-
1
-
-
84255196314
-
Communities, Modules, and Large-Scale Structure in Networks
-
M. E. J. Newman, Communities, Modules, and Large-Scale Structure in Networks, Nat. Phys. 8, 25 (2011).
-
(2011)
Nat. Phys.
, vol.8
, pp. 25
-
-
Newman, M.E.J.1
-
2
-
-
74049087026
-
Community Detection in Graphs
-
S. Fortunato, Community Detection in Graphs, Phys. Rep. 486, 75 (2010).
-
(2010)
Phys. Rep.
, vol.486
, pp. 75
-
-
Fortunato, S.1
-
3
-
-
0037062448
-
Community Structure in Social and Biological Networks
-
M. Girvan and M. E. J. Newman, Community Structure in Social and Biological Networks, Proc. Natl. Acad. Sci. U.S.A. 99, 7821 (2002).
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 7821
-
-
Girvan, M.1
Newman, M.E.J.2
-
4
-
-
0037199968
-
Hierarchical Organization of Modularity in Metabolic Networks
-
E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barabási, Hierarchical Organization of Modularity in Metabolic Networks, Science 297, 1551 (2002).
-
(2002)
Science
, vol.297
, pp. 1551
-
-
Ravasz, E.1
Somera, A.L.2
Mongru, D.A.3
Oltvai, Z.N.4
Barabási, A.-L.5
-
5
-
-
84899610901
-
Network Modularity Reveals Critical Scales for Connectivity in Ecology and Evolution
-
R. J. Fletcher, Jr, A. Revell, B. E. Reichert, W. M. Kitchens, J. D. Dixon, and J. D. Austin, Network Modularity Reveals Critical Scales for Connectivity in Ecology and Evolution, Nat. Commun. 4, 2572 (2013).
-
(2013)
Nat. Commun.
, vol.4
, pp. 2572
-
-
Fletcher Jr., R.J.1
Revell, A.2
Reichert, B.E.3
Kitchens, W.M.4
Dixon, J.D.5
Austin, J.D.6
-
6
-
-
0033539175
-
Internet: Diameter of the World Wide Web
-
R. Albert, H. Jeong, and A.-L. Barabási, Internet: Diameter of the World Wide Web, Nature (London) 401, 130 (1999).
-
(1999)
Nature (London)
, vol.401
, pp. 130
-
-
Albert, R.1
Jeong, H.2
Barabási, A.-L.3
-
7
-
-
0037108908
-
Modeling the Internet's Large-Scale Topology
-
S.-H. Yook, H. Jeong, and A.-L. Barabási, Modeling the Internet's Large-Scale Topology, Proc. Natl. Acad. Sci. U.S.A. 99, 13 382 (2002).
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, Issue.13
, pp. 382
-
-
Yook, S.-H.1
Jeong, H.2
Barabási, A.-L.3
-
8
-
-
79956327022
-
Community Extraction for Social Networks
-
Y. Zhao, E. Levina, and J. Zhu, Community Extraction for Social Networks, Proc. Natl. Acad. Sci. U.S.A. 108, 7321 (2011).
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 7321
-
-
Zhao, Y.1
Levina, E.2
Zhu, J.3
-
9
-
-
20444504323
-
Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society
-
G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society, Nature (London) 435, 814 (2005).
-
(2005)
Nature (London)
, vol.435
, pp. 814
-
-
Palla, G.1
Derényi, I.2
Farkas, I.3
Vicsek, T.4
-
10
-
-
37649028224
-
Finding and Evaluating Community Structure in Networks
-
M. E. J. Newman and M. Girvan, Finding and Evaluating Community Structure in Networks, Phys. Rev. E 69, 026113 (2004).
-
(2004)
Phys. Rev. E
, vol.69
, pp. 026113
-
-
Newman, M.E.J.1
Girvan, M.2
-
11
-
-
41349117788
-
Finding Community Structure in Very Large Networks
-
A. Clauset, M. E. J. Newman, and C. Moore, Finding Community Structure in Very Large Networks, Phys. Rev. E 70, 066111 (2004).
-
(2004)
Phys. Rev. E
, vol.70
, pp. 066111
-
-
Clauset, A.1
Newman, M.E.J.2
Moore, C.3
-
13
-
-
36348947993
-
Modularity from Fluctuations in Random Graphs and Complex Networks
-
R. Guimerà, M. Sales-Pardo, and L. A. N. Amaral, Modularity from Fluctuations in Random Graphs and Complex Networks, Phys. Rev. E 70, 025101 (2004).
-
(2004)
Phys. Rev. E
, vol.70
, pp. 025101
-
-
Guimerà, R.1
Sales-Pardo, M.2
Amaral, L.A.N.3
-
15
-
-
84855323676
-
Limits of Modularity Maximization in Community Detection
-
A. Lancichinetti and S. Fortunato, Limits of Modularity Maximization in Community Detection, Phys. Rev. E 84, 066122 (2011).
-
(2011)
Phys. Rev. E
, vol.84
, pp. 066122
-
-
Lancichinetti, A.1
Fortunato, S.2
-
16
-
-
77951138987
-
Performance of Modularity Maximization in Practical Contexts
-
B. H. Good, Y.-A. de Montjoye, and A. Clauset, Performance of Modularity Maximization in Practical Contexts, Phys. Rev. E 81, 046106 (2010).
