-
1
-
-
62449261216
-
Identification and quantification of 29,39-cAMP release by the kidney
-
Ren J, Mi Z, Stewart NA, Jackson EK: Identification and quantification of 29,39-cAMP release by the kidney. J Pharmacol Exp Ther 328: 855–865, 2009
-
(2009)
J Pharmacol Exp Ther
, vol.328
, pp. 855-865
-
-
Ren, J.1
Mi, Z.2
Stewart, N.A.3
Jackson, E.K.4
-
2
-
-
70450233473
-
Extracellular 29,39-cAMP is a source of adenosine
-
Jackson EK, Ren J, Mi Z: Extracellular 29,39-cAMP is a source of adenosine. J Biol Chem 284: 33097–33106, 2009
-
(2009)
J Biol Chem
, vol.284
, pp. 33097-33106
-
-
Jackson, E.K.1
Ren, J.2
Mi, Z.3
-
3
-
-
80052411083
-
Extracellular cAMP-adenosine pathways in the mouse kidney
-
Jackson EK, Ren J, Cheng D, Mi Z: Extracellular cAMP-adenosine pathways in the mouse kidney. Am J Physiol Renal Physiol 301: F565–F573, 2011
-
(2011)
Am J Physiol Renal Physiol
, vol.301
, pp. F565-F573
-
-
Jackson, E.K.1
Ren, J.2
Cheng, D.3
Mi, Z.4
-
4
-
-
66749110373
-
Ca2+-dependent permeability transition regulation in rat brain mitochondria by 29,39-cyclic nucleotides and 29,39-cyclic nucleotide 39-phosphodiesterase
-
Azarashvili T, Krestinina O, Galvita A, Grachev D, Baburina Y, Stricker R, Evtodienko Y, Reiser G: Ca2+-dependent permeability transition regulation in rat brain mitochondria by 29,39-cyclic nucleotides and 29,39-cyclic nucleotide 39-phosphodiesterase. Am J Physiol Cell Physiol 296: C1428–C1439, 2009
-
(2009)
Am J Physiol Cell Physiol
, vol.296
, pp. C1428-C1439
-
-
Azarashvili, T.1
Krestinina, O.2
Galvita, A.3
Grachev, D.4
Baburina, Y.5
Stricker, R.6
Evtodienko, Y.7
Reiser, G.8
-
5
-
-
33845977959
-
Mitochondrial membrane per-meabilization in cell death
-
Kroemer G, Galluzzi L, Brenner C: Mitochondrial membrane per-meabilization in cell death. Physiol Rev 87: 99–163, 2007
-
(2007)
Physiol Rev
, vol.87
, pp. 99-163
-
-
Kroemer, G.1
Galluzzi, L.2
Brenner, C.3
-
6
-
-
84887412679
-
Mitophagy is not induced by mitochondrial damage but plays a role in the regulation of cellular autophagic activity
-
Bhatia-Kiššová I, Camougrand N: Mitophagy is not induced by mitochondrial damage but plays a role in the regulation of cellular autophagic activity. Autophagy 9: 1897–1899, 2013
-
(2013)
Autophagy
, vol.9
, pp. 1897-1899
-
-
Bhatia-Kiššová, I.1
Camougrand, N.2
-
7
-
-
84890549211
-
High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells
-
Park E-Y, Park J-B: High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells. Int Orthop 37: 2507–2514, 2013
-
(2013)
Int Orthop
, vol.37
, pp. 2507-2514
-
-
Park, E.-Y.1
Park, J.-B.2
-
8
-
-
84919761011
-
Ophiopogonin D attenuates doxorubicin-induced autophagic cell death by relieving mitochondrial damage in vitro and in vivo
-
Zhang Y-Y, Meng C, Zhang X-M, Yuan C-H, Wen M-D, Chen Z, Dong D-C, Gao Y-H, Liu C, Zhang Z: Ophiopogonin D attenuates doxorubicin-induced autophagic cell death by relieving mitochondrial damage in vitro and in vivo. J Pharmacol Exp Ther 352: 166–174, 2015
-
(2015)
J Pharmacol Exp Ther
, vol.352
, pp. 166-174
-
-
Zhang, Y.-Y.1
Meng, C.2
Zhang, X.-M.3
Yuan, C.-H.4
Wen, M.-D.5
Chen, Z.6
Dong, D.-C.7
Gao, Y.-H.8
Liu, C.9
Zhang, Z.10
-
9
-
-
84870622028
-
Autophagy protects proximal tubular cells from injury and apoptosis
