메뉴 건너뛰기




Volumn 1, Issue 4, 2016, Pages 265-284

Big Data Reduction Methods: A Survey

Author keywords

Big data; Data complexity; Data compression; Data reduction; Dimensionality reduction

Indexed keywords


EID: 85029474107     PISSN: 23641185     EISSN: 23641541     Source Type: Journal    
DOI: 10.1007/s41019-016-0022-0     Document Type: Article
Times cited : (160)

References (85)
  • 1
    • 84890419941 scopus 로고    scopus 로고
    • Data mining with big data
    • Wu X et al (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26(1):97–107
    • (2014) IEEE Trans Knowl Data Eng , vol.26 , Issue.1 , pp. 97-107
    • Wu, X.1
  • 5
    • 84919389078 scopus 로고    scopus 로고
    • Challenges of big data analysis
    • Fan J, Han F, Liu H (2014) Challenges of big data analysis. Nat Sci Rev 1(2):293–314
    • (2014) Nat Sci Rev , vol.1 , Issue.2 , pp. 293-314
    • Fan, J.1    Han, F.2    Liu, H.3
  • 7
    • 84923421648 scopus 로고    scopus 로고
    • Big data challenges and opportunities in high-throughput sequencing
    • Ward RM et al (2013) Big data challenges and opportunities in high-throughput sequencing. Syst Biomed 1(1):29–34
    • (2013) Syst Biomed , vol.1 , Issue.1 , pp. 29-34
    • Ward, R.M.1
  • 10
    • 85032751253 scopus 로고    scopus 로고
    • Breaking the curse of dimensionality using decompositions of incomplete tensors: tensor-based scientific computing in big data analysis
    • Vervliet N et al (2014) Breaking the curse of dimensionality using decompositions of incomplete tensors: tensor-based scientific computing in big data analysis. IEEE Signal Process Mag 31(5):71–79
    • (2014) IEEE Signal Process Mag , vol.31 , Issue.5 , pp. 71-79
    • Vervliet, N.1
  • 12
    • 84869801803 scopus 로고    scopus 로고
    • A scalable inline cluster deduplication framework for big data protection
    • (,),. In:,., Springer
    • Fu Y, Jiang H, Xiao N (2012) A scalable inline cluster deduplication framework for big data protection. In: Middleware 2012. Springer, pp 354–373
    • (2012) Middleware 2012 , pp. 354-373
    • Fu, Y.1    Jiang, H.2    Xiao, N.3
  • 15
    • 84879009334 scopus 로고    scopus 로고
    • SiLo: A similarity-locality based near-exact deduplication scheme with low RAM overhead and high throughput
    • Xia W et al (2011) SiLo: a similarity-locality based near-exact deduplication scheme with low RAM overhead and high throughput. In: USENIX annual technical conference
    • (2011) USENIX Annual Technical Conference
    • Xia, W.1
  • 19
    • 84915772765 scopus 로고    scopus 로고
    • Big data (lost) in the cloud
    • Di Martino B et al (2014) Big data (lost) in the cloud. Int J Big Data Intell 1(1–2):3–17
    • (2014) Int J Big Data Intell , vol.1 , Issue.1-2 , pp. 3-17
    • Di Martino, B.1
  • 22
    • 84876005101 scopus 로고    scopus 로고
    • Big data challenge: a data management perspective
    • Chen J et al (2013) Big data challenge: a data management perspective. Front Comput Sci 7(2):157–164