-
(2010)
Phys. Rev. E
, vol.81
, pp. 046106
-
-
Good, B.H.1
de Montjoye, Y.-A.2
Clauset, A.3
-
17
-
-
33748773043
-
Community Detection as an Inference Problem
-
M. B. Hastings, Community Detection as an Inference Problem, Phys. Rev. E 74, 035102 (2006).
-
(2006)
Phys. Rev. E
, vol.74
, pp. 035102
-
-
Hastings, M.B.1
-
18
-
-
48849084190
-
Maximum Likelihood: Extracting Unbiased Information from Complex Networks
-
D. Garlaschelli and M. I. Loffredo, Maximum Likelihood: Extracting Unbiased Information from Complex Networks, Phys. Rev. E 78, 015101 (2008).
-
(2008)
Phys. Rev. E
, vol.78
, pp. 015101
-
-
Garlaschelli, D.1
Loffredo, M.I.2
-
19
-
-
34547405111
-
Mixture Models and Exploratory Analysis in Networks
-
M. E. J. Newman and E. A. Leicht, Mixture Models and Exploratory Analysis in Networks, Proc. Natl. Acad. Sci. U.S.A. 104, 9564 (2007).
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 9564
-
-
Newman, M.E.J.1
Leicht, E.A.2
-
20
-
-
37249033857
-
Role Models for Complex Networks
-
J. Reichardt and D. R. White, Role Models for Complex Networks, Eur. Phys. J. B 60, 217 (2007).
-
(2007)
Eur. Phys. J. B
, vol.60
, pp. 217
-
-
Reichardt, J.1
White, D.R.2
-
21
-
-
45749117949
-
Bayesian Approach to Network Modularity
-
J. M. Hofman and C. H. Wiggins, Bayesian Approach to Network Modularity, Phys. Rev. Lett. 100, 258701 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 258701
-
-
Hofman, J.M.1
Wiggins, C.H.2
-
22
-
-
75849140057
-
A Nonparametric View of Network Models and Newman-Girvan and Other Modularities
-
P. J. Bickel and A. Chen, A Nonparametric View of Network Models and Newman-Girvan and Other Modularities, Proc. Natl. Acad. Sci. U.S.A. 106, 21068 (2009).
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21068
-
-
Bickel, P.J.1
Chen, A.2
-
23
-
-
76049100050
-
Missing and Spurious Interactions and the Reconstruction of Complex Networks
-
R. Guimerà and M. Sales-Pardo, Missing and Spurious Interactions and the Reconstruction of Complex Networks, Proc. Natl. Acad. Sci. U.S.A. 106, 22 073 (2009).
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, Issue.22
, pp. 073
-
-
Guimerà, R.1
Sales-Pardo, M.2
-
24
-
-
79951710564
-
Stochastic Block Models and Community Structure in Networks
-
B. Karrer and M. E. J. Newman, Stochastic Block Models and Community Structure in Networks, Phys. Rev. E 83, 016107 (2011).
-
(2011)
Phys. Rev. E
, vol.83
, pp. 016107
-
-
Karrer, B.1
Newman, M.E.J.2
-
25
-
-
80053018115
-
Efficient and Principled Method for Detecting Communities in Networks
-
B. Ball, B. Karrer, and M. E. J. Newman, Efficient and Principled Method for Detecting Communities in Networks, Phys. Rev. E 84, 036103 (2011).
-
(2011)
Phys. Rev. E
, vol.84
, pp. 036103
-
-
Ball, B.1
Karrer, B.2
Newman, M.E.J.3
-
26
-
-
79960953976
-
The Interplay between Microscopic and Mesoscopic Structures in Complex Networks
-
J. Reichardt, R. Alamino, and D. Saad, The Interplay between Microscopic and Mesoscopic Structures in Complex Networks, PLoS One 6, e21282 (2011).
-
(2011)
PLoS One
, vol.6
-
-
Reichardt, J.1
Alamino, R.2
Saad, D.3
-
27
-
-
84900314498
-
Oriented and Degree-Generated Block Models: Generating and Inferring Communities with Inhomogeneous Degree Distributions
-
Y. Zhu, X. Yan, and C. Moore, Oriented and Degree-Generated Block Models: Generating and Inferring Communities with Inhomogeneous Degree Distributions, J. Complex Netw. 2, 1 (2014).
-
(2014)
J. Complex Netw.
, vol.2
, pp. 1
-
-
Zhu, Y.1
Yan, X.2
Moore, C.3
-
28
-
-
84855259407
-
Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model
-
e1002321
-
E. B. Baskerville, A. P. Dobson, T. Bedford, S. Allesina, T. Michael Anderson, and M. Pascual, Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model, PLoS Comput. Biol. 7, e1002321 (2011).
-
(2011)
PLoS Comput. Biol.
