-
2
-
-
84919844235
-
Dynamic community identification, Link Mining: Models
-
(Springer, New York)
-
T. Berger-Wolf, C. Tantipathananandh, and D. Kempe, Dynamic community identification, in Link Mining: Models, Algorithms, and Applications (Springer, New York, 2010), pp. 307-336.
-
(2010)
Algorithms, and Applications
, pp. 307-336
-
-
Berger-Wolf, T.1
Tantipathananandh, C.2
Kempe, D.3
-
3
-
-
84900316533
-
Detecting the Community Structure and Activity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach
-
L. Gauvin, A. Panisson, and C. Cattuto, Detecting the Community Structure and Activity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach, PLoS One 9, e86028 (2014).
-
(2014)
PLoS One
, vol.9
-
-
Gauvin, L.1
Panisson, A.2
Cattuto, C.3
-
4
-
-
84898968964
-
Nonparametric Multi-Group Membership Model for Dynamic Networks
-
edited by C. Burges (Curran Associates, Inc., Lake Tahoe, Nevada)
-
M. Kim and J. Leskovec, Nonparametric Multi-Group Membership Model for Dynamic Networks, in Advances in Neural Information Processing Systems 26, edited by C. Burges (Curran Associates, Inc., Lake Tahoe, Nevada, 2013), pp. 1385-1393.
-
(2013)
Advances in Neural Information Processing Systems 26
, pp. 1385-1393
-
-
Kim, M.1
Leskovec, J.2
-
5
-
-
77952328459
-
Community Structure in Time-Dependent, Multiscale, and Multiplex Networks
-
P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, Community Structure in Time-Dependent, Multiscale, and Multiplex Networks, Science 328, 876 (2010).
-
(2010)
Science
, vol.328
, pp. 876
-
-
Mucha, P.J.1
Richardson, T.2
Macon, K.3
Porter, M.A.4
Onnela, J.-P.5
-
7
-
-
79960461257
-
A State-Space Mixed Membership Blockmodel for Dynamic Network Tomography
-
E. P. Xing, W. Fu, and L. Song, A State-Space Mixed Membership Blockmodel for Dynamic Network Tomography, Ann. Appl. Stat. 4, 535 (2010).
-
(2010)
Ann. Appl. Stat
, vol.4
, pp. 535
-
-
Xing, E.P.1
Fu, W.2
Song, L.3
-
8
-
-
84992626927
-
-
arXiv:1411.3675
-
L. Zhu, D. Guo, J. Yin, G. V. Steeg, and A. Galstyan, Scalable Link Prediction in Dynamic Networks via Non-Negative Matrix Factorization, arXiv:1411.3675.
-
Scalable Link Prediction in Dynamic Networks via Non-Negative Matrix Factorization
-
-
Zhu, L.1
Guo, D.2
Yin, J.3
Steeg, G.V.4
Galstyan, A.5
-
9
-
-
77649177770
-
A Survey of Statistical Network Models
-
A. Goldenberg, A. X. Zheng, S. E. Fienberg, and E. M. Airoldi, A Survey of Statistical Network Models, Found. Trends Mach. Learn. 2, 129 (2010).
-
(2010)
Found. Trends Mach. Learn
, vol.2
, pp. 129
-
-
Goldenberg, A.1
Zheng, A.X.2
Fienberg, S.E.3
Airoldi, E.M.4
-
10
-
-
33748773043
-
Community Detection as an Inference Problem
-
M. B. Hastings, Community Detection as an Inference Problem, Phys. Rev. E 74, 035102 (2006).
-
(2006)
Phys. Rev. E
, vol.74
-
-
Hastings, M.B.1
-
11
-
-
45749117949
-
Bayesian Approach to Network Modularity
-
J. M. Hofman and C. H. Wiggins, Bayesian Approach to Network Modularity, Phys. Rev. Lett. 100, 258701 (2008).
-
(2008)
Phys. Rev. Lett
, vol.100
-
-
Hofman, J.M.1
Wiggins, C.H.2
-
12
-
-
79951710564
-
Stochastic Blockmodels and Community Structure in Networks
-
B. Karrer and M. E. J. Newman, Stochastic Blockmodels and Community Structure in Networks, Phys. Rev. E 83, 016107 (2011).
