-
1
-
-
15044359454
-
Dipeptidyl peptidase IV inhibitors: how do they work as new antidiabetic agents?
-
McIntosh CH, Demuth HU, Pospisilik JA, Pederson R. Dipeptidyl peptidase IV inhibitors: how do they work as new antidiabetic agents? Regul Pept. 2005;128:159-165
-
(2005)
Regul Pept
, vol.128
, pp. 159-165
-
-
McIntosh, C.H.1
Demuth, H.U.2
Pospisilik, J.A.3
Pederson, R.4
-
2
-
-
17144404555
-
Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders
-
Gorrell MD. Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci. 2005;108:277-292
-
(2005)
Clin Sci
, vol.108
, pp. 277-292
-
-
Gorrell, M.D.1
-
3
-
-
0033619675
-
Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides
-
Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept. 1999;85:9-24
-
(1999)
Regul Pept
, vol.85
, pp. 9-24
-
-
Mentlein, R.1
-
4
-
-
84920095184
-
Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors
-
Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev. 2014;35:992-1019
-
(2014)
Endocr Rev
, vol.35
, pp. 992-1019
-
-
Mulvihill, E.E.1
Drucker, D.J.2
-
5
-
-
0037338622
-
Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes
-
Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med. 2003;228:217-244
-
(2003)
Exp Biol Med
, vol.228
, pp. 217-244
-
-
Berglund, M.M.1
Hipskind, P.A.2
Gehlert, D.R.3
-
6
-
-
0031919929
-
XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors
-
Michel MC, Beck-Sickinger A, Cox H, Doods HN, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev. 1998;50:143-150
-
(1998)
Pharmacol Rev
, vol.50
, pp. 143-150
-
-
Michel, M.C.1
Beck-Sickinger, A.2
Cox, H.3
Doods, H.N.4
Herzog, H.5
Larhammar, D.6
Quirion, R.7
Schwartz, T.8
Westfall, T.9
-
7
-
-
84865447930
-
Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells
-
Jackson EK, Kochanek SJ, Gillespie DG. Dipeptidyl peptidase IV regulates proliferation of preglomerular vascular smooth muscle and mesangial cells. Hypertension. 2012;60:757-764
-
(2012)
Hypertension
, vol.60
, pp. 757-764
-
-
Jackson, E.K.1
Kochanek, S.J.2
Gillespie, D.G.3
-
8
-
-
84946043945
-
1-36 activate cardiac fibroblasts: an effect enhanced by genetic hypertension and inhibition of dipeptidyl peptidase 4
-
1-36 activate cardiac fibroblasts: an effect enhanced by genetic hypertension and inhibition of dipeptidyl peptidase 4. Am J Physiol Heart Circ Physiol. 2015;309:H1528-H1542
-
(2015)
Am J Physiol Heart Circ Physiol
, vol.309
, pp. H1528-H1542
-
-
Zhu, X.1
Gillespie, D.G.2
Jackson, E.K.3
-
10
-
-
0031053170
-
Factors controlling growth and matrix production in vascular smooth muscle and glomerular mesangial cells
-
Dubey RK, Jackson EK, Rupprecht HD, Sterzel RB. Factors controlling growth and matrix production in vascular smooth muscle and glomerular mesangial cells. Curr Opin Nephrol Hypertens. 1997;6:88-105
-
(1997)
Curr Opin Nephrol Hypertens
, vol.6