    • (2013) Front Comput Sci , vol.7 , Issue.2 , pp. 157-164
    • Chen, J.1
  • 23
    • 84923318381 scopus 로고    scopus 로고
    • Big data deep learning: challenges and perspectives
    • Chen X-W, Lin X (2014) Big data deep learning: challenges and perspectives. IEEE Access 2:514–525
    • (2014) IEEE Access , vol.2 , pp. 514-525
    • Chen, X.-W.1    Lin, X.2
  • 24
    • 84923229948 scopus 로고    scopus 로고
    • A survey of bitmap index compression algorithms for big data
    • Chen Z et al (2015) A survey of bitmap index compression algorithms for big data. Tsinghua Sci Technol 20(1):100–115
    • (2015) Tsinghua Sci Technol , vol.20 , Issue.1 , pp. 100-115
    • Chen, Z.1
  • 25
    • 84907325157 scopus 로고    scopus 로고
    • The rise of “big data” on cloud computing: review and open research issues
    • Hashem IAT et al (2015) The rise of “big data” on cloud computing: review and open research issues. Inf Syst 47:98–115
    • (2015) Inf Syst , vol.47 , pp. 98-115
    • Hashem, I.A.T.1
  • 26
    • 84963770577 scopus 로고    scopus 로고
    • A survey on indexing techniques for big data: Taxonomy and performance evaluation
    • Gani A et al (2015) A survey on indexing techniques for big data: taxonomy and performance evaluation. In: Knowledge and information systems, pp 1–44
    • (2015) Knowledge and Information Systems , pp. 1-44
    • Gani, A.1
  • 27
    • 84901640093 scopus 로고    scopus 로고
    • Trends in big data analytics
    • Kambatla K et al (2014) Trends in big data analytics. J Parallel Distrib Comput 74(7):2561–2573
    • (2014) J Parallel Distrib Comput , vol.74 , Issue.7 , pp. 2561-2573
    • Kambatla, K.1
  • 28
    • 84929170243 scopus 로고    scopus 로고
    • Significance and challenges of big data research
    • Jin X et al (2015) Significance and challenges of big data research. Big Data Res 2(2):59–64
    • (2015) Big Data Res , vol.2 , Issue.2 , pp. 59-64
    • Jin, X.1
  • 29
    • 84902122133 scopus 로고    scopus 로고
    • Scalable data summarization on big data
    • Li F, Nath S (2014) Scalable data summarization on big data. Distrib Parallel Databases 32(3):313–314
    • (2014) Distrib Parallel Databases , vol.32 , Issue.3 , pp. 313-314
    • Li, F.1    Nath, S.2
  • 31
    • 84915785146 scopus 로고    scopus 로고
    • Machine learning for big data analytics in plants
    • Ma C, Zhang HH, Wang X (2014) Machine learning for big data analytics in plants. Trends Plant Sci 19(12):798–808
    • (2014) Trends Plant Sci , vol.19 , Issue.12 , pp. 798-808
    • Ma, C.1    Zhang, H.H.2    Wang, X.3
  • 32
    • 85065023001 scopus 로고    scopus 로고
    • In, Proceedings of the sixteenth international workshop on data warehousing and OLAP
    • Ordonez C (2013) Can we analyze big data inside a DBMS? In: Proceedings of the sixteenth international workshop on data warehousing and OLAP
    • (2013) Can We Analyze Big Data inside a DBMS?
