메뉴 건너뛰기




Volumn 7, Issue 3, 2017, Pages 416-426

Gelatin-based hydrogels for biomedical applications

Author keywords

[No Author keywords available]

Indexed keywords

BIOCOMPATIBILITY; BIODEGRADABILITY; CELL ADHESION; CELL ENGINEERING; MEDICAL APPLICATIONS; TISSUE ENGINEERING;

EID: 85032584155     PISSN: 21596859     EISSN: 21596867     Source Type: Journal    
DOI: 10.1557/mrc.2017.92     Document Type: Article
Times cited : (208)

References (74)
  • 1
    • 77950285075 scopus 로고    scopus 로고
    • Controlled release of water soluble antibiotics by carboxymethylcellulose-and gelatin-based hydrogels crosslinked with epichlorohydrin
    • G. Buhus, C. Peptu, M. Popa, and J. Desbrieres: Controlled release of water soluble antibiotics by carboxymethylcellulose-and gelatin-based hydrogels crosslinked with epichlorohydrin. Cellulose Chem. Technol. 43, 141-151 (2009).
    • (2009) Cellulose Chem. Technol. , vol.43 , pp. 141-151
    • Buhus, G.1    Peptu, C.2    Popa, M.3    Desbrieres, J.4
  • 2
    • 0037122788 scopus 로고    scopus 로고
    • Novel crosslinking methods to design hydrogels
    • W.E. Hennink and C.F. Van Nostrum: Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 54, 13-36 (2002).
    • (2002) Adv. Drug Deliv. Rev. , vol.54 , pp. 13-36
    • Hennink, W.E.1    Van Nostrum, C.F.2
  • 5
    • 0032879676 scopus 로고    scopus 로고
    • Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities
    • Y. Tabata and Y. Ikada: Vascularization effect of basic fibroblast growth factor released from gelatin hydrogels with different biodegradabilities. Biomaterials 20, 2169-2175 (1999).
    • (1999) Biomaterials , vol.20 , pp. 2169-2175
    • Tabata, Y.1    Ikada, Y.2
  • 6
    • 0035857705 scopus 로고    scopus 로고
    • Gelatin microspheres crosslinked with D, L-glyceraldehyde as a potential drug delivery system: Preparation, characterization, in vitro and in vivo studies
    • M.A. Vandelli, F. Rivasi, P. Guerra, F. Forni, and R. Arletti: Gelatin microspheres crosslinked with D, L-glyceraldehyde as a potential drug delivery system: preparation, characterization, in vitro and in vivo studies. Int. J. Pharm. 215, 175-184 (2001).
    • (2001) Int. J. Pharm. , vol.215 , pp. 175-184
    • Vandelli, M.A.1    Rivasi, F.2    Guerra, P.3    Forni, F.4    Arletti, R.5
  • 7
    • 0042061223 scopus 로고    scopus 로고
    • Hydrogels for tissue engineering: Scaffold design variables and applications
    • J.L. Drury and D.J. Mooney: Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24, 4337-4351 (2003).
    • (2003) Biomaterials , vol.24 , pp. 4337-4351
    • Drury, J.L.1    Mooney, D.J.2
  • 9
    • 0036888749 scopus 로고    scopus 로고
    • Stabilization of gelatin films by crosslinking with genipin
    • A. Bigi, G. Cojazzi, S. Panzavolta, N. Roveri, and K. Rubini: Stabilization of gelatin films by crosslinking with genipin. Biomaterials 23, 4827-4832 (2002).
    • (2002) Biomaterials , vol.23 , pp. 4827-4832
    • Bigi, A.1    Cojazzi, G.2    Panzavolta, S.3    Roveri, N.4    Rubini, K.5
  • 13
    • 84879517884 scopus 로고    scopus 로고
    • Inorganic material surfaces made bioactive by immobilizing growth factors for hard tissue engineering
    • D. Zhou and Y. Ito: Inorganic material surfaces made bioactive by immobilizing growth factors for hard tissue engineering. RSC Adv. 3, 11095-11106 (2013).