, vol.7
-
-
Baskerville, E.B.1
Dobson, A.P.2
Bedford, T.3
Allesina, S.4
Michael Anderson, T.5
Pascual, M.6
-
29
-
-
79961105970
-
Inference and Phase Transitions in the Detection of Modules in Sparse Networks
-
A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Inference and Phase Transitions in the Detection of Modules in Sparse Networks, Phys. Rev. Lett. 107, 065701 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.107
, pp. 065701
-
-
Decelle, A.1
Krzakala, F.2
Moore, C.3
Zdeborová, L.4
-
30
-
-
84555195640
-
Asymptotic Analysis of the Stochastic Block Model for Modular Networks and Its Algorithmic Applications
-
A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic Analysis of the Stochastic Block Model for Modular Networks and Its Algorithmic Applications, Phys. Rev. E 84, 066106 (2011).
-
(2011)
Phys. Rev. E
, vol.84
, pp. 066106
-
-
Decelle, A.1
Krzakala, F.2
Moore, C.3
Zdeborová, L.4
-
32
-
-
84875974381
-
Parsimonious Module Inference in Large Networks
-
T. P. Peixoto, Parsimonious Module Inference in Large Networks, Phys. Rev. Lett. 110, 148701 (2013).
-
(2013)
Phys. Rev. Lett.
, vol.110
, pp. 148701
-
-
Peixoto, T.P.1
-
33
-
-
0012864758
-
Stochastic Block Models: First Steps
-
P.W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic Block Models: First Steps, Soc. Networks 5, 109 (1983).
-
(1983)
Soc. Networks
, vol.5
, pp. 109
-
-
Holland, P.W.1
Laskey, K.B.2
Leinhardt, S.3
-
34
-
-
0003096526
-
Statistical Analysis of Multiple Sociometric Relations
-
S. E. Fienberg, M. M. Meyer, and S. S. Wasserman, Statistical Analysis of Multiple Sociometric Relations, J. Am. Stat. Assoc. 80, 51 (1985).
-
(1985)
J. Am. Stat. Assoc.
, vol.80
, pp. 51
-
-
Fienberg, S.E.1
Meyer, M.M.2
Wasserman, S.S.3
-
35
-
-
0040979748
-
Block Models: Interpretation and Evaluation
-
K. Faust and S. Wasserman, Block Models: Interpretation and Evaluation, Soc. Networks 14, 5 (1992).
-
(1992)
Soc. Networks
, vol.14
, pp. 5
-
-
Faust, K.1
Wasserman, S.2
-
36
-
-
0011552132
-
Building Stochastic Block Models
-
C. J. Anderson, S. Wasserman, and K. Faust, Building Stochastic Block Models, Soc. Networks 14, 137 (1992).
-
(1992)
Soc. Networks
, vol.14
, pp. 137
-
-
Anderson, C.J.1
Wasserman, S.2
Faust, K.3
-
37
-
-
34250655368
-
An Information-Theoretic Framework for Resolving Community Structure in Complex Networks
-
M. Rosvall and C. T. Bergstrom, An Information-Theoretic Framework for Resolving Community Structure in Complex Networks, Proc. Natl. Acad. Sci. U.S.A. 104, 7327 (2007).
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 7327
-
-
Rosvall, M.1
Bergstrom, C.T.2
-
38
-
-
39449099786
-
A Mixture Model for Rndom Graphs
-
J.-J. Daudin, F. Picard, and S. Robin, A Mixture Model for Rndom Graphs, Stat. Comput. 18, 173 (2008).
-
(2008)
Stat. Comput.
, vol.18
, pp. 173
-
-
Daudin, J.-J.1
Picard, F.2
Robin, S.3
-
39
-
-
78751700989
-
Uncovering Latent Structure in Valued Graphs: A Variational Approach
-
M. Mariadassou, S. Robin, and C. Vacher, Uncovering Latent Structure in Valued Graphs: A Variational Approach, Ann. Appl. Stat. 4, 715 (2010).
-
(2010)
Ann. Appl. Stat.
, vol.4
, pp. 715
-
-
Mariadassou, M.1
Robin, S.2
Vacher, C.3
-
40
-
-
80052676927
-
Active Learning for Node Classification in Assortative and Disassortative Networks
-
(ACM, New York)
-
C. Moore, X. Yan, Y. Zhu, J.-B. Rouquier, and T. Lane, Active Learning for Node Classification in Assortative and Disassortative Networks, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '11) (ACM, New York, 2011), pp. 841-849.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '11)
, pp. 841-849
-
-
Moore, C.1
Yan, X.2
Zhu, Y.3
Rouquier, J.-B.4
Lane, T.5
-
41
-
-
84859344722
-
Variational Bayesian Inference and Complexity Control for Stochastic Block Models
-
P. Latouche, E. Birmele, and C. Ambroise, Variational Bayesian Inference and Complexity Control for Stochastic Block Models, Stat. Model. 12, 93 (2012).
-
(2012)
Stat. Model.