    • Ordonez, C.1
  • 33
    • 84918831781 scopus 로고    scopus 로고
    • Where chemical sensors may assist in clinical diagnosis exploring “big data
    • Oliveira J, Osvaldo N et al (2014) Where chemical sensors may assist in clinical diagnosis exploring “big data”. Chem Lett 43(11):1672–1679
    • (2014) Chem Lett , vol.43 , Issue.11 , pp. 1672-1679
    • Oliveira, J.1    Osvaldo, N.2
  • 34
    • 84866501595 scopus 로고    scopus 로고
    • Participatory personal data: an emerging research challenge for the information sciences
    • Shilton K (2012) Participatory personal data: an emerging research challenge for the information sciences. J Am Soc Inform Sci Technol 63(10):1905–1915
    • (2012) J Am Soc Inform Sci Technol , vol.63 , Issue.10 , pp. 1905-1915
    • Shilton, K.1
  • 35
    • 84870062268 scopus 로고    scopus 로고
    • Energy-efficient data centers
    • Shuja J et al (2012) Energy-efficient data centers. Computing 94(12):973–994
    • (2012) Computing , vol.94 , Issue.12 , pp. 973-994
    • Shuja, J.1
  • 36
    • 84924980779 scopus 로고    scopus 로고
    • A survey on virtual machine migration and server consolidation frameworks for cloud data centers
    • Ahmad RW et al (2015) A survey on virtual machine migration and server consolidation frameworks for cloud data centers. J Netw Comput Appl 52:11–25
    • (2015) J Netw Comput Appl , vol.52 , pp. 11-25
    • Ahmad, R.W.1
  • 39
    • 84920187898 scopus 로고    scopus 로고
    • Analyzing big data: social choice and measurement
    • Patty JW, Penn EM (2015) Analyzing big data: social choice and measurement. Polit Sci Polit 48(01):95–101
    • (2015) Polit Sci Polit , vol.48 , Issue.1 , pp. 95-101
    • Patty, J.W.1    Penn, E.M.2
  • 40
    • 84927518339 scopus 로고    scopus 로고
    • Reduced topologically real-world networks: a big-data approach
    • Trovati M (2015) Reduced topologically real-world networks: a big-data approach. Int J Distrib Syst Technol (IJDST) 6(2):13–27
    • (2015) Int J Distrib Syst Technol (IJDST) , vol.6 , Issue.2 , pp. 13-27
    • Trovati, M.1
  • 41
    • 84963826044 scopus 로고    scopus 로고
    • An influence assessment method based on co-occurrence for topologically reduced big data sets
    • Trovati M, Bessis N (2015) An influence assessment method based on co-occurrence for topologically reduced big data sets. In: Soft computing, pp 1–10
    • (2015) Soft Computing , pp. 1-10
    • Trovati, M.1    Bessis, N.2
  • 43
    • 84918806319 scopus 로고    scopus 로고
    • Flexanalytics: a flexible data analytics framework for big data applications with I/O performance improvement
    • Zou H et al (2014) Flexanalytics: a flexible data analytics framework for big data applications with I/O performance improvement. Big Data Res 1:4–13
    • (2014) Big Data Res , vol.1 , pp. 4-13
    • Zou, H.1
  • 44
    • 84902844754 scopus 로고    scopus 로고
    • A resource efficient big data analysis method for the social sciences: the case of global IP activity
    • Ackermann K, Angus SD (2014) A resource efficient big data analysis method for the social sciences: the case of global IP activity. Procedia Comput Sci 29:2360–2369
    • (2014) Procedia Comput Sci , vol.29 , pp. 2360-2369
    • Ackermann, K.1    Angus, S.D.2
  • 45
    • 84905086045 scopus 로고    scopus 로고
    • A spatiotemporal compression based approach for efficient big data processing on Cloud
    • Yang C et al (2014) A spatiotemporal compression based approach for efficient big data processing on Cloud. J Comput Syst Sci 80(8):1563–1583
    • (2014) J Comput Syst Sci , vol.80 , Issue.8 , pp. 1563-1583
    • Yang, C.1
  • 46
    • 84939633427 scopus 로고    scopus 로고
    • Privacy-preserving distributed movement data aggregation
    • (,),. In:,., Springer
