메뉴 건너뛰기




Volumn 6, Issue 3, 2016, Pages

Detectability thresholds and optimal algorithms for community structure in dynamic networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER NETWORKS; LEARNING SYSTEMS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS;

EID: 84992650256     PISSN: None     EISSN: 21603308     Source Type: Journal    
DOI: 10.1103/PhysRevX.6.031005     Document Type: Article
Times cited : (138)

References (58)
  • 3
    • 84900316533 scopus 로고    scopus 로고
    • Detecting the Community Structure and Activity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach
    • L. Gauvin, A. Panisson, and C. Cattuto, Detecting the Community Structure and Activity Patterns of Temporal Networks: A Non-Negative Tensor Factorization Approach, PLoS One 9, e86028 (2014).
    • (2014) PLoS One , vol.9
    • Gauvin, L.1    Panisson, A.2    Cattuto, C.3
  • 4
    • 84898968964 scopus 로고    scopus 로고
    • Nonparametric Multi-Group Membership Model for Dynamic Networks
    • edited by C. Burges (Curran Associates, Inc., Lake Tahoe, Nevada)
    • M. Kim and J. Leskovec, Nonparametric Multi-Group Membership Model for Dynamic Networks, in Advances in Neural Information Processing Systems 26, edited by C. Burges (Curran Associates, Inc., Lake Tahoe, Nevada, 2013), pp. 1385-1393.
    • (2013) Advances in Neural Information Processing Systems 26 , pp. 1385-1393
    • Kim, M.1    Leskovec, J.2
  • 5
    • 77952328459 scopus 로고    scopus 로고
    • Community Structure in Time-Dependent, Multiscale, and Multiplex Networks
    • P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, Community Structure in Time-Dependent, Multiscale, and Multiplex Networks, Science 328, 876 (2010).
    • (2010) Science , vol.328 , pp. 876
    • Mucha, P.J.1    Richardson, T.2    Macon, K.3    Porter, M.A.4    Onnela, J.-P.5
  • 7
    • 79960461257 scopus 로고    scopus 로고
    • A State-Space Mixed Membership Blockmodel for Dynamic Network Tomography
    • E. P. Xing, W. Fu, and L. Song, A State-Space Mixed Membership Blockmodel for Dynamic Network Tomography, Ann. Appl. Stat. 4, 535 (2010).
    • (2010) Ann. Appl. Stat , vol.4 , pp. 535
    • Xing, E.P.1    Fu, W.2    Song, L.3
  • 10
    • 33748773043 scopus 로고    scopus 로고
    • Community Detection as an Inference Problem
    • M. B. Hastings, Community Detection as an Inference Problem, Phys. Rev. E 74, 035102 (2006).
    • (2006) Phys. Rev. E , vol.74
    • Hastings, M.B.1
  • 11
    • 45749117949 scopus 로고    scopus 로고
    • Bayesian Approach to Network Modularity
    • J. M. Hofman and C. H. Wiggins, Bayesian Approach to Network Modularity, Phys. Rev. Lett. 100, 258701 (2008).
    • (2008) Phys. Rev. Lett , vol.100
    • Hofman, J.M.1    Wiggins, C.H.2
  • 12
    • 79951710564 scopus 로고    scopus 로고
    • Stochastic Blockmodels and Community Structure in Networks
    • B. Karrer and M. E. J. Newman, Stochastic Blockmodels and Community Structure in Networks, Phys. Rev. E 83, 016107 (2011).
    • (2011) Phys. Rev. E , vol.83
    • Karrer, B.1    Newman, M.E.J.2
  • 13
    • 84961371580 scopus 로고    scopus 로고
    • Learning Latent Block Structure in Weighted Networks
    • C. Aicher, A. Z. Jacobs, and A. Clauset, Learning Latent Block Structure in Weighted Networks, J. Complex Netw. 3, 221 (2015).
    • (2015) J. Complex Netw , vol.3 , pp. 221
    • Aicher, C.1    Jacobs, A.Z.2    Clauset, A.3
  • 14
    • 84555195640 scopus 로고    scopus 로고
    • Asymptotic Analysis of the Stochastic Block Model for Modular Networks and Its Algorithmic Applications
    • A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Asymptotic Analysis of the Stochastic Block Model for Modular Networks and Its Algorithmic Applications, Phys. Rev. E 84, 066106 (2011).
