메뉴 건너뛰기




Volumn 49, Issue 1, 2013, Pages 279-288

Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting

Author keywords

Electricity demand forecasting; EMD based signal filtering; Feedforward neural network; Multi output forecasting; Seasonal adjustment

Indexed keywords

ELECTRICITY; FEEDFORWARD NEURAL NETWORKS; SIGNAL FILTERING AND PREDICTION;

EID: 84871717701     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2012.10.035     Document Type: Article
Times cited : (168)

References (31)
  • 1
    • 79959829242 scopus 로고    scopus 로고
    • A seasonal hybrid procedure for electricity demand forecasting in China
    • Zhu S., Wang J., Zhao W., Wang J. A seasonal hybrid procedure for electricity demand forecasting in China. Applied Energy 2011, 88(11):3807-3815.
    • (2011) Applied Energy , vol.88 , Issue.11 , pp. 3807-3815
    • Zhu, S.1    Wang, J.2    Zhao, W.3    Wang, J.4
  • 3
    • 33746839289 scopus 로고    scopus 로고
    • A trigonometric Grey prediction approach to forecasting electricity demand
    • Zhou P., Ang B.W., Poh K.L. A trigonometric Grey prediction approach to forecasting electricity demand. Energy 2006, 31(14):2839-2847.
    • (2006) Energy , vol.31 , Issue.14 , pp. 2839-2847
    • Zhou, P.1    Ang, B.W.2    Poh, K.L.3
  • 4
    • 34250208764 scopus 로고    scopus 로고
    • Grey prediction with rolling mechanism for electricity demand forecasting of Turkey
    • Akay D., Atak M. Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 2007, 32(9):1670-1675.
    • (2007) Energy , vol.32 , Issue.9 , pp. 1670-1675
    • Akay, D.1    Atak, M.2
  • 5
    • 77953324921 scopus 로고    scopus 로고
    • An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran
    • Azadeh A., Saberi M., Seraj O. An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran. Energy 2010, 35(6):2351-2366.
    • (2010) Energy , vol.35 , Issue.6 , pp. 2351-2366
    • Azadeh, A.1    Saberi, M.2    Seraj, O.3
  • 6
    • 79955674916 scopus 로고    scopus 로고
    • Data analysis and short term load forecasting in Iran electricity market using singular spectral analysis (SSA)
    • Afshar K., Bigdeli N. Data analysis and short term load forecasting in Iran electricity market using singular spectral analysis (SSA). Energy 2011, 36(5):2620-2627.
    • (2011) Energy , vol.36 , Issue.5 , pp. 2620-2627
    • Afshar, K.1    Bigdeli, N.2
  • 7
    • 55949130863 scopus 로고    scopus 로고
    • Energy demand prediction using GMDH networks
    • Srinivasan D. Energy demand prediction using GMDH networks. Neurocomputing 2008, 72(1-3):625-629.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 625-629
    • Srinivasan, D.1
  • 8
    • 44649152880 scopus 로고    scopus 로고
    • A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
    • Azadeh A., Ghaderi S.F., Sohrabkhani S. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy 2008, 36(7):2637-2644.
    • (2008) Energy Policy , vol.36 , Issue.7 , pp. 2637-2644
    • Azadeh, A.1    Ghaderi, S.F.2    Sohrabkhani, S.3
  • 9
    • 79551521470 scopus 로고    scopus 로고
    • An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) & HS-ARTMAP (Hyper-spherical ARTMAP network) neural network
    • Cai Y., Wang J.-Z., Tang Y., Yang Y.-C. An efficient approach for electric load forecasting using distributed ART (adaptive resonance theory) & HS-ARTMAP (Hyper-spherical ARTMAP network) neural network. Energy 2011, 36(2):1340-1350.
    • (2011) Energy , vol.36 , Issue.2 , pp. 1340-1350
    • Cai, Y.1    Wang, J.-Z.2    Tang, Y.3    Yang, Y.-C.4
  • 10
    • 80655146998 scopus 로고    scopus 로고
