메뉴 건너뛰기




Volumn 14, Issue 134, 2017, Pages

Improved prediction accuracy for disease risk mapping using Gaussian process stacked generalization

Author keywords

Disease mapping; Gaussian process; Malaria; Stacked generalization

Indexed keywords

DISEASES; FUNCTIONS; GAUSSIAN NOISE (ELECTRONIC); MAPPING; UNCERTAINTY ANALYSIS;

EID: 85031093066     PISSN: 17425689     EISSN: 17425662     Source Type: Journal    
DOI: 10.1098/rsif.2017.0520     Document Type: Article
Times cited : (99)

References (55)
  • 2
    • 84873470214 scopus 로고    scopus 로고
    • Global mapping of infectious disease
    • Hay SI. 2013 Global mapping of infectious disease. Phil. Trans. R. Soc. B 368, 20120250. (doi:10.1098/rstb.2012.0250)
    • (2013) Phil. Trans. R. Soc. B , vol.368 , pp. 20120250
    • Hay, S.I.1
  • 3
    • 39649091877 scopus 로고    scopus 로고
    • HealthMap: Global infectious disease monitoring through automated classification and visualization of Internet media reports
    • Freifeld CC, Mandl KD, Reis BY, Brownstein JS. 2008 HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports. J. Am. Med. Inform. Assoc. 15, 150-157. (doi:10.1197/jamia.M2544)
    • (2008) J. Am. Med. Inform. Assoc. , vol.15 , pp. 150-157
    • Freifeld, C.C.1    Mandl, K.D.2    Reis, B.Y.3    Brownstein, J.S.4
  • 4
    • 84944195470 scopus 로고    scopus 로고
    • The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015
    • Bhatt S et al. 2015 The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207-211. (doi:10.1038/nature15535)
    • (2015) Nature , vol.526 , pp. 207-211
    • Bhatt, S.1
  • 8
    • 63449101880 scopus 로고    scopus 로고
    • A world malaria map: Plasmodium falciparum endemicity in 2007
    • Hay SI et al.. 2009 A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 6, 0286-0302. (doi:10.1371/annotation/a7ab5bb8-c3bb-4f01-aa34-65cc53af065d)
    • (2009) PLoS Med. , vol.6 , pp. 0286-0302
    • Hay, S.I.1
  • 9
    • 84861368638 scopus 로고    scopus 로고
    • Spatially explicit burden estimates of malaria in Tanzania: Bayesian geostatistical modeling of the malaria indicator survey data
    • Gosoniu L, Msengwa A, Lengeler C, Vounatsou P. 2012 Spatially explicit burden estimates of malaria in Tanzania: Bayesian geostatistical modeling of the malaria indicator survey data. PLoS ONE 7, e23966. (doi:10.1371/journal.pone.0023966)
    • (2012) PLoS ONE , vol.7 , pp. e23966
    • Gosoniu, L.1    Msengwa, A.2    Lengeler, C.3    Vounatsou, P.4
  • 10
    • 84928016923 scopus 로고    scopus 로고
    • Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data
    • Adigun AB, Gajere EN, Oresanya O, Vounatsou P. 2015 Malaria risk in Nigeria: Bayesian geostatistical modelling of 2010 malaria indicator survey data. Malar. J. 14, 156. (doi:10.1186/s12936-015-0683-6)
    • (2015) Malar. J. , vol.14 , pp. 156
    • Adigun, A.B.1    Gajere, E.N.2    Oresanya, O.3    Vounatsou, P.4
  • 12
    • 84901687683 scopus 로고    scopus 로고
    • The no-U-turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo
    • Hoffman MD, Gelman A. 2014 The no-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J. Mach. Learn. Res. 15, 1593-1623.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 1593-1623
    • Hoffman, M.D.1    Gelman, A.2
  • 13
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue H, Martino S, Chopin N. 2009 Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 71, 319-392. (doi:10.1111/j.1467-9868.2008.00700.x)
    • (2009) J. R. Stat. Soc. Ser. B (Stat. Methodol.) , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 14
    • 77953768713 scopus 로고    scopus 로고
    • Approximate inference for disease mapping with sparse Gaussian processes
    • Vanhatalo J, Pietiläinen V, Vehtari A. 2010 Approximate inference for disease mapping with sparse Gaussian processes. Stat. Med. 29, 1580-1607. (doi:10.1002/sim.3895)
    • (2010) Stat. Med. , vol.29 , pp. 1580-1607
    • Vanhatalo, J.1    Pietiläinen, V.2    Vehtari, A.3
  • 17
    • 63249135864 scopus 로고    scopus 로고
    • The variational Gaussian approximation revisited
    • Opper M, Archambeau C. 2009 The variational Gaussian approximation revisited. Neural Comput. 21, 786-792. (doi:10.1162/neco.2008.08-07-592)
    • (2009) Neural Comput. , vol.21 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 18
    • 84994559227 scopus 로고    scopus 로고
    • REML estimation with intrinsic Matérn dependence in the spatial linear mixed model
    • Dutta S, Mondal D. 2016 REML estimation with intrinsic Matérn dependence in the spatial linear mixed model. Electron. J. Stat. 10, 2856-2893. (doi:10.1214/16-EJS1125)
