메뉴 건너뛰기




Volumn 8, Issue 1, 2017, Pages

Modelling sequences and temporal networks with dynamic community structures

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN ANALYSIS; COMMUNITY STRUCTURE; MARKOV CHAIN; NUMERICAL MODEL; TEMPORAL ANALYSIS; TIMESCALE;

EID: 85029846143     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-017-00148-9     Document Type: Article
Times cited : (126)

References (55)
  • 1
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75-174 (2010).
    • (2010) Phys. Rep. , vol.486 , pp. 75-174
    • Fortunato, S.1
  • 2
    • 84907341920 scopus 로고    scopus 로고
    • Memory in network flows and its effects on spreading dynamics and community detection
    • Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D. & Lambiotte, R. Memory in network flows and its effects on spreading dynamics and community detection. Nat. Commun. 5, 4630 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 4630
    • Rosvall, M.1    Esquivel, A.V.2    Lancichinetti, A.3    West, J.D.4    Lambiotte, R.5
  • 3
    • 84926497024 scopus 로고    scopus 로고
    • Effect of memory on the dynamics of random walks on networks
    • Lambiotte, R., Salnikov, V. & Rosvall, M. Effect of memory on the dynamics of random walks on networks. J. Complex Netw. 3, 177-188 (2015).
    • (2015) J. Complex Netw. , vol.3 , pp. 177-188
    • Lambiotte, R.1    Salnikov, V.2    Rosvall, M.3
  • 4
    • 84961291708 scopus 로고    scopus 로고
    • Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems
    • De Domenico, M., Lancichinetti, A., Arenas, A. & Rosvall, M. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. 5, 011027 (2015).
    • (2015) Phys. Rev. , vol.5 , pp. 011027
    • De Domenico, M.1    Lancichinetti, A.2    Arenas, A.3    Rosvall, M.4
  • 6
    • 84942237076 scopus 로고    scopus 로고
    • Modern temporal network theory: A colloquium
    • Holme, P. Modern temporal network theory: a colloquium. Eur. Phys. J. B. 88, 234 (2015).
    • (2015) Eur. Phys. J. B. , vol.88 , pp. 234
    • Holme, P.1
  • 7
    • 77952328459 scopus 로고    scopus 로고
    • Community structure in time-dependent, multiscale, and multiplex networks
    • Mucha, P. J., Richardson, T., Macon, K., Porter, M. A. & Onnela, J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 328, 876-878 (2010).
    • (2010) Science , vol.328 , pp. 876-878
    • Mucha, P.J.1    Richardson, T.2    Macon, K.3    Porter, M.A.4    Onnela, J.-P.5
  • 8
    • 77749239782 scopus 로고    scopus 로고
    • Mapping change in large networks
    • Rosvall, M. & Bergstrom, C. T. Mapping change in large networks. PLoS ONE 5, e8694 (2010).
    • (2010) PLoS ONE , vol.5 , pp. e8694
    • Rosvall, M.1    Bergstrom, C.T.2
  • 9
    • 84875868755 scopus 로고    scopus 로고
    • Robust detection of dynamic community structure in networks
    • Bassett, D. S. et al. Robust detection of dynamic community structure in networks. Chaos 23, 013142 (2013).
    • (2013) Chaos , vol.23 , pp. 013142
    • Bassett, D.S.1
  • 10
    • 84877811581 scopus 로고    scopus 로고
    • Betweenness preference: Quantifying correlations in the topological dynamics of temporal networks
    • Pfitzner, R., Scholtes, I., Garas, A., Tessone, C. J. & Schweitzer, F. Betweenness preference: quantifying correlations in the topological dynamics of temporal networks. Phys. Rev. Lett. 110, 198701 (2013).
    • (2013) Phys. Rev. Lett. , vol.110 , pp. 198701
    • Pfitzner, R.1    Scholtes, I.2    Garas, A.3    Tessone, C.J.4    Schweitzer, F.5
  • 11
    • 84963677387 scopus 로고    scopus 로고
    • Community detection in temporal multilayer networks, with an application to correlation networks
    • Bazzi, M. et al. Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model. Simul. 14, 1-41 (2016).