, pp. 88-105
-
-
Dubey, R.K.1
Jackson, E.K.2
Rupprecht, H.D.3
Sterzel, R.B.4
-
11
-
-
84896990001
-
Quantification of intact and truncated stromal cell-derived factor-1a in circulation by immunoaffinity enrichment and tandem mass spectrometry
-
Wang W, Choi BK, Li W, Lao Z, Lee AY, Souza SC, Yates NA, Kowalski T, Pocai A, Cohen LH. Quantification of intact and truncated stromal cell-derived factor-1a in circulation by immunoaffinity enrichment and tandem mass spectrometry. J Am Soc Mass Spectrom. 2014;25:614-625
-
(2014)
J Am Soc Mass Spectrom
, vol.25
, pp. 614-625
-
-
Wang, W.1
Choi, B.K.2
Li, W.3
Lao, Z.4
Lee, A.Y.5
Souza, S.C.6
Yates, N.A.7
Kowalski, T.8
Pocai, A.9
Cohen, L.H.10
-
13
-
-
85017014679
-
RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells
-
Zhu X, Jackson EK. RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol. 2017;312:F565-F576
-
(2017)
Am J Physiol Renal Physiol
, vol.312
, pp. F565-F576
-
-
Zhu, X.1
Jackson, E.K.2
-
14
-
-
0032553624
-
Cyclooxygenase inhibition reveals synergistic action of vasoconstrictors on mesangial cell growth
-
Inoue T, Mi Z, Gillespie DG, Jackson EK. Cyclooxygenase inhibition reveals synergistic action of vasoconstrictors on mesangial cell growth. Eur J Pharmacol. 1998;361:285-291
-
(1998)
Eur J Pharmacol
, vol.361
, pp. 285-291
-
-
Inoue, T.1
Mi, Z.2
Gillespie, D.G.3
Jackson, E.K.4
-
16
-
-
85011814696
-
Renal 20, 30-cyclic nucleotide 30-phosphodiesterase is an important determinant of AKI severity after ischemia-reperfusion
-
Jackson EK, Menshikova EV, Mi Z, Verrier JD, Bansal R, Janesko-Feldman K, Jackson TC, Kochanek PM. Renal 20, 30-cyclic nucleotide 30-phosphodiesterase is an important determinant of AKI severity after ischemia-reperfusion. J Am Soc Nephrol. 2016;27:2069-2081
-
(2016)
J Am Soc Nephrol
, vol.27
, pp. 2069-2081
-
-
Jackson, E.K.1
Menshikova, E.V.2
Mi, Z.3
Verrier, J.D.4
Bansal, R.5
Janesko-Feldman, K.6
Jackson, T.C.7
Kochanek, P.M.8
-
17
-
-
78449291472
-
SDF-1a/CXCR4 axis is involved in glucose-potentiated proliferation and chemotaxis in rat vascular smooth muscle cells
-
Jie W, Wang X, Zhang Y, Guo J, Kuang D, Zhu P, Wang G, Ao Q. SDF-1a/CXCR4 axis is involved in glucose-potentiated proliferation and chemotaxis in rat vascular smooth muscle cells. Int J Exp Pathol. 2010;91:436-444
-
(2010)
Int J Exp Pathol
, vol.91
, pp. 436-444
-
-
Jie, W.1
Wang, X.2
Zhang, Y.3
Guo, J.4
Kuang, D.5
Zhu, P.6
Wang, G.7
Ao, Q.8
-
18
-
-
84856252024
-
Salvianolic acid B inhibits SDF-1astimulated cell proliferation and migration of vascular smooth muscle cells by suppressing CXCR4 receptor
-
Pan CH, Chen CW, Sheu MJ, Wu CH. Salvianolic acid B inhibits SDF-1astimulated cell proliferation and migration of vascular smooth muscle cells by suppressing CXCR4 receptor. Vascul Pharmacol. 2012;56:98-105
-
(2012)
Vascul Pharmacol
, vol.56