-
Kaushal GP: Autophagy protects proximal tubular cells from injury and apoptosis. Kidney Int 82: 1250–1253, 2012
-
(2012)
Kidney Int
, vol.82
, pp. 1250-1253
-
-
Kaushal, G.P.1
-
10
-
-
84887471307
-
Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress
-
Kimura T, Takahashi A, Takabatake Y, Namba T, Yamamoto T, Kaimori JY, Matsui I, Kitamura H, Niimura F, Matsusaka T, Soga T, Rakugi H, Isaka Y: Autophagy protects kidney proximal tubule epithelial cells from mitochondrial metabolic stress. Autophagy 9: 1876–1886, 2013
-
(2013)
Autophagy
, vol.9
, pp. 1876-1886
-
-
Kimura, T.1
Takahashi, A.2
Takabatake, Y.3
Namba, T.4
Yamamoto, T.5
Kaimori, J.Y.6
Matsui, I.7
Kitamura, H.8
Niimura, F.9
Matsusaka, T.10
Soga, T.11
Rakugi, H.12
Isaka, Y.13
-
11
-
-
84893373290
-
Autophagy in acute kidney injury
-
Livingston MJ, Dong Z: Autophagy in acute kidney injury. Semin Nephrol 34: 17–26, 2014
-
(2014)
Semin Nephrol
, vol.34
, pp. 17-26
-
-
Livingston, M.J.1
Dong, Z.2
-
12
-
-
84930959420
-
Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models
-
Cui J, Bai XY, Sun X, Cai G, Hong Q, Ding R, Chen X: Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep 5: 11256, 2015
-
(2015)
Sci Rep
, vol.5
, pp. 11256
-
-
Cui, J.1
Bai, X.Y.2
Sun, X.3
Cai, G.4
Hong, Q.5
Ding, R.6
Chen, X.7
-
13
-
-
84870580153
-
Autophagy in proximal tubules protects against acute kidney injury
-
Jiang M, Wei Q, Dong G, Komatsu M, Su Y, Dong Z: Autophagy in proximal tubules protects against acute kidney injury. Kidney Int 82: 1271–1283, 2012
-
(2012)
Kidney Int
, vol.82
, pp. 1271-1283
-
-
Jiang, M.1
Wei, Q.2
Dong, G.3
Komatsu, M.4
Su, Y.5
Dong, Z.6
-
14
-
-
79955626606
-
Autophagy protects the proximal tubule from degeneration and acute ischemic injury
-
Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, Rakugi H, Isaka Y: Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 22: 902–913, 2011
-
(2011)
J Am Soc Nephrol
, vol.22
, pp. 902-913
-
-
Kimura, T.1
Takabatake, Y.2
Takahashi, A.3
Kaimori, J.Y.4
Matsui, I.5
Namba, T.6
Kitamura, H.7
Niimura, F.8
Matsusaka, T.9
Soga, T.10
Rakugi, H.11
Isaka, Y.12
-
15
-
-
84929933430
-
Autophagy protects renal tubular cells against ischemia / reperfusion injury in a time-dependent manner
-
Guan X, Qian Y, Shen Y, Zhang L, Du Y, Dai H, Qian J, Yan Y: Autophagy protects renal tubular cells against ischemia / reperfusion injury in a time-dependent manner. Cell Physiol Biochem 36: 285–298, 2015
-
(2015)
Cell Physiol Biochem
, vol.36
, pp. 285-298
-
-
Guan, X.1
Qian, Y.2
Shen, Y.3
Zhang, L.4
Du, Y.5
Dai, H.6
Qian, J.7
Yan, Y.8
-
16
-
-
84862635122
-
Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury
-
Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N, Walz G, Huber TB: Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8: 826–837, 2012
-
(2012)
Autophagy
, vol.8
, pp. 826-837
-
-
Liu, S.1
Hartleben, B.2
Kretz, O.3
Wiech, T.4
Igarashi, P.5
Mizushima, N.6
Walz, G.7
Huber, T.B.8
-
17
-
-
84872066457
-
Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness
-
Gunst J, Derese I, Aertgeerts A, Ververs E-J, Wauters A, Van den Berghe G, Vanhorebeek I: Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness. Crit Care Med 41: 182–194, 2013
