메뉴 건너뛰기




Volumn 4, Issue 1, 2014, Pages

Hierarchical block structures and high-resolution model selection in large networks

Author keywords

Complex systems; Interdisciplinary physics; Statistical physics

Indexed keywords

ALGORITHMS; DIRECTED GRAPHS; LARGE SCALE SYSTEMS; STRUCTURE (COMPOSITION);

EID: 84900331710     PISSN: None     EISSN: 21603308     Source Type: Journal    
DOI: 10.1103/PhysRevX.4.011047     Document Type: Article
Times cited : (409)

References (107)
  • 1
    • 84255196314 scopus 로고    scopus 로고
    • Communities, Modules, and Large-Scale Structure in Networks
    • M. E. J. Newman, Communities, Modules, and Large-Scale Structure in Networks, Nat. Phys. 8, 25 (2011).
    • (2011) Nat. Phys. , vol.8 , pp. 25
    • Newman, M.E.J.1
  • 2
    • 74049087026 scopus 로고    scopus 로고
    • Community Detection in Graphs
    • S. Fortunato, Community Detection in Graphs, Phys. Rep. 486, 75 (2010).
    • (2010) Phys. Rep. , vol.486 , pp. 75
    • Fortunato, S.1
  • 3
    • 0037062448 scopus 로고    scopus 로고
    • Community Structure in Social and Biological Networks
    • M. Girvan and M. E. J. Newman, Community Structure in Social and Biological Networks, Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002).
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 7821
    • Girvan, M.1    Newman, M.E.J.2
  • 9
    • 20444504323 scopus 로고    scopus 로고
    • Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society
    • G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society, Nature (London) 435, 814 (2005).
    • (2005) Nature (London) , vol.435 , pp. 814
    • Palla, G.1    Derényi, I.2    Farkas, I.3    Vicsek, T.4
  • 10
    • 37649028224 scopus 로고    scopus 로고
    • Finding and Evaluating Community Structure in Networks
    • M. E. J. Newman and M. Girvan, Finding and Evaluating Community Structure in Networks, Phys. Rev. E 69, 026113 (2004).
    • (2004) Phys. Rev. E , vol.69 , pp. 026113
    • Newman, M.E.J.1    Girvan, M.2
  • 11
    • 41349117788 scopus 로고    scopus 로고
    • Finding Community Structure in Very Large Networks
    • A. Clauset, M. E. J. Newman, and C. Moore, Finding Community Structure in Very Large Networks, Phys. Rev. E 70, 066111 (2004).
    • (2004) Phys. Rev. E , vol.70 , pp. 066111
    • Clauset, A.1    Newman, M.E.J.2    Moore, C.3
  • 13
    • 36348947993 scopus 로고    scopus 로고
    • Modularity from Fluctuations in Random Graphs and Complex Networks
    • R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral, Modularity from Fluctuations in Random Graphs and Complex Networks, Phys. Rev. E 70, 025101 (2004).
    • (2004) Phys. Rev. E , vol.70 , pp. 025101
    • Guimerà, R.1    Sales-Pardo, M.2    Amaral, L.A.N.3
  • 15
    • 84855323676 scopus 로고    scopus 로고
    • Limits of Modularity Maximization in Community Detection
    • A. Lancichinetti and S. Fortunato, Limits of Modularity Maximization in Community Detection, Phys. Rev. E 84, 066122 (2011).
    • (2011) Phys. Rev. E , vol.84 , pp. 066122
    • Lancichinetti, A.1    Fortunato, S.2
  • 16
    • 77951138987 scopus 로고    scopus 로고
    • Performance of Modularity Maximization in Practical Contexts
    • B. H. Good, Y.-A. de Montjoye, and A. Clauset, Performance of Modularity Maximization in Practical Contexts, Phys. Rev. E 81, 046106 (2010).
