메뉴 건너뛰기




Volumn 84, Issue , 2015, Pages 816-824

Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks

Author keywords

Artificial neural networks; GRNN (general regression neural network); Multiple linear regression; Multiple polynomial regression

Indexed keywords

ENERGY UTILIZATION; GAS EMISSIONS; GREENHOUSE GASES; LINEAR REGRESSION; NEURAL NETWORKS;

EID: 84928437188     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2015.03.060     Document Type: Article
Times cited : (57)

References (48)
  • 1
    • 84905225660 scopus 로고    scopus 로고
    • Changes of energy-related GHG emissions in China: an empirical analysis from sectoral perspective
    • Xu X., Zhao T., Liu N., Kang J. Changes of energy-related GHG emissions in China: an empirical analysis from sectoral perspective. Appl Energy 2014, 132:298-307.
    • (2014) Appl Energy , vol.132 , pp. 298-307
    • Xu, X.1    Zhao, T.2    Liu, N.3    Kang, J.4
  • 2
    • 77956876709 scopus 로고    scopus 로고
    • Changes in the GHG emission intensity in EU-15: lessons from a decomposition analysis
    • Bhattacharyya S.C., Matsumura W. Changes in the GHG emission intensity in EU-15: lessons from a decomposition analysis. Energy 2010, 35:3315-3322.
    • (2010) Energy , vol.35 , pp. 3315-3322
    • Bhattacharyya, S.C.1    Matsumura, W.2
  • 3
    • 84886443524 scopus 로고    scopus 로고
    • Qatar, Doha
    • United Nations Framework Convention on Climate Change Doha amendment to the kyoto protocol 2012, Qatar, Doha. http://unfccc.int/kyoto_protocol/doha_amendment/items/7362.php.
    • (2012) Doha amendment to the kyoto protocol
  • 5
    • 84928420625 scopus 로고    scopus 로고
    • International energy Outlook. Wash D.C.: 2006.
    • U.S. Department of Energy (US DOE), Energy Information Administration (EIA). International energy Outlook. Wash D.C.: 2006.
  • 6
    • 0034740199 scopus 로고    scopus 로고
    • Assessing the uncertainty associated with national greenhouse gas emission inventories: a case study for Austria
    • Winiwarter W., Rypdal K. Assessing the uncertainty associated with national greenhouse gas emission inventories: a case study for Austria. Atmos Environ 2001, 35:5425-5440.
    • (2001) Atmos Environ , vol.35 , pp. 5425-5440
    • Winiwarter, W.1    Rypdal, K.2
  • 7
    • 77952357246 scopus 로고    scopus 로고
    • Estimates of GHG emission reduction potential by country, sector, and cost
    • Akimoto K., Sano F., Homma T., Oda J., Nagashima M., Kii M. Estimates of GHG emission reduction potential by country, sector, and cost. Energy Policy 2010, 38:3384-3393.
    • (2010) Energy Policy , vol.38 , pp. 3384-3393
    • Akimoto, K.1    Sano, F.2    Homma, T.3    Oda, J.4    Nagashima, M.5    Kii, M.6
  • 8
    • 38749134082 scopus 로고    scopus 로고
    • Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: models and indicators
    • Chicco G., Mancarella P. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part I: models and indicators. Energy 2008, 33:410-417.
    • (2008) Energy , vol.33 , pp. 410-417
    • Chicco, G.1    Mancarella, P.2
  • 9
    • 81455141358 scopus 로고    scopus 로고
    • Modelling of greenhouse gas emissions from municipal solid waste disposal in Africa
    • Couth R., Trois C., Vaughan-Jones S. Modelling of greenhouse gas emissions from municipal solid waste disposal in Africa. Int J Greenh Gas Control 2011, 5:1443-1453.
    • (2011) Int J Greenh Gas Control , vol.5 , pp. 1443-1453
    • Couth, R.1    Trois, C.2    Vaughan-Jones, S.3
  • 10
    • 33748937531 scopus 로고    scopus 로고
    • Modeling GHG emissions and carbon sequestration in Swiss agriculture: an integrated economic approach
    • Hediger W. Modeling GHG emissions and carbon sequestration in Swiss agriculture: an integrated economic approach. Int Congr Ser 2006, 1293:86-95.
    • (2006) Int Congr Ser , vol.1293 , pp. 86-95
    • Hediger, W.1
  • 11
    • 84255163170 scopus 로고    scopus 로고
    • VMT, energy consumption, and GHG emissions forecasting for passenger transportation