    • (2013) RSC Adv. , vol.3 , pp. 11095-11106
    • Zhou, D.1    Ito, Y.2
  • 14
    • 0032170264 scopus 로고    scopus 로고
    • In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films
    • J.P. Draye, B. Delaey, A. Van de Voorde, A. Van Den Bulcke, B. De Reu, and E. Schacht: In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films. Biomaterials 19, 1677-1687 (1998).
    • (1998) Biomaterials , vol.19 , pp. 1677-1687
    • Draye, J.P.1    Delaey, B.2    Voorde De Van, A.3    Bulcke Den Van, A.4    De Reu, B.5    Schacht, E.6
  • 15
    • 41249098431 scopus 로고    scopus 로고
    • Recombinant human gelatin nanoparticles as a protein drug carrier
    • Y.W. Won and Y.H. Kim: Recombinant human gelatin nanoparticles as a protein drug carrier. J. Control. Release 127, 154-161 (2008).
    • (2008) J. Control. Release , vol.127 , pp. 154-161
    • Won, Y.W.1    Kim, Y.H.2
  • 16
    • 0037641289 scopus 로고    scopus 로고
    • A genipin-crosslinked gelatin membrane as wound-dressing material: In vitro and in vivo studies
    • W.H. Chang, Y. Chang, P.H. Lai, and H.W. Sung: A genipin-crosslinked gelatin membrane as wound-dressing material: in vitro and in vivo studies. J. Biomater. Sci., Polym. Ed. 14, 481-495 (2003).
    • (2003) J. Biomater. Sci., Polym. Ed. , vol.14 , pp. 481-495
    • Chang, W.H.1    Chang, Y.2    Lai, P.H.3    Sung, H.W.4
  • 19
    • 84871270428 scopus 로고    scopus 로고
    • Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation
    • E. Hoch, C. Schuh, T. Hirth, G.E.M. Tovar, and K. Borchers: Stiff gelatin hydrogels can be photo-chemically synthesized from low viscous gelatin solutions using molecularly functionalized gelatin with a high degree of methacrylation. J. Mater. Sci. Mater. Med. 23, 2607-2617 (2012).
    • (2012) J. Mater. Sci. Mater. Med. , vol.23 , pp. 2607-2617
    • Hoch, E.1    Schuh, C.2    Hirth, T.3    Tovar, G.E.M.4    Borchers, K.5
  • 20
    • 84981314131 scopus 로고    scopus 로고
    • Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis
    • H. Shirahama, B.H. Lee, L.P. Tan, and N.J. Cho: precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Sci. Rep. 6, 1-11 (2016).
    • (2016) Sci. Rep. , vol.6 , pp. 1-11
    • Shirahama, H.1    Lee, B.H.2    Tan, L.P.3    Cho, N.J.4
  • 21
    • 84859701291 scopus 로고    scopus 로고
    • Photocrosslinked co-networks from glycidylmethacrylated gelatin and poly(ethylene glycol) methacrylates
    • B.F. Pierce, G. Tronci, M. Roble, A.T. Neffe, F. Jung, and A. Lendlein: Photocrosslinked co-networks from glycidylmethacrylated gelatin and poly(ethylene glycol) methacrylates. Macromol. Biosci. 12, 484-493 (2012).
    • (2012) Macromol. Biosci. , vol.12 , pp. 484-493
    • Pierce, B.F.1    Tronci, G.2    Roble, M.3    Neffe, A.T.4    Jung, F.5    Lendlein, A.6
  • 24
    • 84954182752 scopus 로고    scopus 로고
    • A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks
    • Z. Wang, R. Abdulla, B. Parker, R. Samanipour, S. Ghosh, and K. Kim: A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7, 045009 (2015).