, vol.12
, pp. 93
-
-
Latouche, P.1
Birmele, E.2
Ambroise, C.3
-
43
-
-
38049105802
-
Statistical Network Analysis: Models, Issues, and New Directions
-
edited by E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing, and A. X. Zheng (Springer, Berlin)
-
A. Clauset, C. Moore, and M. E. J. Newman, Statistical Network Analysis: Models, Issues, and New Directions, Lecture Notes in Computer Science Vol. 4503, edited by E. Airoldi, D. M. Blei, S. E. Fienberg, A. Goldenberg, E. P. Xing, and A. X. Zheng (Springer, Berlin, 2007), pp. 1-13.
-
(2007)
Lecture Notes in Computer Science
, vol.4503
, pp. 1-13
-
-
Clauset, A.1
Moore, C.2
Newman, M.E.J.3
-
44
-
-
43049151837
-
Hierarchical Structure and the Prediction of Missing Links in Networks
-
A. Clauset, C. Moore, and M. E. J. Newman, Hierarchical Structure and the Prediction of Missing Links in Networks, Nature (London) 453, 98 (2008).
-
(2008)
Nature (London)
, vol.453
, pp. 98
-
-
Clauset, A.1
Moore, C.2
Newman, M.E.J.3
-
45
-
-
79954508889
-
Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems
-
M. Rosvall and C. T. Bergstrom, Multilevel Compression of Random Walks on Networks Reveals Hierarchical Organization in Large Integrated Systems, PLoS One 6, e18209 (2011).
-
(2011)
PLoS One
, vol.6
-
-
Rosvall, M.1
Bergstrom, C.T.2
-
46
-
-
34848890341
-
Extracting the Hierarchical Organization of Complex Systems
-
M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. A. N. Amaral, Extracting the Hierarchical Organization of Complex Systems, Proc. Natl. Acad. Sci. U.S.A. 104, 15 224 (2007).
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, Issue.15
, pp. 224
-
-
Sales-Pardo, M.1
Guimerà, R.2
Moreira, A.A.3
Amaral, L.A.N.4
-
47
-
-
68949120793
-
Multiresolution Community Detection for Megascale Networks by Information-Based Replica Correlations
-
P. Ronhovde and Z. Nussinov, Multiresolution Community Detection for Megascale Networks by Information-Based Replica Correlations, Phys. Rev. E 80, 016109 (2009).
-
(2009)
Phys. Rev. E
, vol.80
, pp. 016109
-
-
Ronhovde, P.1
Nussinov, Z.2
-
48
-
-
77958564958
-
Community Landscapes: An Integrative Approach to Determine Overlapping Network Module Hierarchy, Identify Key Nodes, and Predict Network Dynamics
-
I. A. Kovács, R. Palotai, M. S. Szalay, and P. Csermely, Community Landscapes: An Integrative Approach to Determine Overlapping Network Module Hierarchy, Identify Key Nodes, and Predict Network Dynamics, PLoS One 5, e12528 (2010).
-
(2010)
PLoS One
, vol.5
-
-
Kovács, I.A.1
Palotai, R.2
Szalay, M.S.3
Csermely, P.4
-
49
-
-
77649196314
-
Dynamic Networks from Hierarchical Bayesian Graph Clustering
-
Y. Park, C. Moore, and J. S. Bader, Dynamic Networks from Hierarchical Bayesian Graph Clustering, PLoS One 5, e8118 (2010).
-
(2010)
PLoS One
, vol.5
-
-
Park, Y.1
Moore, C.2
Bader, J.S.3
-
50
-
-
84862006668
-
Entropy of Stochastic Block Model Ensembles
-
T. P. Peixoto, Entropy of Stochastic Block Model Ensembles, Phys. Rev. E 85, 056122 (2012).
-
(2012)
Phys. Rev. E
, vol.85
, pp. 056122
-
-
Peixoto, T.P.1
-
51
-
-
77949501427
-
Kronecker Graphs: An Approach to Modeling Networks
-
J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani, Kronecker Graphs: An Approach to Modeling Networks, J. Mach. Learn. Res. 11, 9851042 (2010).
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 9851042
-
-
Leskovec, J.1
Chakrabarti, D.2
Kleinberg, J.3
Faloutsos, C.4
Ghahramani, Z.5
-
52
-
-
65249124591
-
Entropy of Network Ensembles
-
G. Bianconi, Entropy of Network Ensembles, Phys. Rev. E 79, 036114 (2009).
-
(2009)
Phys. Rev. E
, vol.79
, pp. 036114
-
-
Bianconi, G.1
-
55
-
-
0034228914
-
Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood
-
C. Biernacki, G. Celeux, and G. Govaert, Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood, IEEE Trans. Pattern Anal. Mach. Intell. 22, 719 (2000).
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, pp. 719
-
-
Biernacki, C.1
Celeux, G.2
Govaert, G.3
-
56
-
-
84900313057
-
-
arXiv:1207.3994
-
X. Yan, J. E. Jensen, F. Krzakala, C. Moore, C. R. Shalizi, L. Zdeborova, P. Zhang, and Y. Zhu, Model Selection for Degree-Corrected Block Models, arXiv:1207.3994.
-
Model Selection for Degree-Corrected Block Models
-
-
Yan, X.1
Jensen, J.E.2
Krzakala, F.3
Moore, C.4
Shalizi, C.R.5
Zdeborova, L.6
Zhang, P.7
Zhu, Y.8
-
57
-
-
0000120766
-
Estimating the Dimension of a Model
-
G. Schwarz, Estimating the Dimension of a Model, Ann. Stat. 6, 461 (1978).
-
(1978)
Ann. Stat.
