메뉴 건너뛰기




Volumn 22, Issue , 2018, Pages 13-21

The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt

Author keywords

Data accuracy; Ebola epidemic; Forecasting challenge; Mathematical modeling; Model comparison; Prediction horizon; Prediction performance; Synthetic data

Indexed keywords

ARTICLE; BAYES THEOREM; CASE FATALITY RATE; COMPARATIVE STUDY; DATA SYNTHESIS; EBOLA HEMORRHAGIC FEVER; EPIDEMIC; FORECASTING; HUMAN; INCIDENCE; INFORMATION PROCESSING; MATHEMATICAL MODEL; MEASUREMENT ACCURACY; MEASUREMENT ERROR; MEDICAL HISTORY; PREDICTION; PRIORITY JOURNAL; REPRODUCTION; WEST AFRICAN; LIBERIA; REPRODUCIBILITY; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA;

EID: 85029747062     PISSN: 17554365     EISSN: 18780067     Source Type: Journal    
DOI: 10.1016/j.epidem.2017.08.002     Document Type: Article
Times cited : (204)

References (36)
  • 1
    • 84985998189 scopus 로고    scopus 로고
    • Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis
    • Ajelli, M., Merler, S., Fumanelli, L., Pastore, Y.P.A., Dean, N.E., Longini, I.M. Jr., Halloran, M.E., Vespignani, A., Spatiotemporal dynamics of the Ebola epidemic in Guinea and implications for vaccination and disease elimination: a computational modeling analysis. BMC Med., 14(1), 2016, 130.
    • (2016) BMC Med. , vol.14 , Issue.1 , pp. 130
    • Ajelli, M.1    Merler, S.2    Fumanelli, L.3    Pastore, Y.P.A.4    Dean, N.E.5    Longini, I.M.6    Halloran, M.E.7    Vespignani, A.8
  • 3
    • 85044556225 scopus 로고    scopus 로고
    • Forecasting Ebola with a regression transmission model
    • Asher, J., Forecasting Ebola with a regression transmission model. Epidemics, 2017.
    • (2017) Epidemics
    • Asher, J.1
  • 9
    • 85014099278 scopus 로고    scopus 로고
    • Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward
    • Chowell, G., Viboud, C., Simonsen, L., Merler, S., Vespignani, A., Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward. BMC Med., 15(1), 2017, 42.
    • (2017) BMC Med. , vol.15 , Issue.1 , pp. 42
    • Chowell, G.1    Viboud, C.2    Simonsen, L.3    Merler, S.4    Vespignani, A.5
  • 10
    • 84961266867 scopus 로고    scopus 로고
    • Mathematical modeling of the west africa ebola epidemic
    • Chretien, J.P., Riley, S., George, D.B., Mathematical modeling of the west africa ebola epidemic. Elife, 4, 2015.
    • (2015) Elife , vol.4
    • Chretien, J.P.1    Riley, S.2    George, D.B.3
  • 12
    • 85044551403 scopus 로고    scopus 로고
    • CHIKV Challenge Announces Winners, Progress Toward Forecasting the Spread of Infectious Diseases
    • DARPA, CHIKV Challenge Announces Winners, Progress Toward Forecasting the Spread of Infectious Diseases. 2015.
    • (2015)
    • DARPA1
  • 13
    • 85044557030 scopus 로고    scopus 로고
    • Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model
    • Funk, S., Camacho, A., Kucharski, A.J., Eggo, R.M., Edmunds, W.J., Real-time forecasting of infectious disease dynamics with a stochastic semi-mechanistic model. Epidemics, 2016.
    • (2016) Epidemics
    • Funk, S.1    Camacho, A.2    Kucharski, A.J.3    Eggo, R.M.4    Edmunds, W.J.5
  • 14
    • 85044555521 scopus 로고    scopus 로고
    • Application of the CDC EbolaResponse modeling tool for disease predictions
    • (In press)
    • Gaffey, R.H., Viboud, C., Application of the CDC EbolaResponse modeling tool for disease predictions. Epidemics, 2017 (In press).
    • (2017) Epidemics
    • Gaffey, R.H.1    Viboud, C.2
  • 18
    • 79957755362 scopus 로고    scopus 로고
    • Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1
    • Lipsitch, M., Finelli, L., Heffernan, R.T., Leung, G.M., Redd, S.C., Improving the evidence base for decision making during a pandemic: the example of 2009 influenza A/H1N1. Biosecur. Bioterror. 9:2 (2011), 89–115.
    • (2011) Biosecur. Bioterror. , vol.9 , Issue.2 , pp. 89-115
    • Lipsitch, M.1    Finelli, L.2    Heffernan, R.T.3    Leung, G.M.4    Redd, S.C.5
  • 19
    • 85044551341 scopus 로고    scopus 로고
    • S. o. H. a. T. (2015). Visualisation and projections of the Ebola outbreak in West Africa. from
    • Medicine, L. S. o. H. a. T. (2015). Visualisation and projections of the Ebola outbreak in West Africa. from http://ntncmch.github.io/ebola/.
    • Medicine, L.1
