메뉴 건너뛰기




Volumn 3, Issue January, 2014, Pages 2627-2635

Convolutional kernel networks

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; INFORMATION SCIENCE; NETWORK ARCHITECTURE; NEURAL NETWORKS;

EID: 84937908307     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (349)

References (33)
  • 2
    • 80052882128 scopus 로고    scopus 로고
    • Object recognition with hierarchical kernel descriptors
    • L. Bo, K. Lai, X. Ren, and D. Fox. Object recognition with hierarchical kernel descriptors. In Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Bo, L.1    Lai, K.2    Ren, X.3    Fox, D.4
  • 3
    • 85162018819 scopus 로고    scopus 로고
    • Kernel descriptors for visual recognition
    • L. Bo, X. Ren, and D. Fox. Kernel descriptors for visual recognition. In Adv. NIPS, 2010.
    • (2010) Adv. NIPS
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 4
    • 84906347581 scopus 로고    scopus 로고
    • Unsupervised feature learning for RGB-D based object recognition
    • L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for RGB-D based object recognition. In Experimental Robotics, 2013.
    • (2013) Experimental Robotics
    • Bo, L.1    Ren, X.2    Fox, D.3
  • 5
    • 78149331496 scopus 로고    scopus 로고
    • Efficient match kernel between sets of features for visual recognition
    • L. Bo and C. Sminchisescu. Efficient match kernel between sets of features for visual recognition. In Adv. NIPS, 2009.
    • (2009) Adv. NIPS
    • Bo, L.1    Sminchisescu, C.2
  • 8
    • 84879877798 scopus 로고    scopus 로고
    • Invariant scattering convolution networks
    • J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE T. Pattern Anal., 35(8):1872-1886, 2013.
    • (2013) IEEE T. Pattern Anal , vol.35 , Issue.8 , pp. 1872-1886
    • Bruna, J.1    Mallat, S.2
  • 9
    • 0000732463 scopus 로고
    • A limited memory algorithm for bound constrained optimization
    • R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput., 16(5):1190-1208, 1995.
    • (1995) SIAM J. Sci. Comput , vol.16 , Issue.5 , pp. 1190-1208
    • Byrd, R.H.1    Lu, P.2    Nocedal, J.3    Zhu, C.4
  • 10
    • 78149334888 scopus 로고    scopus 로고
    • Large-margin classification in infinite neural networks
    • Y. Cho and L. K. Saul. Large-margin classification in infinite neural networks. Neural Comput., 22(10), 2010.
    • (2010) Neural Comput , vol.22 , Issue.10
    • Cho, Y.1    Saul, L.K.2
  • 11
    • 84866714584 scopus 로고    scopus 로고
    • Multi-column deep neural networks for image classification
    • D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural networks for image classification. In Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Ciresan, D.1    Meier, U.2    Schmidhuber, J.3
  • 12
    • 85162494200 scopus 로고    scopus 로고
    • Selecting receptive fields in deep networks
    • A. Coates and A. Y. Ng. Selecting receptive fields in deep networks. In Adv. NIPS, 2011.
    • (2011) Adv. NIPS
    • Coates, A.1    Ng, A.Y.2
  • 13
    • 84864250650 scopus 로고    scopus 로고
    • An analysis of single-layer networks in unsupervised feature learning
    • A. Coates, A. Y. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature learning. In Proc. AISTATS, 2011.
    • (2011) Proc. AISTATS
    • Coates, A.1    Ng, A.Y.2    Lee, H.3
  • 14
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines
    • D. Decoste and B. Schölkopf. Training invariant support vector machines. Mach. Learn., 46(1-3):161-190, 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1-3 , pp. 161-190
    • Decoste, D.1    Schölkopf, B.2
  • 17
    • 84877731706 scopus 로고    scopus 로고
    • Discriminative learning of sum-product networks
    • R. Gens and P. Domingos. Discriminative learning of sum-product networks. In Adv. NIPS, 2012.
    • (2012) Adv. NIPS
    • Gens, R.1    Domingos, P.2
  • 19
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-stage architecture for object recognition? In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 20
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images
    • A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Tech. Rep., 2009.
    • (2009) Tech. Rep
    • Krizhevsky, A.1    Hinton, G.2
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Adv. NIPS, 2012.
    • (2012) Adv. NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 22
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. P. IEEE, 86(11):2278-2324, 1998.
    • (1998) P. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 23
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583):607-609, 1996.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 24
    • 85161980201 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Adv. NIPS, 2007.
    • (2007) Adv. NIPS
    • Rahimi, A.1    Recht, B.2
  • 25
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • M. Ranzato, F.-J. Huang, Y-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In Proc. CVPR, 2007.
    • (2007) Proc. CVPR
    • Ranzato, M.1    Huang, F.-J.2    Boureau, Y.-L.3    LeCun, Y.4
  • 27
    • 84867120801 scopus 로고    scopus 로고
    • Learning invariant representations with local transformations
    • K. Sohn and H. Lee. Learning invariant representations with local transformations. In Proc. ICML, 2012.
    • (2012) Proc. ICML
    • Sohn, K.1    Lee, H.2
  • 29
    • 0003241883 scopus 로고
    • Spline models for observational data
    • G. Wahba. Spline models for observational data. SIAM, 1990.
    • (1990) SIAM
    • Wahba, G.1
  • 31
    • 84899010839 scopus 로고    scopus 로고
    • Using the nyström method to speed up kernel machines
    • C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Adv. NIPS, 2001.
    • (2001) Adv. NIPS
    • Williams, C.1    Seeger, M.2
  • 32
    • 85083954484 scopus 로고    scopus 로고
    • Stochastic pooling for regularization of deep convolutional neural networks
    • M. D. Zeiler and R. Fergus. Stochastic pooling for regularization of deep convolutional neural networks. In Proc. ICLR, 2013.
    • (2013) Proc. ICLR
    • Zeiler, M.D.1    Fergus, R.2
  • 33
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Proc. ECCV, 2014.
    • (2014) Proc. ECCV
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.