, pp. 98-105
-
-
Pan, C.H.1
Chen, C.W.2
Sheu, M.J.3
Wu, C.H.4
-
19
-
-
84941218159
-
Role of SDF-1 and Wnt signaling pathway in the myocardial fibrosis of hypertensive rats
-
Shao S, Cai W, Sheng J, Yin L. Role of SDF-1 and Wnt signaling pathway in the myocardial fibrosis of hypertensive rats. Am J Transl Res. 2015;7:1345-1356
-
(2015)
Am J Transl Res
, vol.7
, pp. 1345-1356
-
-
Shao, S.1
Cai, W.2
Sheng, J.3
Yin, L.4
-
20
-
-
84900001445
-
Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration
-
Wang ER, Jarrah AA, Benard L, Chen J, Schwarzkopf M, Hadri L, Tarzami ST. Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration. Gene Ther. 2014;21:496-506
-
(2014)
Gene Ther
, vol.21
, pp. 496-506
-
-
Wang, E.R.1
Jarrah, A.A.2
Benard, L.3
Chen, J.4
Schwarzkopf, M.5
Hadri, L.6
Tarzami, S.T.7
-
21
-
-
84856389868
-
CXCR4 antagonism attenuates the cardiorenal consequences of mineralocorticoid excess
-
Chu P-Y, Zatta A, Kiriazis H, Chin-Dusting J, Du X-J, Marshall T, Kaye DM. CXCR4 antagonism attenuates the cardiorenal consequences of mineralocorticoid excess. Circ Heart Fail. 2011;4:651-658
-
(2011)
Circ Heart Fail
, vol.4
, pp. 651-658
-
-
Chu, P.-Y.1
Zatta, A.2
Kiriazis, H.3
Chin-Dusting, J.4
Du, X.-J.5
Marshall, T.6
Kaye, D.M.7
-
22
-
-
84941902143
-
CXCR4 antagonism attenuates the development of diabetic cardiac fibrosis
-
Chu PY, Walder K, Horlock D, Williams D, Nelson E, Byrne M, Jandeleit-Dahm K, Zimmet P, Kaye DM. CXCR4 antagonism attenuates the development of diabetic cardiac fibrosis. PLoS One. 2015;10:e0133616
-
(2015)
PLoS One
, vol.10
-
-
Chu, P.Y.1
Walder, K.2
Horlock, D.3
Williams, D.4
Nelson, E.5
Byrne, M.6
Jandeleit-Dahm, K.7
Zimmet, P.8
Kaye, D.M.9
-
23
-
-
84907479026
-
CXCR4 antagonism as a therapeutic approach to prevent acute kidney injury
-
Zuk A, Gershenovich M, Ivanova Y, MacFarland RT, Fricker SP, Ledbetter S. CXCR4 antagonism as a therapeutic approach to prevent acute kidney injury. Am J Physiol Renal Physiol. 2014;307:F783-F797
-
(2014)
Am J Physiol Renal Physiol
, vol.307
, pp. F783-F797
-
-
Zuk, A.1
Gershenovich, M.2
Ivanova, Y.3
MacFarland, R.T.4
Fricker, S.P.5
Ledbetter, S.6
-
24
-
-
84924074895
-
Chemokine receptor Cxcr4 contributes to kidney fibrosis via multiple effectors
-
Yuan A, Lee Y, Choi U, Moeckel G, Karihaloo A. Chemokine receptor Cxcr4 contributes to kidney fibrosis via multiple effectors. Am J Physiol Renal Physiol. 2015;308:F459-F472
-
(2015)
Am J Physiol Renal Physiol
, vol.308
, pp. F459-F472
-
-
Yuan, A.1
Lee, Y.2
Choi, U.3
Moeckel, G.4
Karihaloo, A.5
-
25
-
-
84886056529
-
Inhibition of endothelial nitric oxide synthase induces and enhances myocardial fibrosis
-
Kazakov A, Hall R, Jagoda P, Bachelier K, Muller-Best P, Semenov A, Lammert F, Bohm M, Laufs U. Inhibition of endothelial nitric oxide synthase induces and enhances myocardial fibrosis. Cardiovasc Res. 2013;100:211-221
