-
1
-
-
84994453140
-
Therapeutic potential of stem cells strategy for cardiovascular diseases
-
Lee CY, Kim R, Ham O, et al. Therapeutic potential of stem cells strategy for cardiovascular diseases. Stem Cell Int. 2016;2016:4285938.
-
(2016)
Stem Cell Int
, vol.2016
, pp. 4285938
-
-
Lee, C.Y.1
Kim, R.2
Ham, O.3
-
2
-
-
4344717801
-
Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes
-
Ahuja P, Perriard E, Perriard JC, et al. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci. 2004;117:3295–3306.
-
(2004)
J Cell Sci
, vol.117
, pp. 3295-3306
-
-
Ahuja, P.1
Perriard, E.2
Perriard, J.C.3
-
3
-
-
84957571512
-
Stem cells and exosomes in cardiac repair
-
Singla DK., Stem cells and exosomes in cardiac repair. Curr Opin Pharmacol. 2016;27:19–23.
-
(2016)
Curr Opin Pharmacol
, vol.27
, pp. 19-23
-
-
Singla, D.K.1
-
5
-
-
84988714293
-
MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential
-
Marote A, Teixeira FG, Mendes-Pinheiro B, et al. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol. 2016;7:231.
-
(2016)
Front Pharmacol
, vol.7
, pp. 231
-
-
Marote, A.1
Teixeira, F.G.2
Mendes-Pinheiro, B.3
-
7
-
-
84895473169
-
Exosomes: nanoparticles involved in cardioprotection?
-
Yellon DM, Davidson SM., Exosomes: nanoparticles involved in cardioprotection? Circ Res. 2014;114:325–332.
-
(2014)
Circ Res
, vol.114
, pp. 325-332
-
-
Yellon, D.M.1
Davidson, S.M.2
-
8
-
-
84873919177
-
Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury
-
Arslan F, Lai RC, Smeets MB, et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 2013;10:301–312.
-
(2013)
Stem Cell Res
, vol.10
, pp. 301-312
-
-
Arslan, F.1
Lai, R.C.2
Smeets, M.B.3
-
9
-
-
77952293014
-
Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury
-
Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4:214–222.
-
(2010)
Stem Cell Res
, vol.4
, pp. 214-222
-
-
Lai, R.C.1
Arslan, F.2
Lee, M.M.3
-
10
-
-
84947201437
-
Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection
-
Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol. 2015;182:349–360.
-
(2015)
Int J Cardiol
, vol.182
, pp. 349-360
-
-
Yu, B.1
Kim, H.W.2
Gong, M.3
-
11
-
-
85019690068
-
Roles of exosomes in cardioprotection
-
Barile L, Moccetti T, Marban E, et al. Roles of exosomes in cardioprotection. Eur Heart J. 2016;38:1372–1379.
-
(2016)
Eur Heart J
, vol.38
, pp. 1372-1379
-
-
Barile, L.1
Moccetti, T.2
Marban, E.3
-
12
-
-
84955595002
-
A large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates: paracrine activity without remuscularization
-
Hu X, Xu Y, Zhong Z, et al. A large-scale investigation of hypoxia-preconditioned allogeneic mesenchymal stem cells for myocardial repair in nonhuman primates: paracrine activity without remuscularization. Circu Res. 2016;118:970–983.
-
(2016)
Circu Res
, vol.118
, pp. 970-983
-
-
Hu, X.1
Xu, Y.2
Zhong, Z.3
-
13
-
-
84899914491
-
Severe hypoxia exerts parallel and cell-specific regulation of gene expression and alternative splicing in human mesenchymal stem cells
-
Hu X, Wu R, Shehadeh LA, et al. Severe hypoxia exerts parallel and cell-specific regulation of gene expression and alternative splicing in human mesenchymal stem cells. BMC Genomics. 2014;15:303.
