. Phys. Lett.
, vol.73
, pp. 2787
-
-
Orlov, A.O.1
Amlani, I.2
Tóth, G.3
Lent, C.S.4
Bernstein, G.H.5
Snider, G.L.6
-
53
-
-
85035304762
-
-
T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, and W. Zwenger, Quantum Transport and Dissipation (Wiley-VCH Verlag, Germany, 1998). Chapter 3 summarizes single-electron tunneling
-
T. Dittrich, P. Hänggi, G.-L. Ingold, B. Kramer, G. Schön, and W. Zwenger, Quantum Transport and Dissipation (Wiley-VCH Verlag, Germany, 1998). Chapter 3 summarizes single-electron tunneling.
-
-
-
-
54
-
-
85035308422
-
-
The bias gates are new compared to the noncoherent QCA applications. They are introduced here since at least two control parameters per cell are necessary to be able to construct all the possible single-qubit operations
-
The bias gates are new compared to the noncoherent QCA applications. They are introduced here since at least two control parameters per cell are necessary to be able to construct all the possible single-qubit operations.
-
-
-
-
55
-
-
85035283722
-
-
For example, when a single cell is oscillating between the two computational sates while the barriers are low, (Formula presented) reduces the probability of the parasitic states to 7% (2%). It is also possible that there are other, more complicated schemes that use only a two-dimensional subspace for a QCA cell. Reference 47 presents such a scheme for a QCA cell line with a constant interdot barrier height used for classical digital computing. A 16-dimensional space is used to describe the state of the particular QCA cell introduced there, however during the dynamics the cell remains in a two-dimensional subspace to a very high degree of accuracy
-
For example, when a single cell is oscillating between the two computational sates while the barriers are low, (Formula presented) reduces the probability of the parasitic states to 7% (2%). It is also possible that there are other, more complicated schemes that use only a two-dimensional subspace for a QCA cell. Reference 47 presents such a scheme for a QCA cell line with a constant interdot barrier height used for classical digital computing. A 16-dimensional space is used to describe the state of the particular QCA cell introduced there, however during the dynamics the cell remains in a two-dimensional subspace to a very high degree of accuracy.
-
-
-
-
57
-
-
0001433645
-
-
I. I. Yakimenko, I. V. Zozoulenko, C.-K. Wang, and K.-F. Berggen, J. Appl. Phys. 85, 6571 (1999).
-
(1999)
J. Appl. Phys.
, vol.85
, pp. 6571
-
-
Yakimenko, I.I.1
Zozoulenko, I.V.2
Wang, C.-K.3
Berggen, K.-F.4
-
59
-
-
0000722242
-
-
M. Governale, M. Macucci, G. Iannaccone, C. Ungarelli, and J. Martonell, J. Appl. Phys. 85, 2962 (1999).
-
(1999)
J. Appl. Phys.
, vol.85
, pp. 2962
-
-
Governale, M.1
Macucci, M.2
Iannaccone, G.3
Ungarelli, C.4
Martonell, J.5
-
60
-
-
38849195382
-
-
G. Tóth, J. Timler, and C. S. Lent, in Proceedings of the IEEE International Workshop on Computational Electronics (IWCE-6) (IEEE Press, Osaka, 1998), pp. 42–45
-
G. Tóth, J. Timler, and C. S. Lent, in Proceedings of the IEEE International Workshop on Computational Electronics (IWCE-6) (IEEE Press, Osaka, 1998), pp. 42–45.
-
-
-
-
62
-
-
85035281924
-
-
The following deduction is for four-dot cells, but it can be straightforwardly extended to double-dot cells by including next-to-nearest-neighbor couplings, or alternatively these couplings can be canceled by additional operations inverting some of the qubits, as is done for NMR 13
-
The following deduction is for four-dot cells, but it can be straightforwardly extended to double-dot cells by including next-to-nearest-neighbor couplings, or alternatively these couplings can be canceled by additional operations inverting some of the qubits, as is done for NMR 13.
-
-
-
-
63
-
-
85035259915
-
-
the general case, the backaction of the qubit on the neighbors should also be considered, however in the case of the quantum gates presented in Sec. IV, the neighboring cells have high barriers, thus their polarization and consequently (Formula presented) do not change. The dynamical equation (11) for the coherence vector is coupled to the neighbors only though (Formula presented) thus including backaction explicitly in the model would not give a different dynamics for the coherence vector
-
In the general case, the backaction of the qubit on the neighbors should also be considered, however in the case of the quantum gates presented in Sec. IV, the neighboring cells have high barriers, thus their polarization and consequently (Formula presented) do not change. The dynamical equation (11) for the coherence vector is coupled to the neighbors only though (Formula presented) thus including backaction explicitly in the model would not give a different dynamics for the coherence vector.