    • (2010) Phys. Rev. E , vol.81 , pp. 046106
    • Good, B.H.1    de Montjoye, Y.-A.2    Clauset, A.3
  • 17
    • 33748773043 scopus 로고    scopus 로고
    • Community Detection as an Inference Problem
    • M. B. Hastings, Community Detection as an Inference Problem, Phys. Rev. E 74, 035102 (2006).
    • (2006) Phys. Rev. E , vol.74 , pp. 035102
    • Hastings, M.B.1
  • 18
    • 48849084190 scopus 로고    scopus 로고
    • Maximum Likelihood: Extracting Unbiased Information from Complex Networks
    • D. Garlaschelli and M. I. Loffredo, Maximum Likelihood: Extracting Unbiased Information from Complex Networks, Phys. Rev. E 78, 015101 (2008).
    • (2008) Phys. Rev. E , vol.78 , pp. 015101
    • Garlaschelli, D.1    Loffredo, M.I.2
  • 19
    • 34547405111 scopus 로고    scopus 로고
    • Mixture Models and Exploratory Analysis in Networks
    • M. E. J. Newman and E. A. Leicht, Mixture Models and Exploratory Analysis in Networks, Proc. Natl. Acad. Sci. U.S.A. 104, 9564 (2007).
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 9564
    • Newman, M.E.J.1    Leicht, E.A.2
  • 20
    • 37249033857 scopus 로고    scopus 로고
    • Role Models for Complex Networks
    • J. Reichardt and D. R. White, Role Models for Complex Networks, Eur. Phys. J. B 60, 217 (2007).
    • (2007) Eur. Phys. J. B , vol.60 , pp. 217
    • Reichardt, J.1    White, D.R.2
  • 21
    • 45749117949 scopus 로고    scopus 로고
    • Bayesian Approach to Network Modularity
    • J. M. Hofman and C. H. Wiggins, Bayesian Approach to Network Modularity, Phys. Rev. Lett. 100, 258701 (2008).
    • (2008) Phys. Rev. Lett. , vol.100 , pp. 258701
    • Hofman, J.M.1    Wiggins, C.H.2
  • 22
    • 75849140057 scopus 로고    scopus 로고
    • A Nonparametric View of Network Models and Newman-Girvan and Other Modularities
    • P. J. Bickel and A. Chen, A Nonparametric View of Network Models and Newman-Girvan and Other Modularities, Proc. Natl. Acad. Sci. U.S.A. 106, 21068 (2009).
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 21068
    • Bickel, P.J.1    Chen, A.2
  • 23
    • 76049100050 scopus 로고    scopus 로고
    • Missing and Spurious Interactions and the Reconstruction of Complex Networks
    • R. Guimerà and M. Sales-Pardo, Missing and Spurious Interactions and the Reconstruction of Complex Networks, Proc. Natl. Acad. Sci. U.S.A. 106, 22 073 (2009).
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , Issue.22 , pp. 073
    • Guimerà, R.1    Sales-Pardo, M.2
  • 24
    • 79951710564 scopus 로고    scopus 로고
    • Stochastic Block Models and Community Structure in Networks
    • B. Karrer and M. E. J. Newman, Stochastic Block Models and Community Structure in Networks, Phys. Rev. E 83, 016107 (2011).
    • (2011) Phys. Rev. E , vol.83 , pp. 016107
    • Karrer, B.1    Newman, M.E.J.2
  • 25
    • 80053018115 scopus 로고    scopus 로고
    • Efficient and Principled Method for Detecting Communities in Networks
    • B. Ball, B. Karrer, and M. E. J. Newman, Efficient and Principled Method for Detecting Communities in Networks, Phys. Rev. E 84, 036103 (2011).
    • (2011) Phys. Rev. E , vol.84 , pp. 036103
    • Ball, B.1    Karrer, B.2    Newman, M.E.J.3
  • 26
    • 79960953976 scopus 로고    scopus 로고
    • The Interplay between Microscopic and Mesoscopic Structures in Complex Networks
    • J. Reichardt, R. Alamino, and D. Saad, The Interplay between Microscopic and Mesoscopic Structures in Complex Networks, PLoS One 6, e21282 (2011).