    • (2016) Electron. J. Stat. , vol.10 , pp. 2856-2893
    • Dutta, S.1    Mondal, D.2
  • 19
    • 85161980201 scopus 로고    scopus 로고
    • Random features for largescale kernel machines
    • Rahimi A, Recht B. 2008 Random features for largescale kernel machines. Adv. Neural Inf. Process. Syst. 20, 1177-1184.
    • (2008) Adv. Neural Inf. Process. Syst. , vol.20 , pp. 1177-1184
    • Rahimi, A.1    Recht, B.2
  • 20
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • Quiñonero-Candela J, Rasmussen CE. 2005 A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939-1959.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1939-1959
    • Quiñonero-Candela, J.1    Rasmussen, C.E.2
  • 21
    • 79961050814 scopus 로고    scopus 로고
    • An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach
    • Lindgren F, Rue H, Lindström J. 2011 An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73, 423-498. (doi:10.1111/j.1467-9868. 2011.00777.x)
    • (2011) J. R. Stat. Soc. Ser. B (Stat. Methodol.) , vol.73 , pp. 423-498
    • Lindgren, F.1    Rue, H.2    Lindström, J.3
  • 24
    • 84928737132 scopus 로고    scopus 로고
    • Reexamining environmental correlates of Plasmodium falciparum malaria endemicity: A data-intensive variable selection approach
    • Weiss DJJ, Mappin B, Dalrymple U, Bhatt S, Cameron E, Hay SII, Gething PWW. 2015 Reexamining environmental correlates of Plasmodium falciparum malaria endemicity: a data-intensive variable selection approach. Malar. J. 14, 68. (doi:10.1186/s12936-015-0574-x)
    • (2015) Malar. J. , vol.14 , pp. 68
    • Weiss, D.J.J.1    Mappin, B.2    Dalrymple, U.3    Bhatt, S.4    Cameron, E.5    Hay, S.I.I.6    Gething, P.W.W.7
  • 25
    • 84948946032 scopus 로고    scopus 로고
    • Does non-stationary spatial data always require non-stationary random fields?
    • Fuglstad G-A, Simpson D, Lindgren F, Rue H. 2015 Does non-stationary spatial data always require non-stationary random fields? Spat. Stat. 14, 505-531. (doi:10.1016/j.spasta.2015.10.001)
    • (2015) Spat. Stat. , vol.14 , pp. 505-531
    • Fuglstad, G.-A.1    Simpson, D.2    Lindgren, F.3    Rue, H.4
  • 26
    • 84901052448 scopus 로고    scopus 로고
    • Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: A highresolution spatiotemporal prediction
    • Weiss DJJ, Bhatt S, Mappin B, VanBoeckel TPP, Smith DLL, Hay SII, Gething PWW. 2014 Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: a highresolution spatiotemporal prediction. Malar. J. 13, 171. (doi:10.1186/1475-2875-13-171)
    • (2014) Malar. J. , vol.13 , pp. 171
    • Weiss, D.J.J.1    Bhatt, S.2    Mappin, B.3    VanBoeckel, T.P.P.4    Smith, D.L.L.5    Hay, S.I.I.6    Gething, P.W.W.7
  • 29
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman JH. 2001 Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189-1232. (doi:10.1214/aos/1013203451)
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 30
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. 2001 Random forests. Mach. Learn. 45, 5-32. (doi:10.1023/A:1010933404324)
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 31
    • 84972488102 scopus 로고
    • Generalized additive models
    • Tibshirani R, Hastie T. 1986 Generalized additive models. Stat. Sci. 1, 297-310. (doi:10.1214/ss/1177013604)
    • (1986) Stat. Sci. , vol.1 , pp. 297-310
    • Tibshirani, R.1    Hastie, T.2
  • 33
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • Friedman JH. 1991 Multivariate adaptive regression splines. Ann. Stat. 19, 1-67. (doi:10.1214/aos/1176347963)
    • (1991) Ann. Stat. , vol.19 , pp. 1-67
    • Friedman, J.H.1
  • 34
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. 2005 Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B (Stat. Methodol.). 67, 301-320. (doi:10.1111/j. 1467-9868.2005.00503.x)
    • (2005) J. R. Stat. Soc. Ser. B (Stat. Methodol.). , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 35
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • Geman S, Bienenstock E, Doursat R. 1992 Neural networks and the bias/variance dilemma. Neural Comput. 4, 1-58. (doi:10.1162/neco.1992.4.1.1)
    • (1992) Neural Comput. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 36
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert DH. 1992 Stacked generalization. Neural Netw. 5, 241-259. (doi:10.1016/S0893-6080(05)80023-1)
    • (1992) Neural Netw. , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 37
    • 0030196364 scopus 로고    scopus 로고
    • Stacked regressions
    • Breiman L. 1996 Stacked regressions. Mach. Learn. 24, 49-64. (doi:10.1007/BF00117832)