    • Monreale A et al (2013) Privacy-preserving distributed movement data aggregation. In: Geographic information science at the heart of Europe. Springer, pp 225–245
    • (2013) Geographic information science at the heart of Europe , pp. 225-245
    • Monreale, A.1
  • 47
    • 84894634596 scopus 로고    scopus 로고
    • The anamorphic stretch transform: putting the squeeze on “big data
    • Jalali B, Asghari MH (2014) The anamorphic stretch transform: putting the squeeze on “big data”. Opt Photonics News 25(2):24–31
    • (2014) Opt Photonics News , vol.25 , Issue.2 , pp. 24-31
    • Jalali, B.1    Asghari, M.H.2
  • 48
    • 84894166767 scopus 로고    scopus 로고
    • Statistical wavelet-based anomaly detection in big data with compressive sensing
    • Wang W et al (2013) Statistical wavelet-based anomaly detection in big data with compressive sensing. EURASIP J Wirel Commun Netw 2013(1):1–6
    • (2013) EURASIP J Wirel Commun Netw , vol.2013 , Issue.1 , pp. 1-6
    • Wang, W.1
  • 49
    • 84899425513 scopus 로고    scopus 로고
    • Big data reduction and optimization in sensor monitoring network
    • He B, Li Y (2014) Big data reduction and optimization in sensor monitoring network. J Appl Math. doi:10.1155/2014/294591
    • (2014) J Appl Math
    • He, B.1    Li, Y.2
  • 50
    • 67349111264 scopus 로고    scopus 로고
    • Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data
    • Brinkmann BH et al (2009) Large-scale electrophysiology: acquisition, compression, encryption, and storage of big data. J Neurosci Methods 180(1):185–192
    • (2009) J Neurosci Methods , vol.180 , Issue.1 , pp. 185-192
    • Brinkmann, B.H.1
  • 52
    • 80052343989 scopus 로고    scopus 로고
    • Compressing the incompressible with ISABELA: in situ reduction of spatio-temporal data
    • (,),. In:,., Springer
    • Lakshminarasimhan S et al (2011) Compressing the incompressible with ISABELA: in situ reduction of spatio-temporal data. In: Euro-Par 2011 parallel processing. Springer, pp 366–379
    • (2011) Euro-Par 2011 parallel processing , pp. 366-379
    • Lakshminarasimhan, S.1
  • 53
    • 77956285275 scopus 로고    scopus 로고
    • Interactive remote large-scale data visualization via prioritized multi-resolution streaming
    • Ahrens JP et al (2009) Interactive remote large-scale data visualization via prioritized multi-resolution streaming. In: Proceedings of the 2009 workshop on ultrascale visualization
    • (2009) Proceedings of the 2009 Workshop on Ultrascale Visualization
    • Ahrens, J.P.1
  • 55
  • 58
    • 84921362294 scopus 로고    scopus 로고
    • COUPON: a cooperative framework for building sensing maps in mobile opportunistic networks
    • Zhao D et al (2015) COUPON: a cooperative framework for building sensing maps in mobile opportunistic networks. IEEE Trans Parallel Distrib Syst 26(2):392–402
    • (2015) IEEE Trans Parallel Distrib Syst , vol.26 , Issue.2 , pp. 392-402
    • Zhao, D.1
  • 59
    • 43149115851 scopus 로고    scopus 로고
    • Velvet: algorithms for de novo short read assembly using de Bruijn graphs
    • Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829
    • (2008) Genome Res , vol.18 , Issue.5 , pp. 821-829
    • Zerbino, D.R.1    Birney, E.2
  • 62
    • 33646371466 scopus 로고    scopus 로고
    • Online passive-aggressive algorithms
    • Crammer K et al (2006) Online passive-aggressive algorithms. J Mach Learn Res 7:551–585
    • (2006) J Mach Learn Res , vol.7 , pp. 551-585
    • Crammer, K.1
  • 63
    • 84991806369 scopus 로고    scopus 로고
    • Near real-time processing of proteomics data using Hadoop
    • Hillman C et al (2014) Near real-time processing of proteomics data using Hadoop. Big Data 2(1):44–49
    • (2014) Big Data , vol.2 , Issue.1 , pp. 44-49
    • Hillman, C.1
  • 65
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T, Tibshirani R (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3):432–441