    • (2011) PLoS One , vol.6
    • Reichardt, J.1    Alamino, R.2    Saad, D.3
  • 27
    • 84900314498 scopus 로고    scopus 로고
    • Oriented and Degree-Generated Block Models: Generating and Inferring Communities with Inhomogeneous Degree Distributions
    • Y. Zhu, X. Yan, and C. Moore, Oriented and Degree-Generated Block Models: Generating and Inferring Communities with Inhomogeneous Degree Distributions, J. Complex Netw. 2, 1 (2014).
    • (2014) J. Complex Netw. , vol.2 , pp. 1
    • Zhu, Y.1    Yan, X.2    Moore, C.3
  • 29
    • 79961105970 scopus 로고    scopus 로고
    • Inference and Phase Transitions in the Detection of Modules in Sparse Networks
    • A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Inference and Phase Transitions in the Detection of Modules in Sparse Networks, Phys. Rev. Lett. 107, 065701 (2011).
    • (2011) Phys. Rev. Lett. , vol.107 , pp. 065701
    • Decelle, A.1    Krzakala, F.2    Moore, C.3    Zdeborová, L.4
  • 30
    • 84555195640 scopus 로고    scopus 로고
    • Asymptotic Analysis of the Stochastic Block Model for Modular Networks and Its Algorithmic Applications
    • A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic Analysis of the Stochastic Block Model for Modular Networks and Its Algorithmic Applications, Phys. Rev. E 84, 066106 (2011).
    • (2011) Phys. Rev. E , vol.84 , pp. 066106
    • Decelle, A.1    Krzakala, F.2    Moore, C.3    Zdeborová, L.4
  • 32
    • 84875974381 scopus 로고    scopus 로고
    • Parsimonious Module Inference in Large Networks
    • T. P. Peixoto, Parsimonious Module Inference in Large Networks, Phys. Rev. Lett. 110, 148701 (2013).
    • (2013) Phys. Rev. Lett. , vol.110 , pp. 148701
    • Peixoto, T.P.1
  • 35
    • 0040979748 scopus 로고
    • Block Models: Interpretation and Evaluation
    • K. Faust and S. Wasserman, Block Models: Interpretation and Evaluation, Soc. Networks 14, 5 (1992).
    • (1992) Soc. Networks , vol.14 , pp. 5
    • Faust, K.1    Wasserman, S.2
  • 37
    • 34250655368 scopus 로고    scopus 로고
    • An Information-Theoretic Framework for Resolving Community Structure in Complex Networks
    • M. Rosvall and C. T. Bergstrom, An Information-Theoretic Framework for Resolving Community Structure in Complex Networks, Proc. Natl. Acad. Sci. U.S.A. 104, 7327 (2007).
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 7327
    • Rosvall, M.1    Bergstrom, C.T.2
  • 39
    • 78751700989 scopus 로고    scopus 로고
    • Uncovering Latent Structure in Valued Graphs: A Variational Approach
    • M. Mariadassou, S. Robin, and C. Vacher, Uncovering Latent Structure in Valued Graphs: A Variational Approach, Ann. Appl. Stat. 4, 715 (2010).
    • (2010) Ann. Appl. Stat. , vol.4 , pp. 715
    • Mariadassou, M.1    Robin, S.2    Vacher, C.3
  • 41
    • 84859344722 scopus 로고    scopus 로고
    • Variational Bayesian Inference and Complexity Control for Stochastic Block Models
    • P. Latouche, E. Birmele, and C. Ambroise, Variational Bayesian Inference and Complexity Control for Stochastic Block Models, Stat. Model. 12, 93 (2012).
    • (2012) Stat. Model. , vol.12 , pp. 93
    • Latouche, P.1    Birmele, E.2    Ambroise, C.3
  • 43
    • 38049105802 scopus 로고    scopus 로고
    • Statistical Network Analysis: Models, Issues, and New Directions
    • edited by E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing, and A. X. Zheng (Springer, Berlin)
    • A. Clauset, C. Moore, and M. E. J. Newman, Statistical Network Analysis: Models, Issues, and New Directions, Lecture Notes in Computer Science Vol. 4503, edited by E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing, and A. X. Zheng (Springer, Berlin, 2007), pp. 1-13.