-
(2013)
Crit Care Med
, vol.41
, pp. 182-194
-
-
Gunst, J.1
Derese, I.2
Aertgeerts, A.3
Ververs, E.-J.4
Wauters, A.5
Van den Berghe, G.6
Vanhorebeek, I.7
-
18
-
-
84903605216
-
Role of 29,39-cyclic nucleotide 39-phosphodiesterase in the renal 29,39-cAMP-adenosine pathway
-
Jackson EK, Gillespie DG, Mi Z, Cheng D, Bansal R, Janesko-Feldman K, Kochanek PM: Role of 29,39-cyclic nucleotide 39-phosphodiesterase in the renal 29,39-cAMP-adenosine pathway. Am J Physiol Renal Physiol 307: F14–F24, 2014
-
(2014)
Am J Physiol Renal Physiol
, vol.307
, pp. F14-F24
-
-
Jackson, E.K.1
Gillespie, D.G.2
Mi, Z.3
Cheng, D.4
Bansal, R.5
Janesko-Feldman, K.6
Kochanek, P.M.7
-
19
-
-
84914675705
-
The myelin membrane-associated enzyme 29,39-cyclic nucleotide 39-phosphodiesterase: On a highway to structure and function
-
Raasakka A, Kursula P: The myelin membrane-associated enzyme 29,39-cyclic nucleotide 39-phosphodiesterase: On a highway to structure and function. Neurosci Bull 30: 956–966, 2014
-
(2014)
Neurosci Bull
, vol.30
, pp. 956-966
-
-
Raasakka, A.1
Kursula, P.2
-
20
-
-
77956631199
-
The mitochondria permeability transition pore complex in the brain with interacting proteins - Promising targets for protection in neurodegenerative diseases
-
Azarashvili T, Stricker R, Reiser G: The mitochondria permeability transition pore complex in the brain with interacting proteins - promising targets for protection in neurodegenerative diseases. Biol Chem 391: 619–629, 2010
-
(2010)
Biol Chem
, vol.391
, pp. 619-629
-
-
Azarashvili, T.1
Stricker, R.2
Reiser, G.3
-
21
-
-
84897092477
-
Cardiolipin and mitochondrial function in health and disease
-
Paradies G, Paradies V, Ruggiero FM, Petrosillo G: Cardiolipin and mitochondrial function in health and disease. Antioxid Redox Signal 20: 1925–1953, 2014
-
(2014)
Antioxid Redox Signal
, vol.20
, pp. 1925-1953
-
-
Paradies, G.1
Paradies, V.2
Ruggiero, F.M.3
Petrosillo, G.4
-
22
-
-
84900417569
-
Metabolism and function of mitochondrial cardiolipin
-
Ren M, Phoon CKL, Schlame M: Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 55: 1–16, 2014
-
(2014)
Prog Lipid Res
, vol.55
, pp. 1-16
-
-
Ren, M.1
Phoon, C.K.L.2
Schlame, M.3
-
23
-
-
0022510144
-
Citrate synthase: Structure, control, and mechanism
-
Wiegand G, Remington SJ: Citrate synthase: Structure, control, and mechanism. Annu Rev Biophys Chem 15: 97–117, 1986
-
(1986)
Annu Rev Biophys Chem
, vol.15
, pp. 97-117
-
-
Wiegand, G.1
Remington, S.J.2
-
24
-
-
73649100201
-
Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity
-
Ritov VB, Menshikova EV, Azuma K, Wood R, Toledo FGS, Goodpaster BH, Ruderman NB, Kelley DE: Deficiency of electron transport chain in human skeletal muscle mitochondria in type 2 diabetes mellitus and obesity. Am J Physiol Endocrinol Metab 298: E49–E58, 2010
-
(2010)
Am J Physiol Endocrinol Metab
, vol.298
, pp. E49-E58
-
-
Ritov, V.B.1
Menshikova, E.V.2
Azuma, K.3
Wood, R.4
Toledo, F.G.S.5
Goodpaster, B.H.6
Ruderman, N.B.7
Kelley, D.E.8
-
25
-
-
4444249485
-
High-performance liquid chromatography-based methods of enzymatic analysis: Electron transport chain activity in mitochondria from human skeletal muscle
-