-
(2011)
Phys. Rev. E
, vol.83
-
-
Karrer, B.1
Newman, M.E.J.2
-
13
-
-
84961371580
-
Learning Latent Block Structure in Weighted Networks
-
C. Aicher, A. Z. Jacobs, and A. Clauset, Learning Latent Block Structure in Weighted Networks, J. Complex Netw. 3, 221 (2015).
-
(2015)
J. Complex Netw
, vol.3
, pp. 221
-
-
Aicher, C.1
Jacobs, A.Z.2
Clauset, A.3
-
14
-
-
84555195640
-
Asymptotic Analysis of the Stochastic Block Model for Modular Networks and Its Algorithmic Applications
-
A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic Analysis of the Stochastic Block Model for Modular Networks and Its Algorithmic Applications, Phys. Rev. E 84, 066106 (2011).
-
(2011)
Phys. Rev. E
, vol.84
-
-
Decelle, A.1
Krzakala, F.2
Moore, C.3
Zdeborová, L.4
-
15
-
-
79961105970
-
Inference and Phase Transitions in the Detection of Modules in Sparse Networks
-
A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Inference and Phase Transitions in the Detection of Modules in Sparse Networks, Phys. Rev. Lett. 107, 065701 (2011).
-
(2011)
Phys. Rev. Lett
, vol.107
-
-
Decelle, A.1
Krzakala, F.2
Moore, C.3
Zdeborová, L.4
-
16
-
-
84939262924
-
Reconstruction and Estimation in the Planted Partition Model
-
E. Mossel, J. Neeman, and A. Sly, Reconstruction and Estimation in the Planted Partition Model, Probab. Theory Relat. Fields 162, 431 (2015).
-
(2015)
Probab. Theory Relat. Fields
, vol.162
, pp. 431
-
-
Mossel, E.1
Neeman, J.2
Sly, A.3
-
18
-
-
0038752085
-
Mixing Patterns in Networks
-
M. E. J. Newman, Mixing Patterns in Networks, Phys. Rev. E 67, 026126 (2003).
-
(2003)
Phys. Rev. E
, vol.67
-
-
Newman, M.E.J.1
-
21
-
-
84913529790
-
Phase Transitions in Semisupervised Clustering of Sparse Networks
-
P. Zhang, C. Moore, and L. Zdeborová, Phase Transitions in Semisupervised Clustering of Sparse Networks, Phys. Rev. E 90, 052802 (2014).
-
(2014)
Phys. Rev. E
, vol.90
-
-
Zhang, P.1
Moore, C.2
Zdeborová, L.3
-
22
-
-
84975047616
-
Structure and Inference in Annotated Networks
-
M. E. J. Newman and A. Clauset, Structure and Inference in Annotated Networks, Nat. Commun. 7, 11863 (2016).
-
(2016)
Nat. Commun
, vol.7
, pp. 11863
-
-
Newman, M.E.J.1
Clauset, A.2
-
23
-
-
84875868755
-
Robust Detection of Dynamic Community Structure in Networks
-
D. S. Bassett, M. A. Porter, N. F. Wymbs, S. T. Grafton, J. M. Carlson, and P. J. Mucha, Robust Detection of Dynamic Community Structure in Networks, Chaos 23, 013142 (2013).
-
(2013)
Chaos
, vol.23
-
-
Bassett, D.S.1
Porter, M.A.2
Wymbs, N.F.3
Grafton, S.T.4
Carlson, J.M.5
Mucha, P.J.6
-
24
-
-
84963677387
-
Community Detection in Temporal Multilayer Networks, with an Application to Correlation Networks
-
M. Bazzi, M. A. Porter, S. Williams, M. McDonald, D. J. Fenn, and S. D. Howison, Community Detection in Temporal Multilayer Networks, with an Application to Correlation Networks, Multiscale Model. Simul. 14, 1 (2016).