    • (2007) Lecture Notes in Computer Science , vol.4503 , pp. 1-13
    • Clauset, A.1    Moore, C.2    Newman, M.E.J.3
  • 44
    • 43049151837 scopus 로고    scopus 로고
    • Hierarchical Structure and the Prediction of Missing Links in Networks
    • A. Clauset, C. Moore, and M. E. J. Newman, Hierarchical Structure and the Prediction of Missing Links in Networks, Nature (London) 453, 98 (2008).
    • (2008) Nature (London) , vol.453 , pp. 98
    • Clauset, A.1    Moore, C.2    Newman, M.E.J.3
  • 45
    • 79954508889 scopus 로고    scopus 로고
    • Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems
    • M. Rosvall and C. T. Bergstrom, Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems, PLoS One 6, e18209 (2011).
    • (2011) PLoS One , vol.6
    • Rosvall, M.1    Bergstrom, C.T.2
  • 47
    • 68949120793 scopus 로고    scopus 로고
    • Multiresolution Community Detection for Megascale Networks by Information-Based Replica Correlations
    • P. Ronhovde and Z. Nussinov, Multiresolution Community Detection for Megascale Networks by Information-Based Replica Correlations, Phys. Rev. E 80, 016109 (2009).
    • (2009) Phys. Rev. E , vol.80 , pp. 016109
    • Ronhovde, P.1    Nussinov, Z.2
  • 48
    • 77958564958 scopus 로고    scopus 로고
    • Community Landscapes: An Integrative Approach to Determine Overlapping Network Module Hierarchy, Identify Key Nodes, and Predict Network Dynamics
    • I. A. Kovács, R. Palotai, M. S. Szalay, and P. Csermely, Community Landscapes: An Integrative Approach to Determine Overlapping Network Module Hierarchy, Identify Key Nodes, and Predict Network Dynamics, PLoS One 5, e12528 (2010).
    • (2010) PLoS One , vol.5
    • Kovács, I.A.1    Palotai, R.2    Szalay, M.S.3    Csermely, P.4
  • 49
    • 77649196314 scopus 로고    scopus 로고
    • Dynamic Networks from Hierarchical Bayesian Graph Clustering
    • Y. Park, C. Moore, and J. S. Bader, Dynamic Networks from Hierarchical Bayesian Graph Clustering, PLoS One 5, e8118 (2010).
    • (2010) PLoS One , vol.5
    • Park, Y.1    Moore, C.2    Bader, J.S.3
  • 50
    • 84862006668 scopus 로고    scopus 로고
    • Entropy of Stochastic Block Model Ensembles
    • T. P. Peixoto, Entropy of Stochastic Block Model Ensembles, Phys. Rev. E 85, 056122 (2012).
    • (2012) Phys. Rev. E , vol.85 , pp. 056122
    • Peixoto, T.P.1
  • 52
    • 65249124591 scopus 로고    scopus 로고
    • Entropy of Network Ensembles
    • G. Bianconi, Entropy of Network Ensembles, Phys. Rev. E 79, 036114 (2009).
    • (2009) Phys. Rev. E , vol.79 , pp. 036114
    • Bianconi, G.1
  • 55
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood
    • C. Biernacki, G. Celeux, and G. Govaert, Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood, IEEE Trans. Pattern Anal. Mach. Intell. 22, 719 (2000).
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , pp. 719
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 57
    • 0000120766 scopus 로고
    • Estimating the Dimension of a Model
    • G. Schwarz, Estimating the Dimension of a Model, Ann. Stat. 6, 461 (1978).
    • (1978) Ann. Stat. , vol.6 , pp. 461
    • Schwarz, G.1
  • 58
    • 0016355478 scopus 로고
    • A New Look at the Statistical Model Identification
    • H. Akaike, A New Look at the Statistical Model Identification, IEEE Trans. Autom. Control 19, 716 (1974).
