-
1
-
-
84860320207
-
Big data processing in Cloud environments
-
S. Tsuchiya, Y. Sakamoto, Y. Tsuchimoto, and V. Lee Big data processing in Cloud environments Fujitsu Sci. Tech. J. 48 2 2012 159 168
-
(2012)
Fujitsu Sci. Tech. J.
, vol.48
, Issue.2
, pp. 159-168
-
-
Tsuchiya, S.1
Sakamoto, Y.2
Tsuchimoto, Y.3
Lee, V.4
-
2
-
-
84874615486
-
Big data processing in Cloud environments
-
C. Ji, Y. Li, W. Qiu, U. Awada, and K. Li Big data processing in Cloud environments 2012 International Symposium on Pervasive Systems, Algorithms and Networks 2012 17 23
-
(2012)
2012 International Symposium on Pervasive Systems, Algorithms and Networks
, pp. 17-23
-
-
Ji, C.1
Li, Y.2
Qiu, W.3
Awada, U.4
Li, K.5
-
3
-
-
78649359388
-
Big data: Science in the petabyte era
-
Big data: science in the petabyte era Nature 455 7209 2008 1
-
(2008)
Nature
, vol.455
, Issue.7209
, pp. 1
-
-
-
5
-
-
77950347409
-
A view of cloud computing
-
M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia A view of cloud computing Commun. ACM 53 4 2010 50 58
-
(2010)
Commun. ACM
, vol.53
, Issue.4
, pp. 50-58
-
-
Armbrust, M.1
Fox, A.2
Griffith, R.3
Joseph, A.D.4
Katz, R.5
Konwinski, A.6
Lee, G.7
Patterson, D.8
Rabkin, A.9
Stoica, I.10
Zaharia, M.11
-
6
-
-
63649117166
-
Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility
-
R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic Cloud computing and emerging it platforms: vision, hype, and reality for delivering computing as the 5th utility Future Gener. Comput. Syst. 25 6 2009 599 616
-
(2009)
Future Gener. Comput. Syst.
, vol.25
, Issue.6
, pp. 599-616
-
-
Buyya, R.1
Yeo, C.S.2
Venugopal, S.3
Broberg, J.4
Brandic, I.5
-
7
-
-
77954879049
-
Cloud computing: A perspective study
-
L. Wang, G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and C. Fu Cloud computing: a perspective study New Gener. Comput. 28 2 2010 137 146
-
(2010)
New Gener. Comput.
, vol.28
, Issue.2
, pp. 137-146
-
-
Wang, L.1
Von Laszewski, G.2
Younge, A.3
He, X.4
Kunze, M.5
Tao, J.6
Fu, C.7
-
8
-
-
84855349233
-
In cloud, can scientific communities benefit from the economies of scale?
-
L. Wang, J. Zhan, W. Shi, and Y. Liang In cloud, can scientific communities benefit from the economies of scale? IEEE Trans. Parallel Distrib. Syst. 23 2 2012 296 303
-
(2012)
IEEE Trans. Parallel Distrib. Syst.
, vol.23
, Issue.2
, pp. 296-303
-
-
Wang, L.1
Zhan, J.2
Shi, W.3
Liang, Y.4
-
9
-
-
70450267381
-
Recent research advances in e-science
-
X. Yang, L. Wang, and G. Laszewski Recent research advances in e-science Clust. Comput. 12 4 2009 353 356
-
(2009)
Clust. Comput.
, vol.12
, Issue.4
, pp. 353-356
-
-
Yang, X.1
Wang, L.2
Laszewski, G.3
-
10
-
-
80053256327
-
A survey of large scale data management approaches in cloud environments
-
S. Sakr, A. Liu, D. Batista, and M. Alomari A survey of large scale data management approaches in cloud environments IEEE Commun. Surv. Tutor. 13 3 2011 311 336
-
(2011)
IEEE Commun. Surv. Tutor.
, vol.13
, Issue.3
, pp. 311-336
-
-
Sakr, S.1
Liu, A.2
Batista, D.3
Alomari, M.4
-
11
-
-
79959939881
-
A platform for scalable one-pass analytics using MapReduce
-
B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy A platform for scalable one-pass analytics using MapReduce Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD'11) 2011 985 996
-
(2011)
Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD'11)
, pp. 985-996
-
-
Li, B.1
Mazur, E.2
Diao, Y.3
McGregor, A.4
Shenoy, P.5
-
12
-
-
37549003336
-
MapReduce: Simplified data processing on large clusters
-
J. Dean, and S. Ghemawat MapReduce: simplified data processing on large clusters Commun. ACM 51 1 2008 107 113
-
(2008)
Commun. ACM
, vol.51
, Issue.1
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
13
-
-
84863162233
-
Parallel data processing with MapReduce: A survey
-
K.H. Lee, Y.J. Lee, H. Choi, Y.D. Chung, and B. Moon Parallel data processing with MapReduce: a survey SIGMOD Rec. 40 4 2012 11 20
-
(2012)
SIGMOD Rec.