    • (2015) Biofabrication , vol.7 , pp. 045009
    • Wang, Z.1    Abdulla, R.2    Parker, B.3    Samanipour, R.4    Ghosh, S.5    Kim, K.6
  • 25
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: Rationale for computer-aided design and solid free-form fabrication systems
    • D.W. Hutmacher, M. Sittinger, and M.V. Risbud: Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol. 22, 354-362 (2004).
    • (2004) Trends Biotechnol. , vol.22 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 26
    • 8144227180 scopus 로고    scopus 로고
    • Rapid prototyping in tissue engineering: Challenges and potential
    • W. Yeong, C. Chua, K. Leong, and M. Chandrasekaran: Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22, 643-652 (2004).
    • (2004) Trends Biotechnol. , vol.22 , pp. 643-652
    • Yeong, W.1    Chua, C.2    Leong, K.3    Chandrasekaran, M.4
  • 28
    • 79953897232 scopus 로고    scopus 로고
    • Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering
    • A. Ovsianikov, A. Deiwick, S.V. Vlierberghe, P. Dubruel, L. Moller, G. Drager, and B. Chichkov: Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12, 851-858 (2011).
    • (2011) Biomacromolecules , vol.12 , pp. 851-858
    • Ovsianikov, A.1    Deiwick, A.2    Vlierberghe, S.V.3    Dubruel, P.4    Moller, L.5    Drager, G.6    Chichkov, B.7
  • 30
    • 83755208159 scopus 로고    scopus 로고
    • Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator
    • S.D. Gittard, A. Nguyen, K. Obata, A. Koroleva, R.J. Narayan, and B.N. Chichkov: Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator. Biomed. Opt. Express 2, 3167-3178 (2011).
    • (2011) Biomed. Opt. Express , vol.2 , pp. 3167-3178
    • Gittard, S.D.1    Nguyen, A.2    Obata, K.3    Koroleva, A.4    Narayan, R.J.5    Chichkov, B.N.6
  • 31
    • 84923270119 scopus 로고    scopus 로고
    • Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique
    • A. Koroleva, A. Deiwick, A. Nguyen, S.S. Wolter, R. Narayan, P. Timashev, V. Popov, V. Bagratashvili, and B. Chichkov: Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique. PLoS ONE 10, e0118164 (2015).
    • (2015) PLoS ONE , vol.10 , pp. e0118164
    • Koroleva, A.1    Deiwick, A.2    Nguyen, A.3    Wolter, S.S.4    Narayan, R.5    Timashev, P.6    Popov, V.7    Bagratashvili, V.8    Chichkov, B.9
  • 32
    • 0042574333 scopus 로고    scopus 로고
    • A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes
    • O. Guven, M. Sen, E. Karadag, and D. Saraydin: A review on the radiation synthesis of copolymeric hydrogels for adsorption and separation purposes. Radiat. Phys. Chem. 56, 381 (1999).
    • (1999) Radiat. Phys. Chem. , vol.56 , pp. 381
    • Guven, O.1    Sen, M.2    Karadag, E.3    Saraydin, D.4
  • 33
    • 0033136911 scopus 로고    scopus 로고
    • Determination of average molecular weight between cross-links (Mc) from swelling behaviors of diprotic acidcontaining hydrogels
    • M. Sen, A. Yakar, and O. Guven: Determination of average molecular weight between cross-links (Mc) from swelling behaviors of diprotic acidcontaining hydrogels. Polymer 40, 2696 (1999).
    • (1999) Polymer , vol.40 , pp. 2696
    • Sen, M.1    Yakar, A.2    Guven, O.3
  • 34
    • 0343526360 scopus 로고    scopus 로고
    • Controlled release of terbinafine hydrochloride from pH sensitive poly (acrylamide/maleic acid) hydrogels
    • M. Sen, C. Uzun, and O. Guven: Controlled release of terbinafine hydrochloride from pH sensitive poly (acrylamide/maleic acid) hydrogels. Int. J. Pharm. 203, 149 (2000).