    • (1974) IEEE Trans. Autom. Control , vol.19 , pp. 716
    • Akaike, H.1
  • 59
    • 49749151329 scopus 로고    scopus 로고
    • (Un)detectable Cluster Structure in Sparse Networks
    • J. Reichardt and M. Leone, (Un)detectable Cluster Structure in Sparse Networks, Phys. Rev. Lett. 101, 078701 (2008).
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 078701
    • Reichardt, J.1    Leone, M.2
  • 60
    • 84856851247 scopus 로고    scopus 로고
    • Phase Transitions in Random Potts Systems and the Community Detection Problem: Spin-Glass Type and Dynamic Perspectives
    • D. Hu, P. Ronhovde, and Z. Nussinov, Phase Transitions in Random Potts Systems and the Community Detection Problem: Spin-Glass Type and Dynamic Perspectives, Philos. Mag. 92, 406 (2012).
    • (2012) Philos. Mag. , vol.92 , pp. 406
    • Hu, D.1    Ronhovde, P.2    Nussinov, Z.3
  • 61
    • 0035580899 scopus 로고    scopus 로고
    • Algorithms for Graph Partitioning on the Planted Partition Model
    • A. Condon and R. M. Karp, Algorithms for Graph Partitioning on the Planted Partition Model, Random Struct. Algorithms 18, 116 (2001).
    • (2001) Random Struct. Algorithms , vol.18 , pp. 116
    • Condon, A.1    Karp, R.M.2
  • 63
    • 84894537759 scopus 로고    scopus 로고
    • Efficient Monte Carlo and Greedy Heuristic for the Inference of Stochastic Block Models
    • T. P. Peixoto, Efficient Monte Carlo and Greedy Heuristic for the Inference of Stochastic Block Models, Phys. Rev. E 89, 012804 (2014).
    • (2014) Phys. Rev. E , vol.89 , pp. 012804
    • Peixoto, T.P.1
  • 65
    • 84884246697 scopus 로고    scopus 로고
    • Eigenvalue Spectra of Modular Networks
    • T. P. Peixoto, Eigenvalue Spectra of Modular Networks, Phys. Rev. Lett. 111, 098701 (2013).
    • (2013) Phys. Rev. Lett. , vol.111 , pp. 098701
    • Peixoto, T.P.1
  • 66
    • 84860628853 scopus 로고    scopus 로고
    • Graph Spectra and the Detectability of Community Structure in Networks
    • R. R. Nadakuditi and M. E. J. Newman, Graph Spectra and the Detectability of Community Structure in Networks, Phys. Rev. Lett. 108, 188701 (2012).
    • (2012) Phys. Rev. Lett. , vol.108 , pp. 188701
    • Nadakuditi, R.R.1    Newman, M.E.J.2
  • 68
    • 33845640864 scopus 로고    scopus 로고
    • Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data
    • D. Holten, Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data, IEEE Trans. Visual. Comput. Graph. 12, 741 (2006).
    • (2006) IEEE Trans. Visual. Comput. Graph. , vol.12 , pp. 741
    • Holten, D.1
  • 69
    • 0042311400 scopus 로고    scopus 로고
    • The Bottlenose Dolphin Community of Doubtful Sound Features a Large Proportion of Long-Lasting Associations
    • D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, The Bottlenose Dolphin Community of Doubtful Sound Features a Large Proportion of Long-Lasting Associations, Behav. Ecol. Sociobiol., 54, 396 (2003).
    • (2003) Behav. Ecol. Sociobiol., , vol.54 , pp. 396
    • Lusseau, D.1    Schneider, K.2    Boisseau, O.J.3    Haase, P.4    Slooten, E.5    Dawson, S.M.6
  • 74
    • 84900333753 scopus 로고    scopus 로고
    • American College Football Network Files, (FigShare)
    • T. S. Evans, American College Football Network Files, (FigShare), http://figshare.com/articles/American_ College_Football_Network_Files/93179.