    • A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China
    • Wang S., Yu L., Tang L., Wang S. A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China. Energy 2011, 36(11):6542-6554.
    • (2011) Energy , vol.36 , Issue.11 , pp. 6542-6554
    • Wang, S.1    Yu, L.2    Tang, L.3    Wang, S.4
  • 12
    • 18844364213 scopus 로고    scopus 로고
    • Development of an integrated Grey-fuzzy-based electricity management system for enterprises
    • Yao A.W.L., Chi S.C., Chen C.K. Development of an integrated Grey-fuzzy-based electricity management system for enterprises. Energy 2005, 30(15):2759-2771.
    • (2005) Energy , vol.30 , Issue.15 , pp. 2759-2771
    • Yao, A.W.L.1    Chi, S.C.2    Chen, C.K.3
  • 13
    • 77949266106 scopus 로고    scopus 로고
    • Time series models (Grey-Markov, Grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India
    • Kumara U., Jain V.K. Time series models (Grey-Markov, Grey model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 2010, 35(4):1709-1716.
    • (2010) Energy , vol.35 , Issue.4 , pp. 1709-1716
    • Kumara, U.1    Jain, V.K.2
  • 14
    • 77949261436 scopus 로고    scopus 로고
    • Combined modeling for electric load forecasting with adaptive particle swarm optimization
    • Wang J., Zhu S., Zhang W., Lu H. Combined modeling for electric load forecasting with adaptive particle swarm optimization. Energy 2010, 35(4):1671-1678.
    • (2010) Energy , vol.35 , Issue.4 , pp. 1671-1678
    • Wang, J.1    Zhu, S.2    Zhang, W.3    Lu, H.4
  • 15
    • 57449087638 scopus 로고    scopus 로고
    • Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm
    • Amjady N., Keynia F. Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm. Energy 2009, 34(1):46-57.
    • (2009) Energy , vol.34 , Issue.1 , pp. 46-57
    • Amjady, N.1    Keynia, F.2
  • 16
    • 77955270910 scopus 로고    scopus 로고
    • Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models
    • Nguyen H.T., Nabney I.T. Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models. Energy 2010, 35(9):3674-3685.
    • (2010) Energy , vol.35 , Issue.9 , pp. 3674-3685
    • Nguyen, H.T.1    Nabney, I.T.2
  • 17
    • 84860841392 scopus 로고    scopus 로고
    • An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting
    • Che J., Wang J., Wang G. An adaptive fuzzy combination model based on self-organizing map and support vector regression for electric load forecasting. Energy 2012, 37(1):657-664.
    • (2012) Energy , vol.37 , Issue.1 , pp. 657-664
    • Che, J.1    Wang, J.2    Wang, G.3
  • 18
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo Z., Zhao W., Lu H., Wang J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy 2012, 37(1):241-249.
    • (2012) Renewable Energy , vol.37 , Issue.1 , pp. 241-249
    • Guo, Z.1    Zhao, W.2    Lu, H.3    Wang, J.4
  • 19
    • 79955740028 scopus 로고    scopus 로고
    • Short-term electricity price forecast based on the improved hybrid model
    • Dong Y., Wang J., Jiang H., Wu J. Short-term electricity price forecast based on the improved hybrid model. Energy Conversion and Management 2011, 52(8-9):2987-2995.
    • (2011) Energy Conversion and Management , vol.52 , Issue.8-9 , pp. 2987-2995
    • Dong, Y.1    Wang, J.2    Jiang, H.3    Wu, J.4
  • 21
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical
    • Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical. Physical & Engineering Sciences 1998, 454(1971):903-995.
    • (1998) Physical & Engineering Sciences , vol.454 , Issue.1971 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3    Wu, M.C.4    Shih, H.H.5    Zheng, Q.6