-
(2013)
Cardiovasc Res
, vol.100
, pp. 211-221
-
-
Kazakov, A.1
Hall, R.2
Jagoda, P.3
Bachelier, K.4
Muller-Best, P.5
Semenov, A.6
Lammert, F.7
Bohm, M.8
Laufs, U.9
-
26
-
-
70349882090
-
Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes
-
Sayyed SG, Hagele H, Kulkarni OP, Endlich K, Segerer S, Eulberg D, Klussmann S, Anders HJ. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia. 2009;52:2445-2454
-
(2009)
Diabetologia
, vol.52
, pp. 2445-2454
-
-
Sayyed, S.G.1
Hagele, H.2
Kulkarni, O.P.3
Endlich, K.4
Segerer, S.5
Eulberg, D.6
Klussmann, S.7
Anders, H.J.8
-
27
-
-
0344393605
-
Crucial role of stromal cellderived factor-1a in neointima formation after vascular injury in apolipoprotein E-deficient mice
-
Schober A, Knarren S, Lietz M, Lin EA, Weber C. Crucial role of stromal cellderived factor-1a in neointima formation after vascular injury in apolipoprotein E-deficient mice. Circulation. 2003;108:2491-2497
-
(2003)
Circulation
, vol.108
, pp. 2491-2497
-
-
Schober, A.1
Knarren, S.2
Lietz, M.3
Lin, E.A.4
Weber, C.5
-
28
-
-
20244375128
-
SDF-1a/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells
-
Zernecke A, Schober A, Bot I, von Hundelshausen P, Liehn EA, Mopps B, Mericskay M, Gierschik P, Biessen EA, Weber C. SDF-1a/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ Res. 2005;96:784-791
-
(2005)
Circ Res
, vol.96
, pp. 784-791
-
-
Zernecke, A.1
Schober, A.2
Bot, I.3
von Hundelshausen, P.4
Liehn, E.A.5
Mopps, B.6
Mericskay, M.7
Gierschik, P.8
Biessen, E.A.9
Weber, C.10
-
29
-
-
77950572303
-
Bone marrow-derived cells contribute to fibrosis in the chronically failing heart
-
Chu PY, Mariani J, Finch S, McMullen JR, Sadoshima J, Marshall T, Kaye DM. Bone marrow-derived cells contribute to fibrosis in the chronically failing heart. Am J Pathol. 2010;176:1735-1742
-
(2010)
Am J Pathol
, vol.176
, pp. 1735-1742
-
-
Chu, P.Y.1
Mariani, J.2
Finch, S.3
McMullen, J.R.4
Sadoshima, J.5
Marshall, T.6
Kaye, D.M.7
-
30
-
-
84906936575
-
Stromal cell-derived factor 1 as a biomarker of heart failure and mortality risk
-
Subramanian S, Liu C, Aviv A, Ho JE, Courchesne P, Muntendam P, Larson MG, Cheng S, Wang TJ, Mehta NN, Levy D. Stromal cell-derived factor 1 as a biomarker of heart failure and mortality risk. Arterioscler Thromb Vasc Biol. 2014;34:2100-2105
-
(2014)
Arterioscler Thromb Vasc Biol
, vol.34
, pp. 2100-2105
-
-
Subramanian, S.1
Liu, C.2
Aviv, A.3
Ho, J.E.4
Courchesne, P.5
Muntendam, P.6
Larson, M.G.7
Cheng, S.8
Wang, T.J.9
Mehta, N.N.10
Levy, D.11
-
31
-
-
84947867570
-
Endomyocardial expression of SDF-1 predicts mortality in patients with suspected myocarditis
-
Zuern CS, Walker B, Sauter M, Schaub M, Chatterjee M, Mueller K, Rath D, Vogel S, Tegtmeyer R, Seizer P, Geisler T, Kandolf R, Lang F, Klingel K, Gawaz M, Borst O. Endomyocardial expression of SDF-1 predicts mortality in patients with suspected myocarditis. Clin Res Cardiol. 2015;104:1033-1043