-
(2016)
Multiscale Model. Simul
, vol.14
, pp. 1
-
-
Bazzi, M.1
Porter, M.A.2
Williams, S.3
McDonald, M.4
Fenn, D.J.5
Howison, S.D.6
-
25
-
-
77951165273
-
Link Prediction on Evolving Data Using Matrix and Tensor Factorizations
-
(IEEE, New York)
-
E. Acar, D.M. Dunlavy, and T. G. Kolda, Link Prediction on Evolving Data Using Matrix and Tensor Factorizations, in Proceedings of the ICDM'09 Workshop on Large Scale Data Mining Theory and Applications (LDMTA'09) (IEEE, New York, 2009), pp. 262-269.
-
(2009)
Proceedings of the ICDM'09 Workshop on Large Scale Data Mining Theory and Applications (LDMTA'09)
, pp. 262-269
-
-
Acar, E.1
Dunlavy, D.M.2
Kolda, T.G.3
-
26
-
-
79952552980
-
Temporal Link Prediction Using Matrix and Tensor Factorizations
-
D. M. Dunlavy, T. G. Kolda, and E. Acar, Temporal Link Prediction Using Matrix and Tensor Factorizations, ACM Trans. Knowl. Discovery Data 5, 10 (2011).
-
(2011)
ACM Trans. Knowl. Discovery Data
, vol.5
, pp. 10
-
-
Dunlavy, D.M.1
Kolda, T.G.2
Acar, E.3
-
27
-
-
36849035825
-
Graph-Scope: Parameter-Free Mining of Large Time-Evolving Graphs
-
(ACM, San Jose, CA)
-
J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu, Graph-Scope: Parameter-Free Mining of Large Time-Evolving Graphs, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'07) (ACM, San Jose, CA, 2007), pp. 687-696.
-
(2007)
Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'07)
, pp. 687-696
-
-
Sun, J.1
Faloutsos, C.2
Papadimitriou, S.3
Yu, P.S.4
-
28
-
-
77749239782
-
Mapping Change in Large Networks
-
M. Rosvall and C. T. Bergstrom, Mapping Change in Large Networks, PLoS One 5, e8694 (2010).
-
(2010)
PLoS One
, vol.5
-
-
Rosvall, M.1
Bergstrom, C.T.2
-
29
-
-
72749125852
-
A Bayesian Approach Toward Finding Communities and Their Evolutions in Dynamic Social Networks
-
(SIAM, Sparks, Nevada)
-
T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin, A Bayesian Approach Toward Finding Communities and Their Evolutions in Dynamic Social Networks, in Proceedings of the SIAM International Conference on Data Mining (SDM'09) (SIAM, Sparks, Nevada, 2009), pp. 990-1001.
-
(2009)
Proceedings of the SIAM International Conference on Data Mining (SDM'09)
, pp. 990-1001
-
-
Yang, T.1
Chi, Y.2
Zhu, S.3
Gong, Y.4
Jin, R.5
-
30
-
-
84904649838
-
Dynamic Stochastic Blockmodels for Time-Evolving Social Networks
-
K. S. Xu and A. O. Hero, Dynamic Stochastic Blockmodels for Time-Evolving Social Networks, IEEE J. Sel. Top. Signal Process. 8, 552 (2014).
-
(2014)
IEEE J. Sel. Top. Signal Process
, vol.8
, pp. 552
-
-
Xu, K.S.1
Hero, A.O.2
-
31
-
-
84969824537
-
Consistent Estimation of Dynamic and Multi-Layer Networks
-
JMLR Workshop and Conference Proceedings (JMLR: W&CP), Lille
-
Q. Han, K. S. Xu, and E. M. Airoldi, Consistent Estimation of Dynamic and Multi-Layer Networks, in Proceedings of the 32nd International Conference on Machine Learning (JMLR Workshop and Conference Proceedings (JMLR: W&CP), Lille, 2015).