Ritov VB, Menshikova EV, Kelley DE: High-performance liquid chromatography-based methods of enzymatic analysis: Electron transport chain activity in mitochondria from human skeletal muscle. Anal Biochem 333: 27–38, 2004
-
(2004)
Anal Biochem
, vol.333
, pp. 27-38
-
-
Ritov, V.B.1
Menshikova, E.V.2
Kelley, D.E.3
-
26
-
-
78649708170
-
Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon
-
Pabst M, Grass J, Fischl R, Léonard R, Jin C, Hinterkörner G, Borth N, Altmann F: Nucleotide and nucleotide sugar analysis by liquid chromatography-electrospray ionization-mass spectrometry on surface-conditioned porous graphitic carbon. Anal Chem 82: 9782–9788, 2010
-
(2010)
Anal Chem
, vol.82
, pp. 9782-9788
-
-
Pabst, M.1
Grass, J.2
Fischl, R.3
Léonard, R.4
Jin, C.5
Hinterkörner, G.6
Borth, N.7
Altmann, F.8
-
27
-
-
84868250141
-
Determination of cyclic guanosine- And cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry
-
Van Damme T, Zhang Y, Lynen F, Sandra P: Determination of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in human plasma and animal tissues by solid phase extraction on silica and liquid chromatography-triple quadrupole mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 909: 14–21, 2012
-
(2012)
J Chromatogr B Analyt Technol Biomed Life Sci
, vol.909
, pp. 14-21
-
-
Van Damme, T.1
Zhang, Y.2
Lynen, F.3
Sandra, P.4
-
28
-
-
84964456436
-
Identification and quan-titation of 29,39-cGMP in murine tissues
-
Burhenne H, Tschirner S, Seifert R, Kaever V: Identification and quan-titation of 29,39-cGMP in murine tissues. BMC Pharmacol Toxicol 14: P12, 2013
-
(2013)
BMC Pharmacol Toxicol
, vol.14
, pp. P12
-
-
Burhenne, H.1
Tschirner, S.2
Seifert, R.3
Kaever, V.4
-
29
-
-
84901242160
-
Wounding stress causes rapid increase in concentration of the naturally occurring 29,39-isomers of cyclic guanosine- And cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues
-
Van Damme T, Blancquaert D, Couturon P, Van Der Straeten D, Sandra P, Lynen F: Wounding stress causes rapid increase in concentration of the naturally occurring 29,39-isomers of cyclic guanosine- and cyclic adenosine monophosphate (cGMP and cAMP) in plant tissues. Phyto-chemistry 103: 59–66, 2014
-
(2014)
Phyto-chemistry
, vol.103
, pp. 59-66
-
-
Van Damme, T.1
Blancquaert, D.2
Couturon, P.3
Van Der Straeten, D.4
Sandra, P.5
Lynen, F.6
-
30
-
-
84906962643
-
Identification of cytidine 29,39-cyclic monophosphate and uridine 29,39-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture
-
Bordeleau E, Oberc C, Ameen E, da Silva AM, Yan H: Identification of cytidine 29,39-cyclic monophosphate and uridine 29,39-cyclic monophosphate in Pseudomonas fluorescens pfo-1 culture. Bioorg Med Chem Lett 24: 4520–4522, 2014
-
(2014)
Bioorg Med Chem Lett
, vol.24
, pp. 4520-4522
-
-
Bordeleau, E.1
Oberc, C.2
Ameen, E.3
Da Silva, A.M.4
Yan, H.5
-
31
-
-
85003237289
-
A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: Basal levels of eight cNMPs and identification of 29,39-cIMP
-
Jia X, Fontaine BM, Strobel F, Weinert EE: A facile and sensitive method for quantification of cyclic nucleotide monophosphates in mammalian organs: Basal levels of eight cNMPs and identification of 29,39-cIMP. Biomolecules 4: 1070–1092, 2014
-
(2014)