    • (2016) Multiscale Model. Simul. , vol.14 , pp. 1-41
    • Bazzi, M.1
  • 12
    • 84985018963 scopus 로고    scopus 로고
    • Null models for community detection in spatially embedded, temporal networks
    • Sarzynska, M., Leicht, E. A., Chowell, G. & Porter, M. A. Null models for community detection in spatially embedded, temporal networks. J. Complex Netw 4, 363-406 (2016).
    • (2016) J. Complex Netw , vol.4 , pp. 363-406
    • Sarzynska, M.1    Leicht, E.A.2    Chowell, G.3    Porter, M.A.4
  • 13
    • 84900316533 scopus 로고    scopus 로고
    • Detecting the community structure and activity patterns of temporal networks: A non-negative tensor factorization approach
    • Gauvin, L., Panisson, A. & Cattuto, C. Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PLoS ONE 9, e86028 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e86028
    • Gauvin, L.1    Panisson, A.2    Cattuto, C.3
  • 15
    • 84944810998 scopus 로고    scopus 로고
    • Inferring the mesoscale structure of layered, edge-valued, and time-varying networks
    • Peixoto, T. P. Inferring the mesoscale structure of layered, edge-valued, and time-varying networks. Phys. Rev. E 92, 042807 (2015).
    • (2015) Phys. Rev. e , vol.92 , pp. 042807
    • Peixoto, T.P.1
  • 16
    • 84937711093 scopus 로고    scopus 로고
    • Community detection for correlation matrices
    • MacMahon, M. & Garlaschelli, D. Community detection for correlation matrices. Phys. Rev. 5, 021006 (2015).
    • (2015) Phys. Rev. , vol.5 , pp. 021006
    • MacMahon, M.1    Garlaschelli, D.2
  • 17
    • 84992650256 scopus 로고    scopus 로고
    • Detectability thresholds and optimal algorithms for community structure in dynamic networks
    • Ghasemian, A., Zhang, P., Clauset, A., Moore, C. & Peel, L. Detectability thresholds and optimal algorithms for community structure in dynamic networks. Phys. Rev. 6, 031005 (2016).
    • (2016) Phys. Rev. , vol.6 , pp. 031005
    • Ghasemian, A.1    Zhang, P.2    Clauset, A.3    Moore, C.4    Peel, L.5
  • 19
    • 84986299897 scopus 로고    scopus 로고
    • Representing higher-order dependencies in networks
    • Xu, J., Wickramarathne, T. L. & Chawla, N. V. Representing higher-order dependencies in networks. Sci. Adv. 2, e1600028 (2016).
    • (2016) Sci. Adv. , vol.2 , pp. e1600028
    • Xu, J.1    Wickramarathne, T.L.2    Chawla, N.V.3
  • 20
    • 84942256852 scopus 로고    scopus 로고
    • Multilayer networks
    • Kivelä, M. et al. Multilayer networks. J. Complex Netw. 2, 203-271 (2014).
    • (2014) J. Complex Netw. , vol.2 , pp. 203-271
    • Kivelä, M.1
  • 21
    • 84904649838 scopus 로고    scopus 로고
    • Dynamic stochastic blockmodels for time-evolving social networks
    • Xu, K. & Hero, A. Dynamic stochastic blockmodels for time-evolving social networks. IEEE J. Sel. Top. Signal Process. 8, 552-562 (2014).
    • (2014) IEEE J. Sel. Top. Signal Process. , vol.8 , pp. 552-562
    • Xu, K.1    Hero, A.2
  • 22
  • 23
    • 36348947993 scopus 로고    scopus 로고
    • Modularity from fluctuations in random graphs and complex networks
    • Guimerà, R., Sales-Pardo, M. & Amaral, L. A. N. Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70, 025101 (2004).
    • (2004) Phys. Rev. e , vol.70 , pp. 025101
    • Guimerà, R.1    Sales-Pardo, M.2    Amaral, L.A.N.3
  • 24
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains.