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning
-
-
Han, Q.1
Xu, K.S.2
Airoldi, E.M.3
-
32
-
-
84944810998
-
Inferring the Mesoscale Structure of Layered, Edge-Valued, and Time-Varying Networks
-
T. P. Peixoto, Inferring the Mesoscale Structure of Layered, Edge-Valued, and Time-Varying Networks, Phys. Rev. E 92, 042807 (2015).
-
(2015)
Phys. Rev. E
, vol.92
-
-
Peixoto, T.P.1
-
33
-
-
84984885319
-
Multilayer Stochastic Block Models Reveal the Multilayer Structure of Complex Networks
-
T. Vallès-Català, F. A. Massucci, R. Guimerà, and M. Sales-Pardo, Multilayer Stochastic Block Models Reveal the Multilayer Structure of Complex Networks, Phys. Rev. X 6, 011036 (2016).
-
(2016)
Phys. Rev. X
, vol.6
-
-
Vallès-Català, T.1
Massucci, F.A.2
Guimerà, R.3
Sales-Pardo, M.4
-
34
-
-
84905869515
-
Evolutionary Network Analysis: A Survey
-
C. Aggarwal and K. Subbian, Evolutionary Network Analysis: A Survey, Comput. Surv. 47, 10 (2014).
-
(2014)
Comput. Surv
, vol.47
, pp. 10
-
-
Aggarwal, C.1
Subbian, K.2
-
36
-
-
84872146751
-
Diffusion Dynamics on Multiplex Networks
-
S. Gómez, A. Díaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y. Moreno, and A. Arenas, Diffusion Dynamics on Multiplex Networks, Phys. Rev. Lett. 110, 028701 (2013).
-
(2013)
Phys. Rev. Lett
, vol.110
-
-
Gómez, S.1
Díaz-Guilera, A.2
Gómez-Gardeñes, J.3
Pérez-Vicente, C.J.4
Moreno, Y.5
Arenas, A.6
-
37
-
-
84881519378
-
Growing Multiplex Networks
-
V. Nicosia, G. Bianconi, V. Latora, and M. Barthelemy, Growing Multiplex Networks, Phys. Rev. Lett. 111, 058701 (2013).
-
(2013)
Phys. Rev. Lett
, vol.111
-
-
Nicosia, V.1
Bianconi, G.2
Latora, V.3
Barthelemy, M.4
-
38
-
-
84961151921
-
Congestion Induced by the Structure of Multiplex Networks
-
A. Solé-Ribalta, S. Gómez, and A. Arenas, Congestion Induced by the Structure of Multiplex Networks, Phys. Rev. Lett. 116, 108701 (2016).
-
(2016)
Phys. Rev. Lett
, vol.116
-
-
Solé-Ribalta, A.1
Gómez, S.2
Arenas, A.3
-
39
-
-
84904574667
-
Conditions for Viral Influence Spreading through Multiplex Correlated Social Networks
-
Y. Hu, S. Havlin, and H. A. Makse, Conditions for Viral Influence Spreading through Multiplex Correlated Social Networks, Phys. Rev. X 4, 021031 (2014).
-
(2014)
Phys. Rev. X
, vol.4
-
-
Hu, Y.1
Havlin, S.2
Makse, H.A.3
-
40
-
-
84893550916
-
Mathematical Formulation of Multilayer Networks
-
M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kivelä, Y. Moreno, M. A. Porter, S. Gómez, and A. Arenas, Mathematical Formulation of Multilayer Networks, Phys. Rev. X 3, 041022 (2013).