    • Evans, T.S.1
  • 75
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of "Small-World" Networks
    • D. J. Watts and S. H. Strogatz, Collective dynamics of "Small-World" Networks, Nature (London) 393, 440 (1998).
    • (1998) Nature (London) , vol.393 , pp. 440
    • Watts, D.J.1    Strogatz, S.H.2
  • 76
    • 79953680487 scopus 로고    scopus 로고
    • Trust Transitivity in Social Networks
    • O. Richters and T. P. Peixoto, Trust Transitivity in Social Networks, PLoS One 6, e18384 (2011).
    • (2011) PLoS One , vol.6
    • Richters, O.1    Peixoto, T.P.2
  • 79
    • 0242308058 scopus 로고    scopus 로고
    • The Semantic Web-ISWC 2003
    • edited by D. Fensel, K. Sycara, and J. Mylopoulos (Springer, Berlin)
    • M. Richardson, R. Agrawal, and P. Domingos, The Semantic Web-ISWC 2003, in Lecture Notes in Computer Science Vol. 2870, edited by D. Fensel, K. Sycara, and J. Mylopoulos (Springer, Berlin, 2003), pp. 351-368.
    • (2003) Lecture Notes in Computer Science , vol.2870 , pp. 351-368
    • Richardson, M.1    Agrawal, R.2    Domingos, P.3
  • 81
    • 84867877312 scopus 로고    scopus 로고
    • Computer Vision ECCV 2012
    • edited by A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid (Springer, Berlin)
    • J. McAuley and J. Leskovec, Computer Vision ECCV 2012, in Lecture Notes in Computer Science Vol. 7575, edited by A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid (Springer, Berlin, 2012), pp. 828-841.
    • (2012) Lecture Notes in Computer Science , vol.7575 , pp. 828-841
    • McAuley, J.1    Leskovec, J.2
  • 84
    • 64549145094 scopus 로고    scopus 로고
    • Detecting the Overlapping and Hierarchical Community Structure in Complex Networks
    • A. Lancichinetti, S. Fortunato, and J. Kertész, Detecting the Overlapping and Hierarchical Community Structure in Complex Networks, New J. Phys. 11, 033015 (2009).
    • (2009) New J. Phys. , vol.11 , pp. 033015
    • Lancichinetti, A.1    Fortunato, S.2    Kertész, J.3
  • 85
    • 84883369138 scopus 로고    scopus 로고
    • Efficient discovery of Overlapping Communities in Massive Networks
    • P. K. Gopalan and D. M. Blei, Efficient discovery of Overlapping Communities in Massive Networks, Proc. Natl. Acad. Sci. U.S.A. 110, 14 534 (2013).
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , Issue.14 , pp. 534
    • Gopalan, P.K.1    Blei, D.M.2
  • 86
    • 77955518815 scopus 로고    scopus 로고
    • Link Communities Reveal Multiscale Complexity in Networks
    • Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, Link Communities Reveal Multiscale Complexity in Networks, Nature (London) 466, 761 (2010).
    • (2010) Nature (London) , vol.466 , pp. 761
    • Ahn, Y.-Y.1    Bagrow, J.P.2    Lehmann, S.3
  • 88
    • 84867393630 scopus 로고    scopus 로고
    • Robust Classification of Salient Links in Complex Networks
    • D. Grady, C. Thiemann, and D. Brockmann, Robust Classification of Salient Links in Complex Networks, Nat. Commun. 3, 864 (2012).
    • (2012) Nat. Commun. , vol.3 , pp. 864
    • Grady, D.1    Thiemann, C.2    Brockmann, D.3
  • 89
    • 67650925074 scopus 로고    scopus 로고
    • Assessing the Relevance of Node Features for Network Structure
    • G. Bianconi, P. Pin, and M. Marsili, Assessing the Relevance of Node Features for Network Structure, Proc. Natl. Acad. Sci. U.S.A. 106, 11 433 (2009).