    • Rentziou A., Gkritza K., Souleyrette R.R. VMT, energy consumption, and GHG emissions forecasting for passenger transportation. Transp Res Part A Policy Pract 2012, 46:487-500.
    • (2012) Transp Res Part A Policy Pract , vol.46 , pp. 487-500
    • Rentziou, A.1    Gkritza, K.2    Souleyrette, R.R.3
  • 12
    • 40849117982 scopus 로고    scopus 로고
    • Global energy and emissions scenarios for effective climate change mitigation-deterministic and stochastic scenarios with the TIAM model
    • Syri S., Lehtila A., Ekholm T., Savolainen I., Holttinen H., Peltola E. Global energy and emissions scenarios for effective climate change mitigation-deterministic and stochastic scenarios with the TIAM model. Int J Greenh Gas Control 2008, 2:274-285.
    • (2008) Int J Greenh Gas Control , vol.2 , pp. 274-285
    • Syri, S.1    Lehtila, A.2    Ekholm, T.3    Savolainen, I.4    Holttinen, H.5    Peltola, E.6
  • 13
    • 79952070706 scopus 로고    scopus 로고
    • Estimating GHG emissions of marine ports-the case of Barcelona
    • Villalba G., Gemechu E.D. Estimating GHG emissions of marine ports-the case of Barcelona. Energy Policy 2011, 39:1363-1368.
    • (2011) Energy Policy , vol.39 , pp. 1363-1368
    • Villalba, G.1    Gemechu, E.D.2
  • 14
    • 38749094420 scopus 로고    scopus 로고
    • Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: analysis techniques and application cases
    • Mancarella P., Chicco G. Assessment of the greenhouse gas emissions from cogeneration and trigeneration systems. Part II: analysis techniques and application cases. Energy 2008, 33:418-430.
    • (2008) Energy , vol.33 , pp. 418-430
    • Mancarella, P.1    Chicco, G.2
  • 15
    • 85019516084 scopus 로고    scopus 로고
    • Response measures models - PRIMES, [accessed 17.11.2014.].
    • UNFCCC. Response measures models - PRIMES, [accessed 17.11.2014.]. https://unfccc.int/adaptation/adverse_effects_and_response_measures_art_48/items/5149.php.
  • 16
    • 84928426811 scopus 로고    scopus 로고
    • The PRIMES model, [accessed 17.11.2014.].
    • Institute of Communication and Computer Systems of the National Technical University of Athens (ICCS/NTUA). The PRIMES model, [accessed 17.11.2014.]. http://www.e3mlab.ntua.gr/e3mlab/index.php?option=com_content%26view=category%26id=35:primes%26Itemid=80%26layout=default%26lang=en.
  • 17
    • 84899642594 scopus 로고    scopus 로고
    • Modeling of energy consumption based on economic and demographic factors: the case of Turkey with projections
    • Aydin G. Modeling of energy consumption based on economic and demographic factors: the case of Turkey with projections. Renew Sustain Energy Rev 2014, 35:382-389.
    • (2014) Renew Sustain Energy Rev , vol.35 , pp. 382-389
    • Aydin, G.1
  • 18
    • 37449014103 scopus 로고    scopus 로고
    • Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector
    • Aydinalp-Koksal M., Ugursal V.I. Comparison of neural network, conditional demand analysis, and engineering approaches for modeling end-use energy consumption in the residential sector. Appl Energy 2008, 85:271-296.
    • (2008) Appl Energy , vol.85 , pp. 271-296
    • Aydinalp-Koksal, M.1    Ugursal, V.I.2
  • 19
    • 67650761091 scopus 로고    scopus 로고
    • Modeling of end-use energy consumption in the residential sector: a review of modeling techniques
    • Swan L.G., Ugursal V.I. Modeling of end-use energy consumption in the residential sector: a review of modeling techniques. Renew Sustain Energy Rev 2009, 13:1819-1835.
    • (2009) Renew Sustain Energy Rev , vol.13 , pp. 1819-1835
    • Swan, L.G.1    Ugursal, V.I.2
  • 20
    • 84925350752 scopus 로고    scopus 로고
    • Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using artificial neural network
    • Taghavifar H., Mardani A. Prognostication of energy consumption and greenhouse gas (GHG) emissions analysis of apple production in West Azarbayjan of Iran using artificial neural network. JClean Prod 2015, 87:159-167.
    • (2015) JClean Prod , vol.87 , pp. 159-167
    • Taghavifar, H.1    Mardani, A.2