, vol.6
, pp. 461
-
-
Schwarz, G.1
-
58
-
-
0016355478
-
A New Look at the Statistical Model Identification
-
H. Akaike, A New Look at the Statistical Model Identification, IEEE Trans. Autom. Control 19, 716 (1974).
-
(1974)
IEEE Trans. Autom. Control
, vol.19
, pp. 716
-
-
Akaike, H.1
-
59
-
-
49749151329
-
(Un)detectable Cluster Structure in Sparse Networks
-
J. Reichardt and M. Leone, (Un)detectable Cluster Structure in Sparse Networks, Phys. Rev. Lett. 101, 078701 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 078701
-
-
Reichardt, J.1
Leone, M.2
-
60
-
-
84856851247
-
Phase Transitions in Random Potts Systems and the Community Detection Problem: Spin-Glass Type and Dynamic Perspectives
-
D. Hu, P. Ronhovde, and Z. Nussinov, Phase Transitions in Random Potts Systems and the Community Detection Problem: Spin-Glass Type and Dynamic Perspectives, Philos. Mag. 92, 406 (2012).
-
(2012)
Philos. Mag.
, vol.92
, pp. 406
-
-
Hu, D.1
Ronhovde, P.2
Nussinov, Z.3
-
61
-
-
0035580899
-
Algorithms for Graph Partitioning on the Planted Partition Model
-
A. Condon and R. M. Karp, Algorithms for Graph Partitioning on the Planted Partition Model, Random Struct. Algorithms 18, 116 (2001).
-
(2001)
Random Struct. Algorithms
, vol.18
, pp. 116
-
-
Condon, A.1
Karp, R.M.2
-
62
-
-
84868335817
-
Multiresolution Modularity Methods and Their Limitations in Community Detection
-
J. Xiang, X. G. Hu, X. Y. Zhang, J. F. Fan, X. L. Zeng, G. Y. Fu, K. Deng, and K. Hu, Multiresolution Modularity Methods and Their Limitations in Community Detection, Eur. Phys. J. B 85, 1 (2012).
-
(2012)
Eur. Phys. J. B
, vol.85
, pp. 1
-
-
Xiang, J.1
Hu, X.G.2
Zhang, X.Y.3
Fan, J.F.4
Zeng, X.L.5
Fu, G.Y.6
Deng, K.7
Hu, K.8
-
63
-
-
84894537759
-
Efficient Monte Carlo and Greedy Heuristic for the Inference of Stochastic Block Models
-
T. P. Peixoto, Efficient Monte Carlo and Greedy Heuristic for the Inference of Stochastic Block Models, Phys. Rev. E 89, 012804 (2014).
-
(2014)
Phys. Rev. E
, vol.89
, pp. 012804
-
-
Peixoto, T.P.1
-
64
-
-
77952390133
-
Multifractal Network Generator
-
G. Palla, L. Lovász, and T. Vicsek, Multifractal Network Generator, Proc. Natl. Acad. Sci. U.S.A. 107, 7640 (2010).
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 7640
-
-
Palla, G.1
Lovász, L.2
Vicsek, T.3
-
65
-
-
84884246697
-
Eigenvalue Spectra of Modular Networks
-
T. P. Peixoto, Eigenvalue Spectra of Modular Networks, Phys. Rev. Lett. 111, 098701 (2013).
-
(2013)
Phys. Rev. Lett.
, vol.111
, pp. 098701
-
-
Peixoto, T.P.1
-
66
-
-
84860628853
-
Graph Spectra and the Detectability of Community Structure in Networks
-
R. R. Nadakuditi and M. E. J. Newman, Graph Spectra and the Detectability of Community Structure in Networks, Phys. Rev. Lett. 108, 188701 (2012).
-
(2012)
Phys. Rev. Lett.
, vol.108
, pp. 188701
-
-
Nadakuditi, R.R.1
Newman, M.E.J.2
-
68
-
-
33845640864
-
Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data
-
D. Holten, Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data, IEEE Trans. Visual. Comput. Graph. 12, 741 (2006).
-
(2006)
IEEE Trans. Visual. Comput. Graph.
, vol.12
, pp. 741
-
-
Holten, D.1
-
69
-
-
0042311400
-
The Bottlenose Dolphin Community of Doubtful Sound Features a Large Proportion of Long-Lasting Associations
-
D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson, The Bottlenose Dolphin Community of Doubtful Sound Features a Large Proportion of Long-Lasting Associations, Behav. Ecol. Sociobiol., 54, 396 (2003).
-
(2003)
Behav. Ecol. Sociobiol.,
, vol.54
, pp. 396
-
-
Lusseau, D.1
Schneider, K.2
Boisseau, O.J.3
Haase, P.4
Slooten, E.5
Dawson, S.M.6
-
70
-
-
34248205060
-
Graph Evolution: Densification and Shrinking Diameters
-
J. Leskovec, J. Kleinberg, and C. Faloutsos, Graph Evolution: Densification and Shrinking Diameters, ACM Trans. Knowl. Discov. Data 1, 2 (2007).