    • Baum, L. E., Petrie, T., Soules, G. & Weiss, N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist 41, 164-171 (1970).
    • (1970) Ann. Math. Statist , vol.41 , pp. 164-171
    • Baum, L.E.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 25
    • 0022594196 scopus 로고
    • An introduction to hidden Markov models
    • Rabiner, L. & Juang, B. An introduction to hidden Markov models. IEEE ASSP Mag. 3, 4-16 (1986).
    • (1986) IEEE ASSP Mag. , vol.3 , pp. 4-16
    • Rabiner, L.1    Juang, B.2
  • 27
    • 84964204528 scopus 로고    scopus 로고
    • Recursive learning for sparse Markov models
    • Xiong, J., Jääskinen, V. & Corander, J. Recursive learning for sparse Markov models. Bayesian. Anal. 11, 247-263 (2016).
    • (2016) Bayesian. Anal. , vol.11 , pp. 247-263
    • Xiong, J.1    Jääskinen, V.2    Corander, J.3
  • 28
    • 34547151040 scopus 로고    scopus 로고
    • Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling
    • Strelioff, C. C., Crutchfield, J. P. & Hübler, A. W. Inferring Markov chains: Bayesian estimation, model comparison, entropy rate, and out-of-class modeling. Phys. Rev. E 76, 011106 (2007).
    • (2007) Phys. Rev. e , vol.76 , pp. 011106
    • Strelioff, C.C.1    Crutchfield, J.P.2    Hübler, A.W.3
  • 29
    • 79951710564 scopus 로고    scopus 로고
    • Stochastic blockmodels and community structure in networks
    • Karrer, B. & Newman, M. E. J. Stochastic blockmodels and community structure in networks. Phys. Rev. E 83, 016107 (2011).
    • (2011) Phys. Rev. e , vol.83 , pp. 016107
    • Karrer, B.1    Newman, M.E.J.2
  • 32
    • 34250655368 scopus 로고    scopus 로고
    • An information-theoretic framework for resolving community structure in complex networks
    • Rosvall, M. & Bergstrom, C. T. An information-theoretic framework for resolving community structure in complex networks. Proc. Natl Acad. Sci. USA 104, 7327-7331 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 7327-7331
    • Rosvall, M.1    Bergstrom, C.T.2
  • 33
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. Estimating the dimension of a model. Ann. Statist. 6, 461-464 (1978).
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 34
    • 0016355478 scopus 로고
    • A new look at the statistical model identification.
    • Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716-723 (1974).
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 35
    • 84902294606 scopus 로고    scopus 로고
    • Model selection for degree-corrected block models
    • Yan, X. et al. Model selection for degree-corrected block models. J. Stat. Mech. 2014, P05007 (2014).
    • (2014) J. Stat. Mech. , vol.2014 , pp. P05007
    • Yan, X.1
  • 36
    • 84894537759 scopus 로고    scopus 로고
    • Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models
    • Peixoto, T. P. Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models. Phys. Rev. E 89, 012804 (2014).
    • (2014) Phys. Rev. e , vol.89 , pp. 012804
    • Peixoto, T.P.1
  • 37
    • 84875974381 scopus 로고    scopus 로고
    • Parsimonious module inference in large networks
    • Peixoto, T. P. Parsimonious module inference in large networks. Phys. Rev. Lett. 110, 148701 (2013).
    • (2013) Phys. Rev. Lett. , vol.110 , pp. 148701
    • Peixoto, T.P.1
  • 38
    • 84900331710 scopus 로고    scopus 로고
    • Hierarchical block structures and high-resolution model selection in large networks
    • Peixoto, T. P. Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. 4, 011047 (2014).
    • (2014) Phys. Rev. , vol.4 , pp. 011047
    • Peixoto, T.P.1
  • 39
    • 85010424970 scopus 로고    scopus 로고
    • Nonparametric Bayesian inference of the microcanonical stochastic block model
    • Peixoto, T. P. Nonparametric Bayesian inference of the microcanonical stochastic block model. Phys. Rev. E 95, 012317 (2017).