  • 21
    • 84991075464 scopus 로고    scopus 로고
    • Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems
    • Nabavi-Pelesaraei A., Abdi R., Rafiee S. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. JSaudi Soc Agric Sci 2014, 10.1016/j.jssas.2014.05.001.
    • (2014) JSaudi Soc Agric Sci
    • Nabavi-Pelesaraei, A.1    Abdi, R.2    Rafiee, S.3
  • 22
    • 84899897528 scopus 로고    scopus 로고
    • Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran
    • Yousefi M., Khoramivafa M., Mondani F. Integrated evaluation of energy use, greenhouse gas emissions and global warming potential for sugar beet (Beta vulgaris) agroecosystems in Iran. Atmos Environ 2014, 92:501-505.
    • (2014) Atmos Environ , vol.92 , pp. 501-505
    • Yousefi, M.1    Khoramivafa, M.2    Mondani, F.3
  • 23
    • 84902578758 scopus 로고    scopus 로고
    • Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran
    • Yousefi M., Damghani A.M., Khoramivafa M. Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Sci Total Environ 2014, 493:330-335.
    • (2014) Sci Total Environ , vol.493 , pp. 330-335
    • Yousefi, M.1    Damghani, A.M.2    Khoramivafa, M.3
  • 24
    • 84875814744 scopus 로고    scopus 로고
    • Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks
    • Khoshnevisan B., Rafiee S., Omid M., Yousefi M., Movahedi M. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 2013, 52:333-338.
    • (2013) Energy , vol.52 , pp. 333-338
    • Khoshnevisan, B.1    Rafiee, S.2    Omid, M.3    Yousefi, M.4    Movahedi, M.5
  • 27
    • 84889639492 scopus 로고    scopus 로고
    • Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis
    • Antanasijević D.Z., Ristić M.D., Perić-Grujić A.A., Pocajt V.V. Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis. Int J Greenh Gas Control 2014, 20:244-253.
    • (2014) Int J Greenh Gas Control , vol.20 , pp. 244-253
    • Antanasijević, D.Z.1    Ristić, M.D.2    Perić-Grujić, A.A.3    Pocajt, V.V.4
  • 28
    • 0242317861 scopus 로고    scopus 로고
    • Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks
    • Lee W.-Y., House J.M., Kyong N.-H. Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks. Appl Energy 2004, 77:153-170.
    • (2004) Appl Energy , vol.77 , pp. 153-170
    • Lee, W.-Y.1    House, J.M.2    Kyong, N.-H.3
  • 29
    • 84928430127 scopus 로고    scopus 로고
    • GHG emissions, [accessed 7.11.2014.].
    • Eurostat. GHG emissions, [accessed 7.11.2014.]. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_air_gge%26lang=en.
  • 30
    • 84928417778 scopus 로고    scopus 로고
    • Gross inland energy consumption, [accessed 7.11.2014.].
    • Eurostat. Gross inland energy consumption, [accessed 7.11.2014.]. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=nrg_100a%26lang=en.
  • 31
    • 84928425633 scopus 로고    scopus 로고
    • Share of renewable energy in gross final energy consumption, [accessed 7.11.2014.].
    • Eurostat. Share of renewable energy in gross final energy consumption, [accessed 7.11.2014.]. http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table%26init=1%26plugin=1%26language=en%26pcode=t2020_31.
  • 32
    • 85019520566 scopus 로고    scopus 로고
    • Combined heat and power generation, [accessed 7.11.2014.].
    • Eurostat. Combined heat and power generation, [accessed 7.11.2014.]. http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table%26init=1%26plugin=1%26language=en%26pcode=tsdcc350.
  • 33
    • 84928430621 scopus 로고    scopus 로고
    • Share of renewable energy in fuel consumption of transport, [accessed 7.11.2014.].
    • Eurostat. Share of renewable energy in fuel consumption of transport, [accessed 7.11.2014.]. http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table%26init=1%26plugin=1%26language=en%26pcode=tsdcc340.
  • 34
    • 84928425966 scopus 로고    scopus 로고
    • Implicit tax rate on energy, [accessed 7.11.2014.].
    • Eurostat. Implicit tax rate on energy, [accessed 7.11.2014.]. http://epp.eurostat.ec.europa.eu/tgm/table.do?tab=table%26init=1%26plugin=1%26language=en%26pcode=tsdcc360.