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , Issue.11 , pp. 433
    • Bianconi, G.1    Pin, P.2    Marsili, M.3
  • 90
    • 14644396645 scopus 로고    scopus 로고
    • Functional Cartography of Complex Metabolic Networks
    • R. Guimerà and L. A. N. Amaral, Functional Cartography of Complex Metabolic Networks, Nature (London) 433, 895 (2005).
    • (2005) Nature (London) , vol.433 , pp. 895
    • Guimerà, R.1    Amaral, L.A.N.2
  • 91
    • 71849108522 scopus 로고    scopus 로고
    • Community Detection Algorithms: A Comparative Analysis
    • A. Lancichinetti and S. Fortunato, Community Detection Algorithms: A Comparative Analysis, Phys. Rev. E 80, 056117 (2009).
    • (2009) Phys. Rev. E , vol.80 , pp. 056117
    • Lancichinetti, A.1    Fortunato, S.2
  • 92
    • 39549086558 scopus 로고    scopus 로고
    • Maps of Random Walks on Complex Networks Reveal Community Structure
    • M. Rosvall and C. T. Bergstrom, Maps of Random Walks on Complex Networks Reveal Community Structure, Proc. Natl. Acad. Sci. U.S.A. 105, 1118 (2008).
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 1118
    • Rosvall, M.1    Bergstrom, C.T.2
  • 94
    • 55849088356 scopus 로고    scopus 로고
    • Benchmark Graphs for Testing Community Detection Algorithms
    • A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark Graphs for Testing Community Detection Algorithms, Phys. Rev. E 78, 046110 (2008).
    • (2008) Phys. Rev. E , vol.78 , pp. 046110
    • Lancichinetti, A.1    Fortunato, S.2    Radicchi, F.3
  • 95
    • 9444274777 scopus 로고    scopus 로고
    • Learning Theory and Kernel Machines
    • edited by B. Schölkopf and M. K. Warmuth (Springer, Berlin)
    • M. Meila, Learning Theory and Kernel Machines, in Lecture Notes in Computer Science Vol. 2777, edited by B. Schölkopf and M. K. Warmuth (Springer, Berlin, 2003), pp. 173-187.
    • (2003) Lecture Notes in Computer Science , vol.2777 , pp. 173-187
    • Meila, M.1
  • 96
    • 84900340568 scopus 로고    scopus 로고
    • See Supplemental Material at for high resolution versions of Figs. 6 and 7, and additional information on the internet data.
    • See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevX.4.011047 for high resolution versions of Figs. 6 and 7, and additional information on the internet data.
  • 97
    • 84900341223 scopus 로고    scopus 로고
    • This specification generalizes other hierarchical constructions in a straightforward manner. For instance, the generative model of Refs. [43, 44] can be recovered as a special case by forcing a binary tree hierarchy, terminating at the individual nodes, and a strictly assortative modular structure. A similar argument holds for the variant of Ref. [51] as well.
    • This specification generalizes other hierarchical constructions in a straightforward manner. For instance, the generative model of Refs. [43, 44] can be recovered as a special case by forcing a binary tree hierarchy, terminating at the individual nodes, and a strictly assortative modular structure. A similar argument holds for the variant of Ref. [51] as well.
  • 98
    • 84900306920 scopus 로고    scopus 로고
    • In Ref. [32] the degree sequence entropy was taken to be NH(fpkg), with pk = Prnrpr k=N, which implicitly assumed that the degrees are uncorrelated with the block partitions, and, hence, should be interpreted only as an upper bound to the actual description length given by Eq. (9).
    • In Ref. [32] the degree sequence entropy was taken to be NH(fpkg), with pk = Prnrpr k=N, which implicitly assumed that the degrees are uncorrelated with the block partitions, and, hence, should be interpreted only as an upper bound to the actual description length given by Eq. (9).
  • 99
    • 84900329313 scopus 로고    scopus 로고
    • Note that MDL can still be used to select the simpler model in this case: Although the complete description length S will be asymptotically the same with both models for networks sampled from the traditional block model, we still have that Lt < Lc, since the degree-corrected version still needs to include the information on the degree sequence, as in Eq. (9).