-
(2014)
BMC Genomics
, vol.15
, pp. 303
-
-
Hu, X.1
Wu, R.2
Shehadeh, L.A.3
-
14
-
-
84908110116
-
Leptin signaling is required for augmented therapeutic properties of mesenchymal stem cells conferred by hypoxia preconditioning
-
Hu X, Wu R, Jiang Z, et al. Leptin signaling is required for augmented therapeutic properties of mesenchymal stem cells conferred by hypoxia preconditioning. Stem Cells. 2014;32:2702–2713.
-
(2014)
Stem Cells
, vol.32
, pp. 2702-2713
-
-
Hu, X.1
Wu, R.2
Jiang, Z.3
-
16
-
-
84922105441
-
Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology
-
Gray WD, French KM, Ghosh-Choudhary S, et al. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ Res. 2015;116:255–263.
-
(2015)
Circ Res
, vol.116
, pp. 255-263
-
-
Gray, W.D.1
French, K.M.2
Ghosh-Choudhary, S.3
-
17
-
-
84908110212
-
Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer
-
Ong SG, Lee WH, Huang M, et al. Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation. 2014;130:S60–S69.
-
(2014)
Circulation
, vol.130
, pp. S60-S69
-
-
Ong, S.G.1
Lee, W.H.2
Huang, M.3
-
18
-
-
80052760391
-
Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage
-
Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4:446–454.
-
(2011)
Circ Cardiovasc Genet
, vol.4
, pp. 446-454
-
-
Kuwabara, Y.1
Ono, K.2
Horie, T.3
-
19
-
-
84990066601
-
Cardiac ankyrin repeat protein attenuates cardiomyocyte apoptosis by upregulation of Bcl-2 expression
-
Zhang N, Ye F, Zhu W, et al. Cardiac ankyrin repeat protein attenuates cardiomyocyte apoptosis by upregulation of Bcl-2 expression. Biochim Biophys Acta. 2016;1863:3040–3049.
-
(2016)
Biochim Biophys Acta
, vol.1863
, pp. 3040-3049
-
-
Zhang, N.1
Ye, F.2
Zhu, W.3
-
20
-
-
85017391075
-
Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21
-
Wang K, Jiang Z, Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21. Stem Cells Transl Med. 2016;6:209–222.
-
(2016)
Stem Cells Transl Med
, vol.6
, pp. 209-222
-
-
Wang, K.1
Jiang, Z.2
Webster, K.A.3
-
21
-
-
84895444013
-
Exosomes and cardiac repair after myocardial infarction
-
Sahoo S, Losordo DW., Exosomes and cardiac repair after myocardial infarction. Circ Res. 2014;114:333–344.
-
(2014)
Circ Res
, vol.114
, pp. 333-344
-
-
Sahoo, S.1
Losordo, D.W.2
-
22
-
-
84870239895
-
Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension
-
Lee C, Mitsialis SA, Aslam M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126:2601–2611.
-
(2012)
Circulation
, vol.126
, pp. 2601-2611
-
-
Lee, C.1
Mitsialis, S.A.2
Aslam, M.3
-
23
-
-
84973311486
-
Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice
-
Aliotta JM, Pereira M, Wen S, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res. 2016;110:319–330.
-
(2016)
Cardiovasc Res
, vol.110
, pp. 319-330
-
-
Aliotta, J.M.1
Pereira, M.2
Wen, S.3
-
24
-
-
84888103828
-
Current methods for the isolation of extracellular vesicles
-
Momen-Heravi F, Balaj L, Alian S, et al. Current methods for the isolation of extracellular vesicles. Biol Chem. 2013;394:1253–1262.
-
(2013)
Biol Chem
, vol.394
, pp. 1253-1262
-
-
Momen-Heravi, F.1
Balaj, L.2
Alian, S.3
-
25
-
-
84958157317
-
Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells
-
Campbell CR, Berman AE, Weintraub NL, et al. Electrical stimulation to optimize cardioprotective exosomes from cardiac stem cells. Med Hypotheses. 2016;88:6–9.