-
(2007)
ACM Trans. Knowl. Discov. Data
, vol.1
, pp. 2
-
-
Leskovec, J.1
Kleinberg, J.2
Faloutsos, C.3
-
72
-
-
32344436566
-
Overview of the 2003 KDD Cup
-
J. Gehrke, P. Ginsparg, and J. Kleinberg, Overview of the 2003 KDD Cup, SIGKDD Explor. Newsletter 5, 149 (2003).
-
(2003)
SIGKDD Explor. Newsletter
, vol.5
, pp. 149
-
-
Gehrke, J.1
Ginsparg, P.2
Kleinberg, J.3
-
74
-
-
84900333753
-
-
American College Football Network Files, (FigShare)
-
T. S. Evans, American College Football Network Files, (FigShare), http://figshare.com/articles/American_ College_Football_Network_Files/93179.
-
-
-
Evans, T.S.1
-
75
-
-
0032482432
-
Collective dynamics of "Small-World" Networks
-
D. J. Watts and S. H. Strogatz, Collective dynamics of "Small-World" Networks, Nature (London) 393, 440 (1998).
-
(1998)
Nature (London)
, vol.393
, pp. 440
-
-
Watts, D.J.1
Strogatz, S.H.2
-
76
-
-
79953680487
-
Trust Transitivity in Social Networks
-
O. Richters and T. P. Peixoto, Trust Transitivity in Social Networks, PLoS One 6, e18384 (2011).
-
(2011)
PLoS One
, vol.6
-
-
Richters, O.1
Peixoto, T.P.2
-
77
-
-
34547140875
-
The Human Disease Network
-
K. I. Goh, M. E. Cusick, D. Valle, B. Childs, M. Vidal, and A. L. Barabási, The Human Disease Network, Proc. Natl. Acad. Sci. U.S.A. 104, 8685 (2007).
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 8685
-
-
Goh, K.I.1
Cusick, M.E.2
Valle, D.3
Childs, B.4
Vidal, M.5
Barabási, A.L.6
-
78
-
-
80052648113
-
Friendship and Mobility: User Movement in Location-Based Social Networks
-
San Diego, California, USA, (KDD '11) (ACM, New York, NY, 2011), (Ref. [40])
-
E. Cho, S. A. Myers, and J. Leskovec, Friendship and Mobility: User Movement in Location-Based Social Networks, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, California, USA, 2011 (KDD '11) (ACM, New York, NY, 2011), (Ref. [40]), pp. 1082-1090.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1082-1090
-
-
Cho, E.1
Myers, S.A.2
Leskovec, J.3
-
79
-
-
0242308058
-
The Semantic Web-ISWC 2003
-
edited by D. Fensel, K. Sycara, and J. Mylopoulos (Springer, Berlin)
-
M. Richardson, R. Agrawal, and P. Domingos, The Semantic Web-ISWC 2003, in Lecture Notes in Computer Science Vol. 2870, edited by D. Fensel, K. Sycara, and J. Mylopoulos (Springer, Berlin, 2003), pp. 351-368.
-
(2003)
Lecture Notes in Computer Science
, vol.2870
, pp. 351-368
-
-
Richardson, M.1
Agrawal, R.2
Domingos, P.3
-
80
-
-
77954012379
-
Signed Networks in Social Media
-
(ACM, New York)
-
J. Leskovec, D. Huttenlocher, and J. Kleinberg, Signed Networks in Social Media, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '10) (ACM, New York, 2010) pp. 1361-1370.
-
(2010)
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '10)
, pp. 1361-1370
-
-
Leskovec, J.1
Huttenlocher, D.2
Kleinberg, J.3
-
81
-
-
84867877312
-
Computer Vision ECCV 2012
-
edited by A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid (Springer, Berlin)
-
J. McAuley and J. Leskovec, Computer Vision ECCV 2012, in Lecture Notes in Computer Science Vol. 7575, edited by A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid (Springer, Berlin, 2012), pp. 828-841.
-
(2012)
Lecture Notes in Computer Science
, vol.7575
, pp. 828-841
-
-
McAuley, J.1
Leskovec, J.2
-
82
-
-
32344436210
-
Graphs Over Time: Densification Laws, Shrinking diameters, and Possible Explanations
-
Chicago, Illinois, USA, (KDD '05) (ACM, New York, NY, 2005), (Ref. [67])
-
J. Leskovec, J. Kleinberg, and C. Faloutsos, Graphs Over Time: Densification Laws, Shrinking diameters, and Possible Explanations, in Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, Illinois, USA, 2005 (KDD '05) (ACM, New York, NY, 2005), (Ref. [67]), pp. 177-187.
-
(2005)
Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining
, pp. 177-187
-
-
Leskovec, J.1
Kleinberg, J.2
Faloutsos, C.3
-
83
-
-
54249110594
-
Mixed Membership stochastic Block Models
-
E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing, Mixed Membership stochastic Block Models, J. Mach. Learn. Res. 9, 1981 (2008).