  • 22
    • 80052078621 scopus 로고    scopus 로고
    • Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine
    • An X., Jiang D., Li S., Zhao M. Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine. Energy 2011, 36(9):5508-5520.
    • (2011) Energy , vol.36 , Issue.9 , pp. 5508-5520
    • An, X.1    Jiang, D.2    Li, S.3    Zhao, M.4
  • 24
    • 76649131245 scopus 로고    scopus 로고
    • Greek long-term energy consumption prediction using artificial neural networks
    • Ekonomou L. Greek long-term energy consumption prediction using artificial neural networks. Energy 2010, 35(2):512-517.
    • (2010) Energy , vol.35 , Issue.2 , pp. 512-517
    • Ekonomou, L.1
  • 25
    • 0033879856 scopus 로고    scopus 로고
    • Artificial neural networks for the prediction of the energy consumption of a passive solar building
    • Kalogirou S.A., Bojic M. Artificial neural networks for the prediction of the energy consumption of a passive solar building. Energy 2000, 25(5):479-491.
    • (2000) Energy , vol.25 , Issue.5 , pp. 479-491
    • Kalogirou, S.A.1    Bojic, M.2
  • 26
    • 70749096750 scopus 로고    scopus 로고
    • Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol-gasoline blends
    • Kiani M.K.D., Ghobadian B., Tavakoli T., Nikbakht A.M., Najafi G. Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol-gasoline blends. Energy 2010, 35(1):65-69.
    • (2010) Energy , vol.35 , Issue.1 , pp. 65-69
    • Kiani, M.K.D.1    Ghobadian, B.2    Tavakoli, T.3    Nikbakht, A.M.4    Najafi, G.5
  • 27
    • 0032029065 scopus 로고    scopus 로고
    • A neural networks approach for wind speed prediction
    • Mohandes M.A., Rehman S., Halawani T.O. A neural networks approach for wind speed prediction. Renewable Energy 1998, 13(3):345-354.
    • (1998) Renewable Energy , vol.13 , Issue.3 , pp. 345-354
    • Mohandes, M.A.1    Rehman, S.2    Halawani, T.O.3
  • 28
    • 79956363043 scopus 로고    scopus 로고
    • Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition
    • Andrawis R.R., Atiya A.F., El-Shishiny H. Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition. International Journal of Forecasting 2011, 27(3):672-688.
    • (2011) International Journal of Forecasting , vol.27 , Issue.3 , pp. 672-688
    • Andrawis, R.R.1    Atiya, A.F.2    El-Shishiny, H.3
  • 29
    • 79956354306 scopus 로고    scopus 로고
    • Conditionally dependent strategies for multiple-step-ahead prediction in local learning
    • Bontempi G., Taieb S.B. Conditionally dependent strategies for multiple-step-ahead prediction in local learning. International Journal of Forecasting 2011, 27(3):689-699.
    • (2011) International Journal of Forecasting , vol.27 , Issue.3 , pp. 689-699
    • Bontempi, G.1    Taieb, S.B.2
  • 30
    • 51849142610 scopus 로고    scopus 로고
    • Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks
    • Cadenas E., Rivera W. Short term wind speed forecasting in La Venta, Oaxaca, México, using artificial neural networks. Renewable Energy 2009, 34(1):274-278.
    • (2009) Renewable Energy , vol.34 , Issue.1 , pp. 274-278
    • Cadenas, E.1    Rivera, W.2
  • 31
    • 20744444912 scopus 로고    scopus 로고
    • Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm
    • Plumb A.P., Rowe R.C., York P., Brown M. Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm. European Journal of Pharmaceutical Sciences 2005, 25(4-5):395-405.
    • (2005) European Journal of Pharmaceutical Sciences , vol.25 , Issue.4-5 , pp. 395-405
    • Plumb, A.P.1    Rowe, R.C.2    York, P.3    Brown, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.