    • (2008) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 67
    • 84895087448 scopus 로고    scopus 로고
    • Mammoth data in the cloud: clustering social images
    • Qiu J, Zhang B (2013) Mammoth data in the cloud: clustering social images. Clouds Grids Big Data 23:231
    • (2013) Clouds Grids Big Data , vol.23 , pp. 231
    • Qiu, J.1    Zhang, B.2
  • 69
    • 0001138328 scopus 로고
    • Algorithm AS 136: a k-means clustering algorithm
    • (,),. In
    • Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. In: Applied statistics, pp 100–108
    • (1979) Applied statistics , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 71
    • 84925289085 scopus 로고    scopus 로고
    • Dimensionality reduction of medical big data using neural-fuzzy classifier
    • Azar AT, Hassanien AE (2014) Dimensionality reduction of medical big data using neural-fuzzy classifier. Soft Comput 19(4):1115–1127
    • (2014) Soft Comput , vol.19 , Issue.4 , pp. 1115-1127
    • Azar, A.T.1    Hassanien, A.E.2
  • 73
    • 84991746870 scopus 로고    scopus 로고
    • Bring the noise: embracing randomness is the key to scaling up machine learning algorithms
    • Dalessandro B (2013) Bring the noise: embracing randomness is the key to scaling up machine learning algorithms. Big Data 1(2):110–112
    • (2013) Big Data , vol.1 , Issue.2 , pp. 110-112
    • Dalessandro, B.1
  • 74
    • 84904394329 scopus 로고    scopus 로고
    • Incremental partial least squares analysis of big streaming data
    • Zeng X-Q, Li G-Z (2014) Incremental partial least squares analysis of big streaming data. Pattern Recogn 47(11):3726–3735
    • (2014) Pattern Recogn , vol.47 , Issue.11 , pp. 3726-3735
    • Zeng, X.-Q.1    Li, G.-Z.2
  • 75
    • 0001422598 scopus 로고
    • Rational Krylov sequence methods for eigenvalue computation
    • Ruhe A (1984) Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl 58:391–405
    • (1984) Linear Algebra Appl , vol.58 , pp. 391-405
    • Ruhe, A.1
  • 76
    • 84894902582 scopus 로고    scopus 로고
    • System of systems and big data analytics–Bridging the gap
    • Tannahill BK, Jamshidi M (2014) System of systems and big data analytics–Bridging the gap. Comput Electr Eng 40(1):2–15
    • (2014) Comput Electr Eng , vol.40 , Issue.1 , pp. 2-15
    • Tannahill, B.K.1    Jamshidi, M.2
  • 78
    • 84984693414 scopus 로고    scopus 로고
    • An intelligent information forwarder for healthcare big data systems with distributed wearable sensors
    • Jiang P et al (2014) An intelligent information forwarder for healthcare big data systems with distributed wearable sensors. IEEE Syst J PP(99):1–9
    • (2014) IEEE Syst J , vol.PP , Issue.99 , pp. 1-9
    • Jiang, P.1
  • 79
    • 84923917782 scopus 로고    scopus 로고
    • Reducing the search space for big data mining for interesting patterns from uncertain data
    • BigData congress
    • Leung CK-S, MacKinnon RK, Jiang F (2014) Reducing the search space for big data mining for interesting patterns from uncertain data. In: 2014 IEEE international congress on big data (BigData congress)
    • (2014) 2014 IEEE International Congress on Big Data
    • Leung, C.-S.1    Mackinnon, R.K.2    Jiang, F.3
  • 80
    • 84904820568 scopus 로고    scopus 로고
    • Self-organizing artificial neural networks into hydrographic big data reduction process
    • Springer
    • Stateczny A, Wlodarczyk-Sielicka M (2014) Self-organizing artificial neural networks into hydrographic big data reduction process. In: Rough sets and intelligent systems paradigms. Springer, pp 335–342
    • (2014) Rough Sets and Intelligent Systems Paradigms , pp. 335-342
    • Stateczny, A.1    Wlodarczyk-Sielicka, M.2
  • 81
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 82
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y et al (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.