    • (2011) Phys. Rev. E , vol.84
    • Decelle, A.1    Krzakala, F.2    Moore, C.3    Zdeborová, L.4
  • 15
    • 79961105970 scopus 로고    scopus 로고
    • Inference and Phase Transitions in the Detection of Modules in Sparse Networks
    • A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová, Inference and Phase Transitions in the Detection of Modules in Sparse Networks, Phys. Rev. Lett. 107, 065701 (2011).
    • (2011) Phys. Rev. Lett , vol.107
    • Decelle, A.1    Krzakala, F.2    Moore, C.3    Zdeborová, L.4
  • 16
    • 84939262924 scopus 로고    scopus 로고
    • Reconstruction and Estimation in the Planted Partition Model
    • E. Mossel, J. Neeman, and A. Sly, Reconstruction and Estimation in the Planted Partition Model, Probab. Theory Relat. Fields 162, 431 (2015).
    • (2015) Probab. Theory Relat. Fields , vol.162 , pp. 431
    • Mossel, E.1    Neeman, J.2    Sly, A.3
  • 18
    • 0038752085 scopus 로고    scopus 로고
    • Mixing Patterns in Networks
    • M. E. J. Newman, Mixing Patterns in Networks, Phys. Rev. E 67, 026126 (2003).
    • (2003) Phys. Rev. E , vol.67
    • Newman, M.E.J.1
  • 21
    • 84913529790 scopus 로고    scopus 로고
    • Phase Transitions in Semisupervised Clustering of Sparse Networks
    • P. Zhang, C. Moore, and L. Zdeborová, Phase Transitions in Semisupervised Clustering of Sparse Networks, Phys. Rev. E 90, 052802 (2014).
    • (2014) Phys. Rev. E , vol.90
    • Zhang, P.1    Moore, C.2    Zdeborová, L.3
  • 22
    • 84975047616 scopus 로고    scopus 로고
    • Structure and Inference in Annotated Networks
    • M. E. J. Newman and A. Clauset, Structure and Inference in Annotated Networks, Nat. Commun. 7, 11863 (2016).
    • (2016) Nat. Commun , vol.7 , pp. 11863
    • Newman, M.E.J.1    Clauset, A.2
  • 28
    • 77749239782 scopus 로고    scopus 로고
    • Mapping Change in Large Networks
    • M. Rosvall and C. T. Bergstrom, Mapping Change in Large Networks, PLoS One 5, e8694 (2010).
    • (2010) PLoS One , vol.5
    • Rosvall, M.1    Bergstrom, C.T.2
  • 30
    • 84904649838 scopus 로고    scopus 로고
    • Dynamic Stochastic Blockmodels for Time-Evolving Social Networks
    • K. S. Xu and A. O. Hero, Dynamic Stochastic Blockmodels for Time-Evolving Social Networks, IEEE J. Sel. Top. Signal Process. 8, 552 (2014).
    • (2014) IEEE J. Sel. Top. Signal Process , vol.8 , pp. 552
    • Xu, K.S.1    Hero, A.O.2
  • 32
    • 84944810998 scopus 로고    scopus 로고
    • Inferring the Mesoscale Structure of Layered, Edge-Valued, and Time-Varying Networks
    • T. P. Peixoto, Inferring the Mesoscale Structure of Layered, Edge-Valued, and Time-Varying Networks, Phys. Rev. E 92, 042807 (2015).
    • (2015) Phys. Rev. E , vol.92
    • Peixoto, T.P.1
  • 33
    • 84984885319 scopus 로고    scopus 로고
    • Multilayer Stochastic Block Models Reveal the Multilayer Structure of Complex Networks
    • T. Vallès-Català, F. A. Massucci, R. Guimerà, and M. Sales-Pardo, Multilayer Stochastic Block Models Reveal the Multilayer Structure of Complex Networks, Phys. Rev. X 6, 011036 (2016).
    • (2016) Phys. Rev. X , vol.6
    • Vallès-Català, T.1    Massucci, F.A.2    Guimerà, R.3    Sales-Pardo, M.4
  • 34
    • 84905869515 scopus 로고    scopus 로고
    • Evolutionary Network Analysis: A Survey
    • C. Aggarwal and K. Subbian, Evolutionary Network Analysis: A Survey, Comput. Surv. 47, 10 (2014).
    • (2014) Comput. Surv , vol.47 , pp. 10
    • Aggarwal, C.1    Subbian, K.2
  • 38
    • 84961151921 scopus 로고    scopus 로고
    • Congestion Induced by the Structure of Multiplex Networks
    • A. Solé-Ribalta, S. Gómez, and A. Arenas, Congestion Induced by the Structure of Multiplex Networks, Phys. Rev. Lett. 116, 108701 (2016).