    • (2017) Phys. Rev. e , vol.95 , pp. 012317
    • Peixoto, T.P.1
  • 40
    • 84866939709 scopus 로고    scopus 로고
    • Temporal networks
    • Holme, P. & Saramäki, J. Temporal networks. Phys. Rep. 519, 97-125 (2012).
    • (2012) Phys. Rep. , vol.519 , pp. 97-125
    • Holme, P.1    Saramäki, J.2
  • 41
    • 84923304008 scopus 로고    scopus 로고
    • Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks
    • Scholtes, I. et al. Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks. Nat. Commun. 5, 5024 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5024
    • Scholtes, I.1
  • 42
    • 84943303005 scopus 로고    scopus 로고
    • Contact patterns in a high school: A comparison between data collected using wearable sensors, contact diaries and friendship surveys
    • Mastrandrea, R., Fournet, J. & Barrat, A. Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS ONE 10, e0136497 (2015).
    • (2015) PLoS ONE , vol.10 , pp. e0136497
    • Mastrandrea, R.1    Fournet, J.2    Barrat, A.3
  • 44
    • 84961288934 scopus 로고    scopus 로고
    • Model selection and hypothesis testing for large-scale network models with overlapping groups
    • Peixoto, T. P. Model selection and hypothesis testing for large-scale network models with overlapping groups. Phys. Rev. 5, 011033 (2015).
    • (2015) Phys. Rev. , vol.5 , pp. 011033
    • Peixoto, T.P.1
  • 46
    • 84873751778 scopus 로고
    • An invariant form for the prior probability in estimation problems
    • Jeffreys, H. An invariant form for the prior probability in estimation problems. Proc. R. Soc. London A 186, 453-461 (1946).
    • (1946) Proc. R. Soc. London A , vol.186 , pp. 453-461
    • Jeffreys, H.1
  • 50
    • 22944464423 scopus 로고    scopus 로고
    • eds Boulicaut, J.-F., Esposito, F., Giannotti, F. & Pedreschi, D. Springer
    • Klimt, B. & Yang, Y. in Machine Learning: ECML 2004 (eds. Boulicaut, J.-F., Esposito, F., Giannotti, F. & Pedreschi, D.) 217-226 (Springer, 2004).
    • (2004) Machine Learning: ECML 2004 , pp. 217-226
    • Klimt, B.1    Yang, Y.2
  • 51
    • 84890767224 scopus 로고    scopus 로고
    • Estimating potential infection transmission routes in hospital wards using wearable proximity sensors
    • Vanhems, P. et al. Estimating potential infection transmission routes in hospital wards using wearable proximity sensors. PLoS ONE 8, e73970 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e73970
    • Vanhems, P.1
  • 52
    • 78650107510 scopus 로고    scopus 로고
    • What's in a crowd Analysis of face-to-face behavioral networks
    • Isella, L. et al. What's in a crowd Analysis of face-to-face behavioral networks. J. Theor. Biol. 271, 166-180 (2011).
    • (2011) J. Theor. Biol. , vol.271 , pp. 166-180
    • Isella, L.1
  • 53
    • 33645311516 scopus 로고    scopus 로고
    • Reality mining: Sensing complex social systems
    • Eagle, N. & (Sandy) Pentland, A. Reality mining: sensing complex social systems. Pers. Ubiq. Comput. 10, 255-268 (2006).
    • (2006) Pers. Ubiq. Comput. , vol.10 , pp. 255-268
    • Eagle, N.1    Pentland, A.2
  • 54
    • 0017493286 scopus 로고
    • A universal algorithm for sequential data compression.
    • Ziv, J. & Lempel, A. A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23, 337-343 (1977).
    • (1977) IEEE Trans. Inf. Theory , vol.23 , pp. 337-343
    • Ziv, J.1    Lempel, A.2
  • 55
    • 0018019231 scopus 로고
    • Compression of individual sequences via variable-rate coding
    • Ziv, J. & Lempel, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24, 530-536 (1978).
    • (1978) IEEE Trans. Inf. Theory , vol.24 , pp. 530-536
    • Ziv, J.1    Lempel, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.