  • 35
    • 84928416264 scopus 로고    scopus 로고
    • Database, [accessed 7.11.2014.].
    • Eurostat. Database, [accessed 7.11.2014.]. http://ec.europa.eu/eurostat/data/database.
  • 36
    • 84928426827 scopus 로고    scopus 로고
    • World development indicators, [accessed 7.11.2014.].
    • The World Bank. World development indicators, [accessed 7.11.2014.]. http://data.worldbank.org/data-catalog/world-development-indicators.
  • 37
    • 0036758568 scopus 로고    scopus 로고
    • Energy conservation in buildings through efficient A/C control using neural networks
    • Ben-Nakhi A.E., Mahmoud M a Energy conservation in buildings through efficient A/C control using neural networks. Appl Energy 2002, 73:5-23.
    • (2002) Appl Energy , vol.73 , pp. 5-23
    • Ben-Nakhi, A.E.1    Mahmoud, M.A.2
  • 38
    • 84899565683 scopus 로고    scopus 로고
    • Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA
    • Heddam S. Generalized regression neural network-based approach for modelling hourly dissolved oxygen concentration in the Upper Klamath River, Oregon, USA. Environ Technol 2014, 35:1650-1657.
    • (2014) Environ Technol , vol.35 , pp. 1650-1657
    • Heddam, S.1
  • 39
    • 0026254768 scopus 로고
    • Ageneral regression neural network
    • Specht D.F. Ageneral regression neural network. IEEE Trans Neural Netw 1991, 2:568-576.
    • (1991) IEEE Trans Neural Netw , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 41
    • 0242269356 scopus 로고    scopus 로고
    • Artificial intelligence for the modeling and control of combustion processes: a review
    • Kalogirou S.A. Artificial intelligence for the modeling and control of combustion processes: a review. Prog Energy Combust Sci 2003, 29:515-566.
    • (2003) Prog Energy Combust Sci , vol.29 , pp. 515-566
    • Kalogirou, S.A.1
  • 42
    • 39849084753 scopus 로고    scopus 로고
    • Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling
    • Kim S., Kim H.S. Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. JHydrol 2008, 351:299-317.
    • (2008) JHydrol , vol.351 , pp. 299-317
    • Kim, S.1    Kim, H.S.2
  • 43
    • 60549091177 scopus 로고    scopus 로고
    • Evolutionary artificial neural networks for hydrological systems forecasting
    • Chen Y.-H., Chang F.-J. Evolutionary artificial neural networks for hydrological systems forecasting. JHydrol 2009, 367:125-137.
    • (2009) JHydrol , vol.367 , pp. 125-137
    • Chen, Y.-H.1    Chang, F.-J.2
  • 45
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: Part 1. A discussion of principles
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models: Part 1. A discussion of principles. JHydrol 1970, 10:282-290.
    • (1970) JHydrol , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 46
    • 84859106616 scopus 로고    scopus 로고
    • 2 emissions, energy consumption and economic growth in China using an improved grey model
    • 2 emissions, energy consumption and economic growth in China using an improved grey model. Energy 2012, 40:400-409.
    • (2012) Energy , vol.40 , pp. 400-409
    • Pao, H.-T.1    Fu, H.-C.2    Tseng, C.-L.3
  • 47
    • 34447500396 scopus 로고    scopus 로고
    • Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
    • Moriasi D.N., Arnold J.G., Liew MW Van, Bingner R.L., Harmel R.D., Veith T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 2007, 50:885-900.
    • (2007) Trans ASABE , vol.50 , pp. 885-900
    • Moriasi, D.N.1    Arnold, J.G.2    Liew, M.W.V.3    Bingner, R.L.4    Harmel, R.D.5    Veith, T.L.6
  • 48
    • 28344452958 scopus 로고    scopus 로고
    • Uncertainty analysis of emission estimates in the RAINS integrated assessment model
    • Schöpp W., Klimont Z., Suutari R., Cofala J. Uncertainty analysis of emission estimates in the RAINS integrated assessment model. Environ Sci Policy 2005, 8:601-613.
    • (2005) Environ Sci Policy , vol.8 , pp. 601-613
    • Schöpp, W.1    Klimont, Z.2    Suutari, R.3    Cofala, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.