    • (2000) Int. J. Pharm. , vol.203 , pp. 149
    • Sen, M.1    Uzun, C.2    Guven, O.3
  • 35
    • 58349104592 scopus 로고    scopus 로고
    • Effect of maleic acid content on the thermal stability, swelling behavior, and network structure of gelatin-based hydrogels prepared by gamma irradiation
    • M. Eid, M.A. Abdel-Ghaffar, and A.M. Dessouki: Effect of maleic acid content on the thermal stability, swelling behavior, and network structure of gelatin-based hydrogels prepared by gamma irradiation. Nucl. Instrum. Methods Phys. Res. B 267, 91-98 (2009).
    • (2009) Nucl. Instrum. Methods Phys. Res. B , vol.267 , pp. 91-98
    • Eid, M.1    Abdel-Ghaffar, M.A.2    Dessouki, A.M.3
  • 36
    • 17844400927 scopus 로고    scopus 로고
    • Porosity of 3D biomaterial scaffolds and osteogenesis
    • V. Karageorgiou and D. Kaplan: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26, 5474-5491 (2005).
    • (2005) Biomaterials , vol.26 , pp. 5474-5491
    • Karageorgiou, V.1    Kaplan, D.2
  • 37
    • 84866415693 scopus 로고    scopus 로고
    • Recent advances in bone tissue engineering scaffolds
    • S. Bose, M. Roy, and A. Bandyopadhyay: Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30, 546-554 (2012).
    • (2012) Trends Biotechnol. , vol.30 , pp. 546-554
    • Bose, S.1    Roy, M.2    Bandyopadhyay, A.3
  • 39
    • 84879509106 scopus 로고    scopus 로고
    • Alginate/silica composite hydrogel as a potential morphogenetically active scaffold for threedimensional tissue engineering
    • U. Schlossmacher, H.C. Schroder, X. Wang, Q. Feng, B. Diehl-Seifert, S. Neumann, A. Trautwein, and W.E.G. Muller: Alginate/silica composite hydrogel as a potential morphogenetically active scaffold for threedimensional tissue engineering. RSC Adv. 3, 11185-11194 (2013).
    • (2013) RSC Adv. , vol.3 , pp. 11185-11194
    • Schlossmacher, U.1    Schroder, H.C.2    Wang, X.3    Feng, Q.4    Diehl-Seifert, B.5    Neumann, S.6    Trautwein, A.7    Muller, W.E.G.8
  • 41
    • 0037220048 scopus 로고    scopus 로고
    • Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering
    • A. Ito, A. Mase, Y. Takizawa, M. Shinkai, H. Honda, K.I. Hata, M. Ueda, and T. Kobayashi: Transglutaminase-mediated gelatin matrices incorporating cell adhesion factors as a biomaterial for tissue engineering. J. Biosci. Bioeng. 95, 196-199 (2003).
    • (2003) J. Biosci. Bioeng. , vol.95 , pp. 196-199
    • Ito, A.1    Mase, A.2    Takizawa, Y.3    Shinkai, M.4    Honda, H.5    Hata, K.I.6    Ueda, M.7    Kobayashi, T.8
  • 42
    • 0141534359 scopus 로고    scopus 로고
    • Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering
    • C.H. Chang, H.C. Liu, C.C. Lin, C.H. Chou, and F.H. Lin: Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24, 4853-4858 (2003).
    • (2003) Biomaterials , vol.24 , pp. 4853-4858
    • Chang, C.H.1    Liu, H.C.2    Lin, C.C.3    Chou, C.H.4    Lin, F.H.5
  • 44
    • 45849119478 scopus 로고    scopus 로고
    • Bone differentiation of marrow-derived mesenchymal stem cells using β-tricalcium phosphate-alginate-gelatin hydrid scaffolds
    • M.B. Eslaminejad, H. Mirzadeh, Y. Mohamadi, and A. Nickmahzar: Bone differentiation of marrow-derived mesenchymal stem cells using β-tricalcium phosphate-alginate-gelatin hydrid scaffolds. J. Tissue Eng. Regener. Med. 1, 417-424 (2007).