-
(2013)
Phys. Rev. X
, vol.3
-
-
De Domenico, M.1
Solé-Ribalta, A.2
Cozzo, E.3
Kivelä, M.4
Moreno, Y.5
Porter, M.A.6
Gómez, S.7
Arenas, A.8
-
41
-
-
84961291708
-
Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems
-
M. De Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall, Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems, Phys. Rev. X 5, 011027 (2015).
-
(2015)
Phys. Rev. X
, vol.5
-
-
De Domenico, M.1
Lancichinetti, A.2
Arenas, A.3
Rosvall, M.4
-
42
-
-
84934268705
-
Analytical Computation of the Epidemic Threshold on Temporal Networks
-
E. Valdano, L. Ferreri, C. Poletto, and V. Colizza, Analytical Computation of the Epidemic Threshold on Temporal Networks, Phys. Rev. X 5, 021005 (2015).
-
(2015)
Phys. Rev. X
, vol.5
-
-
Valdano, E.1
Ferreri, L.2
Poletto, C.3
Colizza, V.4
-
43
-
-
84864852403
-
How People Interact in Evolving Online Affiliation Networks
-
L. K. Gallos, D. Rybski, F. Liljeros, S. Havlin, and H. A. Makse, How People Interact in Evolving Online Affiliation Networks, Phys. Rev. X 2, 031014 (2012).
-
(2012)
Phys. Rev. X
, vol.2
-
-
Gallos, L.K.1
Rybski, D.2
Liljeros, F.3
Havlin, S.4
Makse, H.A.5
-
44
-
-
84884781463
-
Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks
-
C. Granell, S. Gómez, and A. Arenas, Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks, Phys. Rev. Lett. 111, 128701 (2013).
-
(2013)
Phys. Rev. Lett
, vol.111
-
-
Granell, C.1
Gómez, S.2
Arenas, A.3
-
45
-
-
84870877026
-
Avalanche Collapse of Interdependent Networks
-
G. J. Baxter, S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Avalanche Collapse of Interdependent Networks, Phys. Rev. Lett. 109, 248701 (2012).
-
(2012)
Phys. Rev. Lett
, vol.109
-
-
Baxter, G.J.1
Dorogovtsev, S.N.2
Goltsev, A.V.3
Mendes, J.F.F.4
-
46
-
-
0012864758
-
Stochastic Blockmodels: First Steps
-
P.W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic Blockmodels: First Steps, Soc. Networks 5, 109 (1983).
-
(1983)
Soc. Networks
, vol.5
, pp. 109
-
-
Holland, P.W.1
Laskey, K.B.2
Leinhardt, S.3
-
47
-
-
0442296603
-
Estimation and Prediction for Stochastic Blockstructures
-
K. Nowicki and T. A. B. Snijders, Estimation and Prediction for Stochastic Blockstructures, J. Am. Stat. Assoc. 96, 1077 (2001).
-
(2001)
J. Am. Stat. Assoc
, vol.96
, pp. 1077
-
-
Nowicki, K.1
Snijders, T.A.B.2
-
48
-
-
84939631838
-
Belief Propagation, Robust Reconstruction and Optimal Recovery of Block Models
-
E. Mossel, J. Neeman, and A. Sly, Belief Propagation, Robust Reconstruction and Optimal Recovery of Block Models, in Proceedings of the 27th Conference on Learning Theory (2014), pp. 356-370.
-
(2014)
Proceedings of the 27th Conference on Learning Theory
, pp. 356-370
-
-
Mossel, E.1
Neeman, J.2
Sly, A.3
-
49
-
-
84904344028
-
Community Detection Thresholds and the Weak Ramanujan Property
-
(ACM, New York, NY)
-
L. Massoulié, Community Detection Thresholds and the Weak Ramanujan Property, in Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC'14) (ACM, New York, NY, 2014), pp. 694-703.