    • (1996) Mach. Learn. , vol.24 , pp. 49-64
    • Breiman, L.1
  • 40
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Krogh A, Vedelsby J. 1995 Neural network ensembles, cross validation, and active learning. Adv. Neural Inf. Process. Syst. 7, 231-238.
    • (1995) Adv. Neural Inf. Process. Syst. , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 42
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Domingos P. 2012 A few useful things to know about machine learning. Commun. ACM 55, 78-87. (doi:10.1145/2347736.2347755)
    • (2012) Commun. ACM , vol.55 , pp. 78-87
    • Domingos, P.1
  • 43
    • 2542484580 scopus 로고    scopus 로고
    • Comparing Bayes model averaging and stacking when model approximation error cannot be ignored
    • Bertrand@stat Ubc Ca
    • Clarke B, Bertrand@stat Ubc Ca. 2003 Comparing Bayes model averaging and stacking when model approximation error cannot be ignored. J. Mach. Learn. Res. 4, 683-712. (doi:10.1162/153244304773936090)
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 683-712
    • Clarke, B.1
  • 45
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman JH. 2002 Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367-378. (doi:10. 1016/S0167-9473(01)00065-2)
    • (2002) Comput. Stat. Data Anal. , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 46
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith J, Leathwick JR, Hastie T. 2008 A working guide to boosted regression trees. J. Anim. Ecol. 77, 802-813. (doi:10.1111/j.1365-2656.2008. 01390.x)
    • (2008) J. Anim. Ecol. , vol.77 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 48
    • 35048879177 scopus 로고    scopus 로고
    • Gaussian processes in machine learning
    • (eds O Bousquet, U von Luxburg, G Rätsch), Berlin, Germany: Springer
    • Rasmussen C. 2004 Gaussian processes in machine learning. In Advanced lectures on machine learning (eds O Bousquet, U von Luxburg, G Rätsch), pp. 63-71. Berlin, Germany: Springer.
    • (2004) Advanced Lectures on Machine Learning , pp. 63-71
    • Rasmussen, C.1
  • 49
    • 4844221308 scopus 로고    scopus 로고
    • Statics and dynamics of malaria infection in Anopheles mosquitoes
    • Smith DL, McKenzie FE. 2004 Statics and dynamics of malaria infection in Anopheles mosquitoes. Malar. J. 3, 13. (doi:10.1186/1475-2875-3-13)
    • (2004) Malar. J. , vol.3 , pp. 13
    • Smith, D.L.1    McKenzie, F.E.2
  • 50
    • 84894212652 scopus 로고    scopus 로고
    • Estimates of the changing age-burden of Plasmodium falciparum malaria disease in sub-Saharan Africa
    • Griffin JT, Ferguson NM, Ghani AC. 2014 Estimates of the changing age-burden of Plasmodium falciparum malaria disease in sub-Saharan Africa. Nat. Commun. 5, 3136. (doi:10. 1038/ncomms4136)
    • (2014) Nat. Commun. , vol.5 , pp. 3136
    • Griffin, J.T.1    Ferguson, N.M.2    Ghani, A.C.3
  • 51
    • 0007302261 scopus 로고
    • Bayes-Hermite quadrature
    • O'Hagan A. 1991 Bayes-Hermite quadrature. J. Stat. Plan. Inference 29, 245-260. (doi:10.1016/0378-3758(91)90002-V)
    • (1991) J. Stat. Plan. Inference , vol.29 , pp. 245-260
    • O'Hagan, A.1
  • 52
    • 84937126779 scopus 로고    scopus 로고
    • Probabilistic numerics and uncertainty in computations
    • Hennig P, Osborne MA, Girolami M. 2015 Probabilistic numerics and uncertainty in computations. Proc. R. Soc. A 471, 20150142. (doi:10.1098/rspa.2015.0142)
    • (2015) Proc. R. Soc. A , vol.471 , pp. 20150142
    • Hennig, P.1    Osborne, M.A.2    Girolami, M.3
  • 53
    • 84926207567 scopus 로고    scopus 로고
    • Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation
    • Goldstein A, Kapelner A, Bleich J, Pitkin E. 2015 Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation. J. Comput. Graph. Stat. 24, 44-65. (doi:10.1080/10618600.2014. 907095)
    • (2015) J. Comput. Graph. Stat. , vol.24 , pp. 44-65
    • Goldstein, A.1    Kapelner, A.2    Bleich, J.3    Pitkin, E.4
  • 54
    • 84934774716 scopus 로고    scopus 로고
    • Prioritising infectious disease mapping
    • Pigott DM et al. 2015 Prioritising infectious disease mapping. PLoS Negl. Trop. Dis. 9, e0003756. (doi:10. 1371/journal.pntd.0003756)
    • (2015) PLoS Negl. Trop. Dis. , vol.9 , pp. e0003756
    • Pigott, D.M.1
  • 55
    • 84876804736 scopus 로고    scopus 로고
    • The global distribution and burden of dengue
    • Bhatt S et al. 2013 The global distribution and burden of dengue. Nature 496, 504-507. (doi:10. 1038/nature12060)
    • (2013) Nature , vol.496 , pp. 504-507
    • Bhatt, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.