    • (2007) J. Tissue Eng. Regener. Med. , vol.1 , pp. 417-424
    • Eslaminejad, M.B.1    Mirzadeh, H.2    Mohamadi, Y.3    Nickmahzar, A.4
  • 45
    • 84871998722 scopus 로고    scopus 로고
    • Characterization of chitosan-gelatin scaffolds for dermal tissue engineering
    • H.J. Tseng, T.L. Tsou, H.J. Wang, and S.-H. Hsu: Characterization of chitosan-gelatin scaffolds for dermal tissue engineering. J. Tissue Eng. Regener. Med. 7, 20-31 (2013).
    • (2013) J. Tissue Eng. Regener. Med. , vol.7 , pp. 20-31
    • Tseng, H.J.1    Tsou, T.L.2    Wang, H.J.3    Hsu, S.-H.4
  • 46
    • 67649884738 scopus 로고    scopus 로고
    • Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds
    • X. Liu and P.X. Ma: Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomatperials 30, 4094-4103 (2009).
    • (2009) Biomatperials , vol.30 , pp. 4094-4103
    • Liu, X.1    Ma, P.X.2
  • 47
    • 77956493523 scopus 로고    scopus 로고
    • Electrospining of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffolds in tissue engineering
    • Z.X. Meng, Y.S. Wang, C. Ma, W. Zheng, L. Li, and Y.F. Zheng: Electrospining of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffolds in tissue engineering. Mater. Sci. Eng. C 30, 1204-1210 (2010).
    • (2010) Mater. Sci. Eng. C , vol.30 , pp. 1204-1210
    • Meng, Z.X.1    Wang, Y.S.2    Ma, C.3    Zheng, W.4    Li, L.5    Zheng, Y.F.6
  • 48
    • 79952189383 scopus 로고    scopus 로고
    • Electrospun gelatin nanofibers: Optimization of genipin crosslinking to preserve fiber morphology after exposure to water
    • S. Panzavolta, M. Gioffre, M.L. Focarete, C. Gualandi, L. Foroni, and A. Bigi: Electrospun gelatin nanofibers: optimization of genipin crosslinking to preserve fiber morphology after exposure to water. Acta Biomater. 7, 1702-1709 (2011).
    • (2011) Acta Biomater. , vol.7 , pp. 1702-1709
    • Panzavolta, S.1    Gioffre, M.2    Focarete, M.L.3    Gualandi, C.4    Foroni, L.5    Bigi, A.6
  • 49
    • 34548260849 scopus 로고    scopus 로고
    • Concepts of scaffold-based tissue engineering - The rationale to use solid free-form fabrication techniques
    • D.W. Hutmacher and S. Cool: Concepts of scaffold-based tissue engineering-the rationale to use solid free-form fabrication techniques. J. Cell. Mol. Med. 11, 654-669 (2007).
    • (2007) J. Cell. Mol. Med. , vol.11 , pp. 654-669
    • Hutmacher, D.W.1    Cool, S.2
  • 50
    • 84869131568 scopus 로고    scopus 로고
    • Printing and prototyping of tissues and scaffolds
    • B. Derby: Printing and prototyping of tissues and scaffolds. Science 338, 921-926 (2012).
    • (2012) Science , vol.338 , pp. 921-926
    • Derby, B.1
  • 51
    • 84929603616 scopus 로고    scopus 로고
    • Concentrated gelatin/ alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting
    • Y. Luo, A. Lode, A.R. Akkineni, and M. Gelinsky: Concentrated gelatin/ alginate composites for fabrication of predesigned scaffolds with a favorable cell response by 3D plotting. RSC Adv. 5, 43480-43488 (2015).