Biomolecules
, vol.4
, pp. 1070-1092
-
-
Jia, X.1
Fontaine, B.M.2
Strobel, F.3
Weinert, E.E.4
-
32
-
-
84862224806
-
The brain in vivo expresses the 29,39-cAMP-adenosine pathway
-
Verrier JD, Jackson TC, Bansal R, Kochanek PM, Puccio AM, Okonkwo DO, Jackson EK: The brain in vivo expresses the 29,39-cAMP-adenosine pathway. J Neurochem 122: 115–125, 2012
-
(2012)
J Neurochem
, vol.122
, pp. 115-125
-
-
Verrier, J.D.1
Jackson, T.C.2
Bansal, R.3
Kochanek, P.M.4
Puccio, A.M.5
Okonkwo, D.O.6
Jackson, E.K.7
-
33
-
-
0024600269
-
29,39-Cyclic nucleotide 39-phosphodiesterase, an oligo-dendrocyte-Schwann cell and myelin-associated enzyme of the nervous system
-
Sprinkle TJ: 29,39-Cyclic nucleotide 39-phosphodiesterase, an oligo-dendrocyte-Schwann cell and myelin-associated enzyme of the nervous system. Crit Rev Neurobiol 4: 235–301, 1989
-
(1989)
Crit Rev Neurobiol
, vol.4
, pp. 235-301
-
-
Sprinkle, T.J.1
-
34
-
-
0026675064
-
29,39-Cyclic nucleotide-39-phosphohydrolase and signal transduction in central nervous system myelin
-
Thompson RJ: 29,39-Cyclic nucleotide-39-phosphohydrolase and signal transduction in central nervous system myelin. Biochem Soc Trans 20: 621–626, 1992
-
(1992)
Biochem Soc Trans
, vol.20
, pp. 621-626
-
-
Thompson, R.J.1
-
35
-
-
59849110194
-
Autophagy in ischemic heart disease
-
Gustafsson AB, Gottlieb RA: Autophagy in ischemic heart disease. Circ Res 104: 150–158, 2009
-
(2009)
Circ Res
, vol.104
, pp. 150-158
-
-
Gustafsson, A.B.1
Gottlieb, R.A.2
-
36
-
-
84881228158
-
Impairment of autophagy: From hereditary disorder to drug intoxication
-
Aki T, Funakoshi T, Unuma K, Uemura K: Impairment of autophagy: From hereditary disorder to drug intoxication. Toxicology 311: 205–215, 2013
-
(2013)
Toxicology
, vol.311
, pp. 205-215
-
-
Aki, T.1
Funakoshi, T.2
Unuma, K.3
Uemura, K.4
-
37
-
-
77749264299
-
Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury
-
Jiang M, Liu K, Luo J, Dong Z: Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176: 1181–1192, 2010
-
(2010)
Am J Pathol
, vol.176
, pp. 1181-1192
-
-
Jiang, M.1
Liu, K.2
Luo, J.3
Dong, Z.4
-
38
-
-
0037370361
-
Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination
-
Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave K-A: Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33: 366–374, 2003
-
(2003)
Nat Genet
, vol.33
, pp. 366-374
-
-
Lappe-Siefke, C.1
Goebbels, S.2
Gravel, M.3
Nicksch, E.4
Lee, J.5
Braun, P.E.6
Griffiths, I.R.7
Nave, K.-A.8
-
39
-
-
0003633755
-
-
National Institutes of Health: National Institutes of Health, Washington, D.C., National Academy Press
-
National Institutes of Health: Guide for the Care and Use of Laboratory Animals, National Institutes of Health, Washington, D.C., National Academy Press, 1996
-
(1996)
Guide for The Care and Use of Laboratory Animals
-
-
-
40
-
-
80355132713
-
Use of a hanging-weight system for isolated renal artery occlusion
-
Grenz A, Hong JH, Badulak A, Ridyard D, Luebbert T, Kim JH, Eltzschig HK: Use of a hanging-weight system for isolated renal artery occlusion. J Vis Exp 53: 2549, 2011
-
(2011)
J Vis Exp
, vol.53
, pp. 2549
-
-
Grenz, A.1
Hong, J.H.2
Badulak, A.3
Ridyard, D.4
Luebbert, T.5
Kim, J.H.6
Eltzschig, H.K.7
|