-
(2016)
Med Hypotheses
, vol.88
, pp. 6-9
-
-
Campbell, C.R.1
Berman, A.E.2
Weintraub, N.L.3
-
26
-
-
84864284695
-
Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction
-
Mackie AR, Klyachko E, Thorne T, et al. Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ Res. 2012;111:312–321.
-
(2012)
Circ Res
, vol.111
, pp. 312-321
-
-
Mackie, A.R.1
Klyachko, E.2
Thorne, T.3
-
27
-
-
84929649938
-
Exosomes Secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via Akt signaling pathway following myocardial infarction
-
Kang K, Ma R, Cai W, et al. Exosomes Secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via Akt signaling pathway following myocardial infarction. Stem Cells Int. 2015;2015:659890.
-
(2015)
Stem Cells Int
, vol.2015
, pp. 659890
-
-
Kang, K.1
Ma, R.2
Cai, W.3
-
28
-
-
84876392367
-
MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms
-
Goettsch C, Hutcheson JD, Aikawa E., MicroRNA in cardiovascular calcification: focus on targets and extracellular vesicle delivery mechanisms. Circ Res. 2013;112:1073–1084.
-
(2013)
Circ Res
, vol.112
, pp. 1073-1084
-
-
Goettsch, C.1
Hutcheson, J.D.2
Aikawa, E.3
-
29
-
-
84907337461
-
Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction
-
Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res. 2014;103:530–541.
-
(2014)
Cardiovasc Res
, vol.103
, pp. 530-541
-
-
Barile, L.1
Lionetti, V.2
Cervio, E.3
-
30
-
-
70450240736
-
Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2
-
Kim HW, Haider HK, Jiang S, et al. Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem. 2009;284:33161–33168.
-
(2009)
J Biol Chem
, vol.284
, pp. 33161-33168
-
-
Kim, H.W.1
Haider, H.K.2
Jiang, S.3
-
31
-
-
47049119934
-
MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3
-
Fasanaro P, D’Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem. 2008;283:15878–15883.
-
(2008)
J Biol Chem
, vol.283
, pp. 15878-15883
-
-
Fasanaro, P.1
D’Alessandra, Y.2
Di Stefano, V.3
-
32
-
-
84891746974
-
MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain
-
Zeng L, He X, Wang Y, et al. MicroRNA-210 overexpression induces angiogenesis and neurogenesis in the normal adult mouse brain. Gene Ther. 2014;21:37–43.
-
(2014)
Gene Ther
, vol.21
, pp. 37-43
-
-
Zeng, L.1
He, X.2
Wang, Y.3
-
33
-
-
84866502787
-
Hypoxic enhancement of exosome release by breast cancer cells
-
King HW, Michael MZ, Gleadle JM., Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421.
-
(2012)
BMC Cancer
, vol.12
, pp. 421
-
-
King, H.W.1
Michael, M.Z.2
Gleadle, J.M.3
-
34
-
-
79953136097
-
Rab27a and Rab27b control different steps of the exosome secretion pathway
-
Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 19-30
-
-
Ostrowski, M.1
Carmo, N.B.2
Krumeich, S.3
-
36
-
-
84905643012
-
Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis
-
Wang T, Gilkes DM, Takano N, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA. 2014;111:E3234–E3242.
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. E3234-E3242
-
-
Wang, T.1
Gilkes, D.M.2
Takano, N.3
-
37
-
-
47649097740
-
Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element
-
Kaluz S, Kaluzova M, Stanbridge EJ., Regulation of gene expression by hypoxia: integration of the HIF-transduced hypoxic signal at the hypoxia-responsive element. Clin Chim Acta. 2008;395:6–13.
-
(2008)
Clin Chim Acta
, vol.395
, pp. 6-13
-
-
Kaluz, S.1
Kaluzova, M.2
Stanbridge, E.J.3
|