    • (2015) RSC Adv. , vol.5 , pp. 43480-43488
    • Luo, Y.1    Lode, A.2    Akkineni, A.R.3    Gelinsky, M.4
  • 53
    • 28444469746 scopus 로고    scopus 로고
    • Gelatin as a delivery vehicle for the controlled release of bioactive molecule
    • S. Young, M. Wong, Y. Tabata, and A.G. Mikos: Gelatin as a delivery vehicle for the controlled release of bioactive molecule. J. Control. Release 109, 256-274 (2005).
    • (2005) J. Control. Release , vol.109 , pp. 256-274
    • Young, S.1    Wong, M.2    Tabata, Y.3    Mikos, A.G.4
  • 54
    • 0037290061 scopus 로고    scopus 로고
    • Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices
    • N.J. Einerson, K.R. Stevens, and W.J. Kao: Synthesis and physicochemical analysis of gelatin-based hydrogels for drug carrier matrices. Biomaterials 24, 509-523 (2002).
    • (2002) Biomaterials , vol.24 , pp. 509-523
    • Einerson, N.J.1    Stevens, K.R.2    Kao, W.J.3
  • 55
    • 0000457055 scopus 로고    scopus 로고
    • Hydrogels of gelatin-sodium carboxymethyl cellulose: Synthesis and swelling kinetics
    • G.V.N. Rathna, D.V. Mohan Rao, and P.R. Chatterji: Hydrogels of gelatin-sodium carboxymethyl cellulose: synthesis and swelling kinetics. J. Mater Sci., Pure Appl. Chem. A33, 1199-1207 (1996).
    • (1996) J. Mater Sci., Pure Appl. Chem. A , vol.33 , pp. 1199-1207
    • Rathna, G.V.N.1    Mohan Rao, D.V.2    Chatterji, P.R.3
  • 56
    • 84887850200 scopus 로고    scopus 로고
    • Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release
    • C. Liu, Z. Zhang, X. Liu, X. Ni, and J. Li: Gelatin-based hydrogels with β-cyclodextrin as a dual functional component for enhanced drug loading and controlled release. RSC Adv. 3, 25041-25049 (2013).
    • (2013) RSC Adv. , vol.3 , pp. 25041-25049
    • Liu, C.1    Zhang, Z.2    Liu, X.3    Ni, X.4    Li, J.5
  • 57
    • 40349102190 scopus 로고    scopus 로고
    • Gelatin sponges (Gelfoam) as a scaffold for osteoblasts
    • R. Rohanizadeh, M. Swain, and R.J. Mason: Gelatin sponges (Gelfoam) as a scaffold for osteoblasts. Mater. Sci., Mater. Med. 19, 1173-1182 (2008).
    • (2008) Mater. Sci., Mater. Med. , vol.19 , pp. 1173-1182
    • Rohanizadeh, R.1    Swain, M.2    Mason, R.J.3
  • 60
    • 70249083810 scopus 로고    scopus 로고
    • Materials in regenerative medicine
    • V.P. Shastri and A. Lendlein: Materials in regenerative medicine. Adv. Mater. 21, 323-3234 (2009).
    • (2009) Adv. Mater. , vol.21 , pp. 323-3234
    • Shastri, V.P.1    Lendlein, A.2
  • 61
    • 77955971985 scopus 로고    scopus 로고
    • Engineering materials for regenerative medicine
    • V.P. Shastri and A. Lendlein: Engineering materials for regenerative medicine. MRS Bull. 35, 571-577 (2010).
    • (2010) MRS Bull. , vol.35 , pp. 571-577
    • Shastri, V.P.1    Lendlein, A.2
  • 62
    • 33747152561 scopus 로고    scopus 로고
    • Matrix elasticity directs stem cell lineage specification
    • A.J. Engler, S. Sen, H.L. Sweeney, and D.E. Discher: Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689 (2006).