-
(2014)
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC'14)
, pp. 694-703
-
-
Massoulié, L.1
-
50
-
-
84960425512
-
Non-Backtracking Spectrum of Random Graphs: Community Detection and Non-Regular Ramanujan Graphs
-
(IEEE, New York)
-
C. Bordenave, M. Lelarge, and L. Massoulié, Non-Backtracking Spectrum of Random Graphs: Community Detection and Non-Regular Ramanujan Graphs, in Proceedings of the 56th Annual Symposium on the Foundations of Computer Science (IEEE, New York, 2015), pp. 1347-1357.
-
(2015)
Proceedings of the 56th Annual Symposium on the Foundations of Computer Science
, pp. 1347-1357
-
-
Bordenave, C.1
Lelarge, M.2
Massoulié, L.3
-
51
-
-
84891363833
-
Spectral Redemption in Clustering Sparse Networks
-
F. Krzakala, C. Moore, E. Mossel, J. Neeman, A. Sly, L. Zdeborová, and P. Zhang, Spectral Redemption in Clustering Sparse Networks, Proc. Natl. Acad. Sci. U.S.A. 110, 20935 (2013).
-
(2013)
Proc. Natl. Acad. Sci. U.S.A
, vol.110
, pp. 20935
-
-
Krzakala, F.1
Moore, C.2
Mossel, E.3
Neeman, J.4
Sly, A.5
Zdeborová, L.6
Zhang, P.7
-
52
-
-
4544264380
-
Robust Reconstruction on Trees Is Determined by the Second Eigenvalue
-
S. Janson and E. Mossel, Robust Reconstruction on Trees Is Determined by the Second Eigenvalue, Ann. Probab. 32, 2630 (2004).
-
(2004)
Ann. Probab
, vol.32
, pp. 2630
-
-
Janson, S.1
Mossel, E.2
-
53
-
-
36149043226
-
Stability of the Sherrington-Kirkpatrick Solution of a Spin Glass Model
-
J. R. L. de Almeida and D. J. Thouless, Stability of the Sherrington-Kirkpatrick Solution of a Spin Glass Model, J. Phys. A 11, 983 (1978).
-
(1978)
J. Phys. A
, vol.11
, pp. 983
-
-
de Almeida, J.R.1
Thouless, D.J.2
-
54
-
-
84992649788
-
Detection in the Stochastic Block Model with Multiple Clusters: Proof of the Achievability Conjectures
-
arXiv:1512.09080
-
E. Abbe and C. Sandon, Detection in the Stochastic Block Model with Multiple Clusters: Proof of the Achievability Conjectures, Acyclic BP, and the Information-Computation Gap, arXiv:1512.09080.
-
Acyclic BP, and the Information-Computation Gap
-
-
Abbe, E.1
Sandon, C.2
-
56
-
-
0033612060
-
The Nishimori Line and Bayesian Statistics
-
Y. Iba, The Nishimori Line and Bayesian Statistics, J. Phys. A 32, 3875 (1999).
-
(1999)
J. Phys. A
, vol.32
, pp. 3875
-
-
Iba, Y.1
-
57
-
-
84871885977
-
Comparative Study for Inference of Hidden Classes in Stochastic Block Models
-
P. Zhang, F. Krzakala, J. Reichardt, and L. Zdeborová, Comparative Study for Inference of Hidden Classes in Stochastic Block Models, J. Stat. Mech. (2012) P12021.
-
(2012)
J. Stat. Mech
-
-
Zhang, P.1
Krzakala, F.2
Reichardt, J.3
Zdeborová, L.4
-
58
-
-
84944760798
-
Detecting Change Points in the Large-Scale Structure of Evolving Networks
-
(AAAI, Palo Alto, CA)
-
L. Peel and A. Clauset, Detecting Change Points in the Large-Scale Structure of Evolving Networks, in Proceedings of the 29th International Conference on Artificial Intelligence (AAAI) (AAAI, Palo Alto, CA, 2015), pp. 2914-2920.
-
(2015)
Proceedings of the 29th International Conference on Artificial Intelligence (AAAI)
, pp. 2914-2920
-
-
Peel, L.1
Clauset, A.2
|