    • Note that MDL can still be used to select the simpler model in this case: Although the complete description length S will be asymptotically the same with both models for networks sampled from the traditional block model, we still have that Lt < Lc, since the degree-corrected version still needs to include the information on the degree sequence, as in Eq. (9).
  • 100
    • 84900298272 scopus 로고    scopus 로고
    • i} are two partitions of the network.
    • i} are two partitions of the network.
  • 101
    • 84900321646 scopus 로고    scopus 로고
    • The fact that the NMI between the true and inferred partitions remains slightly above zero in Fig. 2 for hki < 1 with the incomplete BMS criterion is a finite size effect, as it tends increasingly to zero as N → ∞. On the other hand, according to this criterion, the inferred value of B in this region increases as N becomes larger.
    • The fact that the NMI between the true and inferred partitions remains slightly above zero in Fig. 2 for hki < 1 with the incomplete BMS criterion is a finite size effect, as it tends increasingly to zero as N → ∞. On the other hand, according to this criterion, the inferred value of B in this region increases as N becomes larger.
  • 102
    • 84900317135 scopus 로고    scopus 로고
    • This threshold corresponds simply to the point where it becomes impossible to fully encode the block partition in the network structure, i.e., for uniform blocks -E ln B + N ln B = 0, which leads to E = N and, hence, = 2.
    • This threshold corresponds simply to the point where it becomes impossible to fully encode the block partition in the network structure, i.e., for uniform blocks -E ln B + N ln B = 0, which leads to E = N and, hence, = 2.
  • 103
    • 84900342584 scopus 로고    scopus 로고
    • This limit cannot be significantly changed even if one introduces scale parameters to the definition of modularity [15, 62].
    • This limit cannot be significantly changed even if one introduces scale parameters to the definition of modularity [15, 62].
  • 104
    • 84900295571 scopus 로고    scopus 로고
    • In the model selection context, adding a single edge between the blocks is not a necessary condition for the observation of the resolution limit, and has a negligible effect, differently from the modularity approach, where it is a deciding factor.
    • In the model selection context, adding a single edge between the blocks is not a necessary condition for the observation of the resolution limit, and has a negligible effect, differently from the modularity approach, where it is a deciding factor.
  • 105
    • 84900297769 scopus 로고    scopus 로고
    • An efficient and fully documented C++ implementation of the algorithm described here is freely available as part of the graph-tool Python library
    • An efficient and fully documented C++ implementation of the algorithm described here is freely available as part of the graph-tool Python library at http://graph-tool .skewed.de.
  • 106
    • 84900316817 scopus 로고    scopus 로고
    • IPv4 Routed /24 AS Links Dataset
    • IPv4 Routed /24 AS Links Dataset, http://www.caida .org/data/active/ipv4-routed-topology-aslinks-dataset.xml.
  • 107
    • 84900329979 scopus 로고    scopus 로고
    • Note that this is slightly different than in Ref. [94], which parametrized the fraction of internal and external degrees via a local mixing parameter μ, which is the same for all communities. That choice corresponds to a different parametrization of the degree-corrected block model than the one used here. However, since the blocks have different sizes, and the degrees are approximately the same in all blocks, in general, there is no choice of μ that would allow one to recover the fully random configuration model, since the intrinsic mixing would be different for each block in this case. Because of this, we have opted for the parametrization used here; however, this should not alter the interpretation of the benchmark and the comparison with Ref. [94] in a significant way.
    • Note that this is slightly different than in Ref. [94], which parametrized the fraction of internal and external degrees via a local mixing parameter μ, which is the same for all communities. That choice corresponds to a different parametrization of the degree-corrected block model than the one used here. However, since the blocks have different sizes, and the degrees are approximately the same in all blocks, in general, there is no choice of μ that would allow one to recover the fully random configuration model, since the intrinsic mixing would be different for each block in this case. Because of this, we have opted for the parametrization used here; however, this should not alter the interpretation of the benchmark and the comparison with Ref. [94] in a significant way.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.