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1981
-
-
Airoldi, E.M.1
Blei, D.M.2
Fienberg, S.E.3
Xing, E.P.4
-
84
-
-
64549145094
-
Detecting the Overlapping and Hierarchical Community Structure in Complex Networks
-
A. Lancichinetti, S. Fortunato, and J. Kertész, Detecting the Overlapping and Hierarchical Community Structure in Complex Networks, New J. Phys. 11, 033015 (2009).
-
(2009)
New J. Phys.
, vol.11
, pp. 033015
-
-
Lancichinetti, A.1
Fortunato, S.2
Kertész, J.3
-
85
-
-
84883369138
-
Efficient discovery of Overlapping Communities in Massive Networks
-
P. K. Gopalan and D. M. Blei, Efficient discovery of Overlapping Communities in Massive Networks, Proc. Natl. Acad. Sci. U.S.A. 110, 14 534 (2013).
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, Issue.14
, pp. 534
-
-
Gopalan, P.K.1
Blei, D.M.2
-
86
-
-
77955518815
-
Link Communities Reveal Multiscale Complexity in Networks
-
Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, Link Communities Reveal Multiscale Complexity in Networks, Nature (London) 466, 761 (2010).
-
(2010)
Nature (London)
, vol.466
, pp. 761
-
-
Ahn, Y.-Y.1
Bagrow, J.P.2
Lehmann, S.3
-
88
-
-
84867393630
-
Robust Classification of Salient Links in Complex Networks
-
D. Grady, C. Thiemann, and D. Brockmann, Robust Classification of Salient Links in Complex Networks, Nat. Commun. 3, 864 (2012).
-
(2012)
Nat. Commun.
, vol.3
, pp. 864
-
-
Grady, D.1
Thiemann, C.2
Brockmann, D.3
-
89
-
-
67650925074
-
Assessing the Relevance of Node Features for Network Structure
-
G. Bianconi, P. Pin, and M. Marsili, Assessing the Relevance of Node Features for Network Structure, Proc. Natl. Acad. Sci. U.S.A. 106, 11 433 (2009).
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, Issue.11
, pp. 433
-
-
Bianconi, G.1
Pin, P.2
Marsili, M.3
-
90
-
-
14644396645
-
Functional Cartography of Complex Metabolic Networks
-
R. Guimerà and L. A. N. Amaral, Functional Cartography of Complex Metabolic Networks, Nature (London) 433, 895 (2005).
-
(2005)
Nature (London)
, vol.433
, pp. 895
-
-
Guimerà, R.1
Amaral, L.A.N.2
-
91
-
-
71849108522
-
Community Detection Algorithms: A Comparative Analysis
-
A. Lancichinetti and S. Fortunato, Community Detection Algorithms: A Comparative Analysis, Phys. Rev. E 80, 056117 (2009).
-
(2009)
Phys. Rev. E
, vol.80
, pp. 056117
-
-
Lancichinetti, A.1
Fortunato, S.2
-
92
-
-
39549086558
-
Maps of Random Walks on Complex Networks Reveal Community Structure
-
M. Rosvall and C. T. Bergstrom, Maps of Random Walks on Complex Networks Reveal Community Structure, Proc. Natl. Acad. Sci. U.S.A. 105, 1118 (2008).
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 1118
-
-
Rosvall, M.1
Bergstrom, C.T.2
-
93
-
-
77952159452
-
The Map Equation
-
M. Rosvall, D. Axelsson, and C. T. Bergstrom, The Map Equation, Eur. Phys. J. Spec. Top. 178, 13 (2009).
-
(2009)
Eur. Phys. J. Spec. Top.
, vol.178
, pp. 13
-
-
Rosvall, M.1
Axelsson, D.2
Bergstrom, C.T.3
-
94
-
-
55849088356
-
Benchmark Graphs for Testing Community Detection Algorithms
-
A. Lancichinetti, S. Fortunato, and F. Radicchi, Benchmark Graphs for Testing Community Detection Algorithms, Phys. Rev. E 78, 046110 (2008).
-
(2008)
Phys. Rev. E
, vol.78
, pp. 046110
-
-
Lancichinetti, A.1
Fortunato, S.2
Radicchi, F.3
-
95
-
-
9444274777
-
Learning Theory and Kernel Machines
-
edited by B. Schölkopf and M. K. Warmuth (Springer, Berlin)
-
M. Meila, Learning Theory and Kernel Machines, in Lecture Notes in Computer Science Vol. 2777, edited by B. Schölkopf and M. K. Warmuth (Springer, Berlin, 2003), pp. 173-187.
-
(2003)
Lecture Notes in Computer Science
, vol.2777
, pp. 173-187
-
-
Meila, M.1
-
96
-
-
84900340568
-
-
See Supplemental Material at for high resolution versions of Figs. 6 and 7, and additional information on the internet data.
-
See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevX.4.011047 for high resolution versions of Figs. 6 and 7, and additional information on the internet data.
-
-
-
-
97
-
-
84900341223
-
-
This specification generalizes other hierarchical constructions in a straightforward manner. For instance, the generative model of Refs. [43, 44] can be recovered as a special case by forcing a binary tree hierarchy, terminating at the individual nodes, and a strictly assortative modular structure. A similar argument holds for the variant of Ref. [51] as well.