    • (2006) Cell , vol.126 , pp. 677-689
    • Engler, A.J.1    Sen, S.2    Sweeney, H.L.3    Discher, D.E.4
  • 64
    • 84885838789 scopus 로고    scopus 로고
    • Artificial niche substrates for embryonic and induced pluripotent stem cell cultures
    • B. Joddar and Y. Ito: Artificial niche substrates for embryonic and induced pluripotent stem cell cultures. J. Biotechnol. 168, 218-228 (2013).
    • (2013) J. Biotechnol. , vol.168 , pp. 218-228
    • Joddar, B.1    Ito, Y.2
  • 66
    • 84879289667 scopus 로고    scopus 로고
    • Hydrogels that mimic developmentally relevant matrix and N-Cadherin interactions enhance MSC chondrogenesis
    • L. Bian, M. Guvendiren, R.L. Mauck, and J.A. Burdick: Hydrogels that mimic developmentally relevant matrix and N-Cadherin interactions enhance MSC chondrogenesis. Proc. Natl. Acad. Sci. USA 110, 10117-10122 (2013).
    • (2013) Proc. Natl. Acad. Sci. USA , vol.110 , pp. 10117-10122
    • Bian, L.1    Guvendiren, M.2    Mauck, R.L.3    Burdick, J.A.4
  • 67
    • 84951986383 scopus 로고    scopus 로고
    • 3D bioprinting for engineering complex tissues
    • K. Mandrycky, Z. Wang, K. Kim, and D-H. Kim: 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34, 422-434 (2016).
    • (2016) Biotechnol. Adv. , vol.34 , pp. 422-434
    • Mandrycky, K.1    Wang, Z.2    Kim, K.3    Kim, D.-H.4
  • 68
    • 85006052635 scopus 로고    scopus 로고
    • A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs
    • A.R. Akkineni, T. Ahlfeld, A. Lode, and M. Gelinsky: A versatile method for combining different biopolymers in a core/shell fashion by 3D plotting to achieve mechanically robust constructs. Biofabrication 8, 045001 (2016).
    • (2016) Biofabrication , vol.8 , pp. 045001
    • Akkineni, A.R.1    Ahlfeld, T.2    Lode, A.3    Gelinsky, M.4
  • 69
    • 33847028372 scopus 로고    scopus 로고
    • Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications
    • L. Moroni, J.A.A. Hendriks, R. Schotel, J.R. de Wijn, and C.A. van Blitterswijk: Design of biphasic polymeric 3-dimensional fiber deposited scaffolds for cartilage tissue engineering applications. Tissue Eng. 13, 361-371 (2007).
    • (2007) Tissue Eng. , vol.13 , pp. 361-371
    • Moroni, L.1    Hendriks, J.A.A.2    Schotel, R.3    De Wijn, J.R.4    Van Blitterswijk, C.A.5
  • 70
    • 36949072834 scopus 로고
    • Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig
    • G.D. Winter: Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig. Nature 193, 293-294 (1962).
    • (1962) Nature , vol.193 , pp. 293-294
    • Winter, G.D.1
  • 71
    • 85178604420 scopus 로고
    • Studies of wound healing and the effect of dressings
    • M. Szycher, ed, Technonic: Lancaster
    • S.E. Barnett and S.J. Irving: Studies of wound healing and the effect of dressings. In High Performance Biomaterials, M. Szycher, ed, Technonic: Lancaster; 1991. pp. 583-620.
    • (1991) High Performance Biomaterials , pp. 583-620
    • Barnett, S.E.1    Irving, S.J.2
  • 74
    • 20444501659 scopus 로고    scopus 로고
    • Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin
    • B. Balakrishnan, M. Mohanty, P.R. Umashankar, and A. Jayakrishnan: Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26, 6335-6342 (2005).
    • (2005) Biomaterials , vol.26 , pp. 6335-6342
    • Balakrishnan, B.1    Mohanty, M.2    Umashankar, P.R.3    Jayakrishnan, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.