    • (2016) Phys. Rev. Lett , vol.116
    • Solé-Ribalta, A.1    Gómez, S.2    Arenas, A.3
  • 39
    • 84904574667 scopus 로고    scopus 로고
    • Conditions for Viral Influence Spreading through Multiplex Correlated Social Networks
    • Y. Hu, S. Havlin, and H. A. Makse, Conditions for Viral Influence Spreading through Multiplex Correlated Social Networks, Phys. Rev. X 4, 021031 (2014).
    • (2014) Phys. Rev. X , vol.4
    • Hu, Y.1    Havlin, S.2    Makse, H.A.3
  • 41
    • 84961291708 scopus 로고    scopus 로고
    • Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems
    • M. De Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall, Identifying Modular Flows on Multilayer Networks Reveals Highly Overlapping Organization in Interconnected Systems, Phys. Rev. X 5, 011027 (2015).
    • (2015) Phys. Rev. X , vol.5
    • De Domenico, M.1    Lancichinetti, A.2    Arenas, A.3    Rosvall, M.4
  • 42
    • 84934268705 scopus 로고    scopus 로고
    • Analytical Computation of the Epidemic Threshold on Temporal Networks
    • E. Valdano, L. Ferreri, C. Poletto, and V. Colizza, Analytical Computation of the Epidemic Threshold on Temporal Networks, Phys. Rev. X 5, 021005 (2015).
    • (2015) Phys. Rev. X , vol.5
    • Valdano, E.1    Ferreri, L.2    Poletto, C.3    Colizza, V.4
  • 44
    • 84884781463 scopus 로고    scopus 로고
    • Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks
    • C. Granell, S. Gómez, and A. Arenas, Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks, Phys. Rev. Lett. 111, 128701 (2013).
    • (2013) Phys. Rev. Lett , vol.111
    • Granell, C.1    Gómez, S.2    Arenas, A.3
  • 47
    • 0442296603 scopus 로고    scopus 로고
    • Estimation and Prediction for Stochastic Blockstructures
    • K. Nowicki and T. A. B. Snijders, Estimation and Prediction for Stochastic Blockstructures, J. Am. Stat. Assoc. 96, 1077 (2001).
    • (2001) J. Am. Stat. Assoc , vol.96 , pp. 1077
    • Nowicki, K.1    Snijders, T.A.B.2
  • 52
    • 4544264380 scopus 로고    scopus 로고
    • Robust Reconstruction on Trees Is Determined by the Second Eigenvalue
    • S. Janson and E. Mossel, Robust Reconstruction on Trees Is Determined by the Second Eigenvalue, Ann. Probab. 32, 2630 (2004).
    • (2004) Ann. Probab , vol.32 , pp. 2630
    • Janson, S.1    Mossel, E.2
  • 53
    • 36149043226 scopus 로고
    • Stability of the Sherrington-Kirkpatrick Solution of a Spin Glass Model
    • J. R. L. de Almeida and D. J. Thouless, Stability of the Sherrington-Kirkpatrick Solution of a Spin Glass Model, J. Phys. A 11, 983 (1978).
    • (1978) J. Phys. A , vol.11 , pp. 983
    • de Almeida, J.R.1    Thouless, D.J.2
  • 54
    • 84992649788 scopus 로고    scopus 로고
    • Detection in the Stochastic Block Model with Multiple Clusters: Proof of the Achievability Conjectures
    • arXiv:1512.09080
    • E. Abbe and C. Sandon, Detection in the Stochastic Block Model with Multiple Clusters: Proof of the Achievability Conjectures, Acyclic BP, and the Information-Computation Gap, arXiv:1512.09080.
    • Acyclic BP, and the Information-Computation Gap
    • Abbe, E.1    Sandon, C.2
  • 56
    • 0033612060 scopus 로고    scopus 로고
    • The Nishimori Line and Bayesian Statistics
    • Y. Iba, The Nishimori Line and Bayesian Statistics, J. Phys. A 32, 3875 (1999).
    • (1999) J. Phys. A , vol.32 , pp. 3875
    • Iba, Y.1
  • 57
    • 84871885977 scopus 로고    scopus 로고
    • Comparative Study for Inference of Hidden Classes in Stochastic Block Models
    • P. Zhang, F. Krzakala, J. Reichardt, and L. Zdeborová, Comparative Study for Inference of Hidden Classes in Stochastic Block Models, J. Stat. Mech. (2012) P12021.
    • (2012) J. Stat. Mech
    • Zhang, P.1    Krzakala, F.2    Reichardt, J.3    Zdeborová, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.