-
4
-
-
34748841353
-
-
A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995).
-
(1995)
Phys. Rev. A
, vol.52
, pp. 3457
-
-
Barenco, A.1
Bennett, C.H.2
Cleve, R.3
DiVincenzo, D.P.4
Margolus, N.5
Shor, P.6
Sleator, T.7
Smolin, J.A.8
Weinfurter, H.9
-
6
-
-
0039776328
-
-
Phys. Rev. Lett.C. Monroe, D.M. Meekhof, B.E. King, W.M. Itano, and D.J. Wineland, 75, 4714 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 4714
-
-
Monroe, C.1
Meekhof, D.M.2
King, B.E.3
Itano, W.M.4
Wineland, D.J.5
-
7
-
-
3843146888
-
-
Q.A. Turchette, C.J. Hood, W. Lange, H. Mabuchi, and H.J. Kimble, Phys. Rev. Lett. 75, 4710 (1995).
-
(1995)
Phys. Rev. Lett.
, vol.75
, pp. 4710
-
-
Turchette, Q.A.1
Hood, C.J.2
Lange, W.3
Mabuchi, H.4
Kimble, H.J.5
-
15
-
-
0033594510
-
-
L.B. Ioffe, V.B. Geshkenbein, M.V. Feigel’man, A.L. Fauchère, and G. Blatter, Nature (London) 398, 679 (1999).
-
(1999)
Nature (London)
, vol.398
, pp. 679
-
-
Ioffe, L.B.1
Geshkenbein, V.B.2
Feigel’man, M.V.3
Fauchère, A.L.4
Blatter, G.5
-
16
-
-
5744237957
-
-
A. Barenco, D. Deutsch, A. Ekert, and R. Josza, Phys. Rev. Lett. 74, 4083 (1995);
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 4083
-
-
Barenco, A.1
Deutsch, D.2
Ekert, A.3
Josza, R.4
-
25
-
-
11744311652
-
-
D.G. Cory, M.D. Price, W. Mass, E. Knill, R. Laflamme, W.H. Zurek, T.F. Havel, and S.S. Somaroo, Phys. Rev. Lett. 81, 2152 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 2152
-
-
Cory, D.G.1
Price, M.D.2
Mass, W.3
Knill, E.4
Laflamme, R.5
Zurek, W.H.6
Havel, T.F.7
Somaroo, S.S.8
-
28
-
-
0000783649
-
-
) (cond-mat/9810295).
-
D.P. DiVincenzo, J. Appl. Phys. 85, 4785 (1999) (cond-mat/9810295).
-
(1999)
J. Appl. Phys.
, vol.85
, pp. 4785
-
-
DiVincenzo, D.P.1
-
30
-
-
85037902007
-
-
A. Imamoḡlu, D.D. Awschalom, G. Burkard, D.P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, quant-ph/9904096.
-
-
-
Imamoḡlu, A.1
Awschalom, D.D.2
Burkard, G.3
DiVincenzo, D.P.4
Loss, D.5
Sherwin, M.6
Small, A.7
-
34
-
-
85037887731
-
-
For M qubits, the set of product state is defined as (Formula presented)
-
For M qubits, the set of product state is defined as (Formula presented)
-
-
-
-
35
-
-
85037887350
-
-
For compactness, we have truncated our numerical results after the third or fourth decimal. If desired, much higher precision can be obtained with our numerical algorithm.
-
For compactness, we have truncated our numerical results after the third or fourth decimal. If desired, much higher precision can be obtained with our numerical algorithm.
-
-
-
-
36
-
-
85037902180
-
-
In the special case where (Formula presented) this can be demonstrated by applying the same procedure as for the Heisenberg interaction, showing that the corresponding four equations have no solution.
-
In the special case where (Formula presented) this can be demonstrated by applying the same procedure as for the Heisenberg interaction, showing that the corresponding four equations have no solution.
-
-
-
-
37
-
-
85037912099
-
-
The spin-orbit coupling (Formula presented) for a band electron in a slowly varying potential V contains both the bare mass (Formula presented) (from the magnetic moment of the electron) and the effective mass m (since the velocity of the electron is derived from the band structure). In our case, the effective mass is canceled because (Formula presented)
-
The spin-orbit coupling (Formula presented) for a band electron in a slowly varying potential V contains both the bare mass (Formula presented) (from the magnetic moment of the electron) and the effective mass m (since the velocity of the electron is derived from the band structure). In our case, the effective mass is canceled because (Formula presented)
-
-
-
|