-
This specification generalizes other hierarchical constructions in a straightforward manner. For instance, the generative model of Refs. [43, 44] can be recovered as a special case by forcing a binary tree hierarchy, terminating at the individual nodes, and a strictly assortative modular structure. A similar argument holds for the variant of Ref. [51] as well.
-
-
-
-
98
-
-
84900306920
-
-
In Ref. [32] the degree sequence entropy was taken to be NH(fpkg), with pk = Prnrpr k=N, which implicitly assumed that the degrees are uncorrelated with the block partitions, and, hence, should be interpreted only as an upper bound to the actual description length given by Eq. (9).
-
In Ref. [32] the degree sequence entropy was taken to be NH(fpkg), with pk = Prnrpr k=N, which implicitly assumed that the degrees are uncorrelated with the block partitions, and, hence, should be interpreted only as an upper bound to the actual description length given by Eq. (9).
-
-
-
-
99
-
-
84900329313
-
-
Note that MDL can still be used to select the simpler model in this case: Although the complete description length S will be asymptotically the same with both models for networks sampled from the traditional block model, we still have that Lt < Lc, since the degree-corrected version still needs to include the information on the degree sequence, as in Eq. (9).
-
Note that MDL can still be used to select the simpler model in this case: Although the complete description length S will be asymptotically the same with both models for networks sampled from the traditional block model, we still have that Lt < Lc, since the degree-corrected version still needs to include the information on the degree sequence, as in Eq. (9).
-
-
-
-
100
-
-
84900298272
-
-
i} are two partitions of the network.
-
i} are two partitions of the network.
-
-
-
-
101
-
-
84900321646
-
-
The fact that the NMI between the true and inferred partitions remains slightly above zero in Fig. 2 for hki < 1 with the incomplete BMS criterion is a finite size effect, as it tends increasingly to zero as N → ∞. On the other hand, according to this criterion, the inferred value of B in this region increases as N becomes larger.
-
The fact that the NMI between the true and inferred partitions remains slightly above zero in Fig. 2 for hki < 1 with the incomplete BMS criterion is a finite size effect, as it tends increasingly to zero as N → ∞. On the other hand, according to this criterion, the inferred value of B in this region increases as N becomes larger.
-
-
-
-
102
-
-
84900317135
-
-
This threshold corresponds simply to the point where it becomes impossible to fully encode the block partition in the network structure, i.e., for uniform blocks -E ln B + N ln B = 0, which leads to E = N and, hence, = 2.
-
This threshold corresponds simply to the point where it becomes impossible to fully encode the block partition in the network structure, i.e., for uniform blocks -E ln B + N ln B = 0, which leads to E = N and, hence, = 2.
-
-
-
-
103
-
-
84900342584
-
-
This limit cannot be significantly changed even if one introduces scale parameters to the definition of modularity [15, 62].
-
This limit cannot be significantly changed even if one introduces scale parameters to the definition of modularity [15, 62].
-
-
-
-
104
-
-
84900295571
-
-
In the model selection context, adding a single edge between the blocks is not a necessary condition for the observation of the resolution limit, and has a negligible effect, differently from the modularity approach, where it is a deciding factor.
-
In the model selection context, adding a single edge between the blocks is not a necessary condition for the observation of the resolution limit, and has a negligible effect, differently from the modularity approach, where it is a deciding factor.
-
-
-
-
105
-
-
84900297769
-
-
An efficient and fully documented C++ implementation of the algorithm described here is freely available as part of the graph-tool Python library
-
An efficient and fully documented C++ implementation of the algorithm described here is freely available as part of the graph-tool Python library at http://graph-tool .skewed.de.
-
-
-
-
106
-
-
84900316817
-
-
IPv4 Routed /24 AS Links Dataset
-
IPv4 Routed /24 AS Links Dataset, http://www.caida .org/data/active/ipv4-routed-topology-aslinks-dataset.xml.
-
-
-
-
107
-
-
84900329979
-
-
Note that this is slightly different than in Ref. [94], which parametrized the fraction of internal and external degrees via a local mixing parameter μ, which is the same for all communities. That choice corresponds to a different parametrization of the degree-corrected block model than the one used here. However, since the blocks have different sizes, and the degrees are approximately the same in all blocks, in general, there is no choice of μ that would allow one to recover the fully random configuration model, since the intrinsic mixing would be different for each block in this case. Because of this, we have opted for the parametrization used here; however, this should not alter the interpretation of the benchmark and the comparison with Ref. [94] in a significant way.
-
Note that this is slightly different than in Ref. [94], which parametrized the fraction of internal and external degrees via a local mixing parameter μ, which is the same for all communities. That choice corresponds to a different parametrization of the degree-corrected block model than the one used here. However, since the blocks have different sizes, and the degrees are approximately the same in all blocks, in general, there is no choice of μ that would allow one to recover the fully random configuration model, since the intrinsic mixing would be different for each block in this case. Because of this, we have opted for the parametrization used here; however, this should not alter the interpretation of the benchmark and the comparison with Ref. [94] in a significant way.
-
-
-
|