-
(2015)
Clin Res Cardiol
, vol.104
, pp. 1033-1043
-
-
Zuern, C.S.1
Walker, B.2
Sauter, M.3
Schaub, M.4
Chatterjee, M.5
Mueller, K.6
Rath, D.7
Vogel, S.8
Tegtmeyer, R.9
Seizer, P.10
Geisler, T.11
Kandolf, R.12
Lang, F.13
Klingel, K.14
Gawaz, M.15
Borst, O.16
-
32
-
-
84895736410
-
Sitagliptin: a review of its use in patients with type 2 diabetes mellitus
-
Plosker GL. Sitagliptin: a review of its use in patients with type 2 diabetes mellitus. Drugs. 2014;74:223-242
-
(2014)
Drugs
, vol.74
, pp. 223-242
-
-
Plosker, G.L.1
-
33
-
-
85000432395
-
Context-dependent effects of dipeptidyl peptidase 4 inhibitors
-
Jackson EK. Context-dependent effects of dipeptidyl peptidase 4 inhibitors. Curr Opin Nephrol Hypertens. 2017;26:83-90
-
(2017)
Curr Opin Nephrol Hypertens
, vol.26
, pp. 83-90
-
-
Jackson, E.K.1
-
35
-
-
84957111573
-
Heart failure as a comorbidity of diabetes: role of dipeptidyl peptidase 4
-
Bando YK, Murohara T. Heart failure as a comorbidity of diabetes: role of dipeptidyl peptidase 4. J Atheroscler Thromb. 2016;23:147-154
-
(2016)
J Atheroscler Thromb
, vol.23
, pp. 147-154
-
-
Bando, Y.K.1
Murohara, T.2
-
36
-
-
84941739763
-
Direct effects of DPP-4 inhibition on the vasculature. Reconciling basic evidence with lack of clinical evidence
-
Fadini GP, Albiero M, Avogaro A. Direct effects of DPP-4 inhibition on the vasculature. Reconciling basic evidence with lack of clinical evidence. Vascul Pharmacol. 2015;73:1-3
-
(2015)
Vascul Pharmacol
, vol.73
, pp. 1-3
-
-
Fadini, G.P.1
Albiero, M.2
Avogaro, A.3
-
37
-
-
3242733049
-
Interaction of Gbetagammawith RACK1 and other WD40 repeat proteins
-
Chen S, Spiegelberg BD, Lin F, Dell EJ, HammHE. Interaction of Gbetagammawith RACK1 and other WD40 repeat proteins. J Mol Cell Cardiol. 2004;37:399-406
-
(2004)
J Mol Cell Cardiol
, vol.37
, pp. 399-406
-
-
Chen, S.1
Spiegelberg, B.D.2
Lin, F.3
Dell, E.J.4
Hamm, H.E.5
-
38
-
-
84930510366
-
RACK1, a versatile hub in cancer
-
Li JJ, Xie D. RACK1, a versatile hub in cancer. Oncogene. 2015;34:1890-1898
-
(2015)
Oncogene
, vol.34
, pp. 1890-1898
-
-
Li, J.J.1
Xie, D.2
-
39
-
-
0036892923
-
The RACK1 scaffold protein: a dynamic cog in cell response mechanisms
-
McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol. 2002;62:1261-1273
-
(2002)
Mol Pharmacol
, vol.62
, pp. 1261-1273
-
-
McCahill, A.1
Warwicker, J.2
Bolger, G.B.3
Houslay, M.D.4
Yarwood, S.J.5
-
40
-
-
33344460181
-
RACK1 has the nerve to act: structure meets function in the nervous system
-
Sklan EH, Podoly E, Soreq H. RACK1 has the nerve to act: structure meets function in the nervous system. Prog Neurobiol. 2006;78:117-134
-
(2006)
Prog Neurobiol
, vol.78
, pp. 117-134
-
-
Sklan, E.H.1
Podoly, E.2
Soreq, H.3
|