-
-
-
-
64
-
-
85035305161
-
-
For the multi-qubit gate described in the beginning of Sec. IV, (Formula presented) does not have a z component if the polarizations of the two neighbors are such that (Formula presented) In this case, the terms in Eq. (18) cancel each other. In reality, the third coordinate of (Formula presented) is not zero, but it must be much smaller than the first: (Formula presented) For a multi-qubit operation, (Formula presented) Combining the two inequalities and dividing by (Formula presented) leads to (Formula presented) Thus for the error of the bias, (Formula presented) is required. There is a similar requirement for the accuracy of the (Formula presented) intercell coupling
-
For the multi-qubit gate described in the beginning of Sec. IV, (Formula presented) does not have a z component if the polarizations of the two neighbors are such that (Formula presented) In this case, the terms in Eq. (18) cancel each other. In reality, the third coordinate of (Formula presented) is not zero, but it must be much smaller than the first: (Formula presented) For a multi-qubit operation, (Formula presented) Combining the two inequalities and dividing by (Formula presented) leads to (Formula presented) Thus for the error of the bias, (Formula presented) is required. There is a similar requirement for the accuracy of the (Formula presented) intercell coupling.
-
-
-
-
67
-
-
4243669588
-
-
A. G. Huibers, M. Switkes, C. M. Marcus, K. Capman, and A. C. Gossard, Phys. Rev. Lett. 81, 200 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 200
-
-
Huibers, A.G.1
Switkes, M.2
Marcus, C.M.3
Capman, K.4
Gossard, A.C.5
-
68
-
-
0001676687
-
-
A. G. Huibers, J. A. Folk, S. R. Patel, C. M. Marcus, C. I. Duruöz, and J. S. Harris, Jr., Phys. Rev. Lett. 83, 5090 (1999).
-
(1999)
Phys. Rev. Lett.
, vol.83
, pp. 5090
-
-
Huibers, A.G.1
Folk, J.A.2
Patel, S.R.3
Marcus, C.M.4
Duruöz, C.I.5
Harris, J.S.6
-
69
-
-
0001754648
-
-
R. M. Clarke, I. H. Chan, C. M. Marcus, C. I. Duruöz, J. S. Harris, Jr., K. Campman, and A. C. Gossard, Phys. Rev. B 52, 2656 (1995).
-
(1995)
Phys. Rev. B
, vol.52
, pp. 2656
-
-
Clarke, R.M.1
Chan, I.H.2
Marcus, C.M.3
Duruöz, C.I.4
Harris, J.S.5
Campman, K.6
Gossard, A.C.7
-
70
-
-
0000319729
-
-
J. P. Bird, K. Ishibashi, D. K. Ferry, Y. Ochiai, Y. Aoyagi, and T. Sugano, Phys. Rev. B 51, 18 037 (1995).
-
(1995)
Phys. Rev. B
, vol.51
, pp. 18 037
-
-
Bird, J.P.1
Ishibashi, K.2
Ferry, D.K.3
Ochiai, Y.4
Aoyagi, Y.5
Sugano, T.6
-
73
-
-
3342899171
-
-
B. Altshuler, Y. Gefen, A. Kamenev, and L. S. Levitov, Phys. Rev. Lett. 78, 2803 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2803
-
-
Altshuler, B.1
Gefen, Y.2
Kamenev, A.3
Levitov, L.S.4
-
74
-
-
4244102602
-
-
R. H. Blick, D. Pfannkuche, R. J. Haug, K. v. Klitzing, and K. Eberl, Phys. Rev. Lett. 80, 4032 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 4032
-
-
Blick, R.H.1
Pfannkuche, D.2
Haug, R.J.3
v. Klitzing, K.4
Eberl, K.5
-
75
-
-
0041664551
-
-
T. Schmidt, R. J. Haug, K. v. Klitzing, A. Förster, and H. Lüth, Phys. Rev. Lett. 78, 1544 (1997).
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 1544
-
-
Schmidt, T.1
Haug, R.J.2
v. Klitzing, K.3
Förster, A.4
Lüth, H.5
-
76
-
-
0000729011
-
-
P. Boucaud, K. S. Gill, J. B. Williams, M. Sherwin, W. V. Schoenfeld, and P. M. Petroff, Appl. Phys. Lett. 77, 510 (2000).
-
(2000)
Appl. Phys. Lett.
, vol.77
, pp. 510
-
-
Boucaud, P.1
Gill, K.S.2
Williams, J.B.3
Sherwin, M.4
Schoenfeld, W.V.5
Petroff, P.M.6
-
78
-
-
85035300834
-
-
The damping rate calculations were done for intermediate barrier height and around the steady state
-
The damping rate calculations were done for intermediate barrier height and around the steady state.
-
-
-
-
79
-
-
85035294538
-
-
The problem of controlling gates on fast time scales may in fact limit the speed of computing and lead to a smaller number of possible operations. That issue is primarily concerned with designing capacitances
-
The problem of controlling gates on fast time scales may in fact limit the speed of computing and lead to a smaller number of possible operations. That issue is primarily concerned with designing capacitances.
-
-
-
|