  • 21
    • 84921319630 scopus 로고    scopus 로고
    • Spatiotemporal spread of the outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis
    • Merler, S., Ajelli, M., Fumanelli, L., Gomes, M.F., Piontti, A.P., Rossi, L., Chao, D.L., Longini, I.M. Jr., Halloran, M.E., Vespignani, A., Spatiotemporal spread of the outbreak of Ebola virus disease in Liberia and the effectiveness of non-pharmaceutical interventions: a computational modelling analysis. Lancet Infect. Dis. 2 (2015), 204–211.
    • (2015) Lancet Infect. Dis. , vol.2 , pp. 204-211
    • Merler, S.1    Ajelli, M.2    Fumanelli, L.3    Gomes, M.F.4    Piontti, A.P.5    Rossi, L.6    Chao, D.L.7    Longini, I.M.8    Halloran, M.E.9    Vespignani, A.10
  • 23
    • 85044555910 scopus 로고    scopus 로고
    • Dengue Forecasting Challenge
    • NOAA, Dengue Forecasting Challenge. 2016 from http://dengueforecasting.noaa.gov/.
    • (2016)
    • NOAA1
  • 25
    • 85044554810 scopus 로고    scopus 로고
    • H. (2016). Ebola Situation Report − 30 March 2016, from
    • Organization, W. H. (2016). Ebola Situation Report − 30 March 2016, from http://apps.who.int/ebola/current-situation/ebola-situation-report-30-march-2016.
    • Organization, W.1
  • 26
    • 85044561086 scopus 로고    scopus 로고
    • Using phenomenological models for forecasting the 2015 Ebola challenge
    • Pell, B., Kuang, Y., Viboud, C., Chowell, G., Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 2016.
    • (2016) Epidemics
    • Pell, B.1    Kuang, Y.2    Viboud, C.3    Chowell, G.4
  • 27
    • 84983608378 scopus 로고    scopus 로고
    • Model-based projections of Zika virus infections in childbearing women in the Americas
    • Alex Perkins, T., Siraj, A.S., Ruktanonchai, C.W., Kraemer, M.U., Tatem, A.J., Model-based projections of Zika virus infections in childbearing women in the Americas. Nat. Microbiol., 1(9), 2016, 16126.
    • (2016) Nat. Microbiol. , vol.1 , Issue.9 , pp. 16126
    • Alex Perkins, T.1    Siraj, A.S.2    Ruktanonchai, C.W.3    Kraemer, M.U.4    Tatem, A.J.5
  • 29
    • 20444497873 scopus 로고    scopus 로고
    • Using Bayesian model averaging to calibrate forecast ensembles
    • Raftery, Adrian, E., et al. Using Bayesian model averaging to calibrate forecast ensembles. Month. Weather Rev. 133:5 (2005), 1155–1174.
    • (2005) Month. Weather Rev. , vol.133 , Issue.5 , pp. 1155-1174
    • Raftery1    Adrian, E.2
  • 31
    • 84949235281 scopus 로고    scopus 로고
    • Inference and forecast of the current west african ebola outbreak in Guinea, sierra leone and liberia
    • Shaman, J., Yang, W., Kandula, S., Inference and forecast of the current west african ebola outbreak in Guinea, sierra leone and liberia. PLoS Curr., 6, 2014.
    • (2014) PLoS Curr. , vol.6
    • Shaman, J.1    Yang, W.2    Kandula, S.3
  • 32
    • 84908072433 scopus 로고    scopus 로고
    • H. O. E. R. (2014). Ebola virus disease in West Africa-the first 9 months of the epidemic and forward projections. N Engl J Med 371(16):
    • Team, W. H. O. E. R. (2014). Ebola virus disease in West Africa-the first 9 months of the epidemic and forward projections. N Engl J Med 371(16): 1481–1495.
    • Team, W.1
  • 33
    • 85044551525 scopus 로고    scopus 로고
    • The IDEA model: a single equation approach to the Ebola forecasting challenge
    • Tuite, A.R., Fisman, D.N., The IDEA model: a single equation approach to the Ebola forecasting challenge. Epidemics, 2016.
    • (2016) Epidemics
    • Tuite, A.R.1    Fisman, D.N.2
  • 35
    • 84957107119 scopus 로고    scopus 로고
    • A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks
    • Viboud, C., Simonsen, L., Chowell, G., A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics 15 (2016), 27–37.
    • (2016) Epidemics , vol.15 , pp. 27-37
    • Viboud, C.1    Simonsen, L.2    Chowell, G.3
  • 36
    • 33847624077 scopus 로고    scopus 로고
    • Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging
    • Vrugt, Jasper, A., Robinson, B.A., Treatment of uncertainty using ensemble methods: comparison of sequential data assimilation and Bayesian model averaging. Water Resour. Res., 43(1), 2007.
    • (2007) Water Resour. Res. , vol.43 , Issue.1
    • Vrugt1    Jasper, A.2    Robinson, B.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.