, vol.40
, Issue.4
, pp. 11-20
-
-
Lee, K.H.1
Lee, Y.J.2
Choi, H.3
Chung, Y.D.4
Moon, B.5
-
14
-
-
84905111309
-
-
accessed on March 01, 2013
-
Hadoop http://hadoop.apache.org accessed on March 01, 2013
-
-
-
Hadoop1
-
15
-
-
84875210712
-
An efficient quasi-identifier index based approach for privacy preservation over incremental data sets on Cloud
-
X. Zhang, C. Liu, S. Nepal, and J. Chen An efficient quasi-identifier index based approach for privacy preservation over incremental data sets on Cloud J. Comput. Syst. Sci. 79 5 2013 542 555
-
(2013)
J. Comput. Syst. Sci.
, vol.79
, Issue.5
, pp. 542-555
-
-
Zhang, X.1
Liu, C.2
Nepal, S.3
Chen, J.4
-
16
-
-
84874595073
-
Privacy-preserving layer over MapReduce on Cloud
-
Xiangtan, China
-
X. Zhang, C. Liu, S. Nepal, W. Dou, and J. Chen Privacy-preserving layer over MapReduce on Cloud The 2nd International Conference on Cloud and Green Computing (CGC 2012) Xiangtan, China 2012 304 310
-
(2012)
The 2nd International Conference on Cloud and Green Computing (CGC 2012)
, pp. 304-310
-
-
Zhang, X.1
Liu, C.2
Nepal, S.3
Dou, W.4
Chen, J.5
-
17
-
-
84877786158
-
A privacy leakage upper-bound constraint based approach for cost-effective privacy preserving of intermediate datasets in Cloud
-
X. Zhang, C. Liu, S. Nepal, S. Pandey, and J. Chen A privacy leakage upper-bound constraint based approach for cost-effective privacy preserving of intermediate datasets in Cloud IEEE Trans. Parallel Distrib. Syst. 24 6 2013 1192 1202
-
(2013)
IEEE Trans. Parallel Distrib. Syst.
, vol.24
, Issue.6
, pp. 1192-1202
-
-
Zhang, X.1
Liu, C.2
Nepal, S.3
Pandey, S.4
Chen, J.5
-
18
-
-
84891751231
-
A scalable two-phase top-down specialization approach for data anonymization using MapReduce on Cloud
-
X. Zhang, T. Yang, C. Liu, and J. Chen A scalable two-phase top-down specialization approach for data anonymization using MapReduce on Cloud IEEE Trans. Parallel Distrib. Syst. 25 2 2013 363 373
-
(2013)
IEEE Trans. Parallel Distrib. Syst.
, vol.25
, Issue.2
, pp. 363-373
-
-
Zhang, X.1
Yang, T.2
Liu, C.3
Chen, J.4
-
19
-
-
84862940376
-
Transmission reduction based on order compression of compound aggregate data over wireless sensor networks
-
Port Elizabeth, South Africa
-
C. Yang, Z. Yang, K. Ren, and C. Liu Transmission reduction based on order compression of compound aggregate data over wireless sensor networks Proc. 6th International Conference on Pervasive Computing and Applications (ICPCA'11) Port Elizabeth, South Africa 2011 335 342
-
(2011)
Proc. 6th International Conference on Pervasive Computing and Applications (ICPCA'11)
, pp. 335-342
-
-
Yang, C.1
Yang, Z.2
Ren, K.3
Liu, C.4
-
20
-
-
84875107967
-
An experimental study of the effectiveness of clustered aggregation (CAG) leveraging spatial and temporal correlations in wireless sensor networks
-
S.H. Yoon, and C. Shahabi An experimental study of the effectiveness of clustered aggregation (CAG) leveraging spatial and temporal correlations in wireless sensor networks ACM Trans. Sens. Netw. 2008 1 36
-
(2008)
ACM Trans. Sens. Netw.
, pp. 1-36
-
-
Yoon, S.H.1
Shahabi, C.2
-
21
-
-
51849106407
-
Asynchronous in-network prediction: Efficient aggregation in sensor networks
-
article 25
-
P. Edara, A. Limaye, and K. Ramamritham Asynchronous in-network prediction: efficient aggregation in sensor networks ACM Trans. Sens. Netw. 4 4 2008 article 25
-
(2008)
ACM Trans. Sens. Netw.
, vol.4
, Issue.4
-
-
Edara, P.1
Limaye, A.2
Ramamritham, K.3
-
23
-
-
83055169664
-
An adaptive and composite spatio-temporal data compression approach for wireless sensor networks
-
A. Ail, A. Khelil, P. Szczytowski, and N. Suri An adaptive and composite spatio-temporal data compression approach for wireless sensor networks Proc. of ACM MSWiM'11 2011 67 76
-
(2011)
Proc. of ACM MSWiM'11
, pp. 67-76
-
-
Ail, A.1
Khelil, A.2
Szczytowski, P.3
Suri, N.4
-
25
-
-
82155187187
-
Incoop: MapReduce for incremental computations
-
P. Bhatotia, A. Wieder, R. Rodrigues, U.A. Acar, and R. Pasquin Incoop: MapReduce for incremental computations Proceedings of Proceedings of the 2nd ACM Symposium on Cloud Computing (SoCC'11) 2011 1 14
-
(2011)
Proceedings of Proceedings of the 2nd ACM Symposium on Cloud Computing (SoCC'11)
, pp. 1-14
-
-
Bhatotia, P.1
Wieder, A.2
Rodrigues, R.3
Acar, U.A.4
Pasquin, R.5
-
26
-
-
79959962180
-
Nova: Continuous Pig/Hadoop workflows
-
C. Olston, G. Chiou, L. Chitnis, F. Liu, Y. Han, M. Larsson, A. Neumann, V.B.N. Rao, V. Sankarasubramanian, S. Seth, C. Tian, T. ZiCornell, and X. Wang Nova: continuous Pig/Hadoop workflows Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD'11) 2011 1081 1090
-
(2011)
Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD'11)
, pp. 1081-1090
-
-
Olston, C.1
Chiou, G.2
Chitnis, L.3
Liu, F.4
Han, Y.5
Larsson, M.6
Neumann, A.7
Rao, V.B.N.8
Sankarasubramanian, V.9
Seth, S.10
Tian, C.11
Zicornell, T.12
Wang, X.13
-
27
-
-
79959701017
-
Filtering: A method for solving graph problems in MapReduce
-
San Jose, California, USA
-
S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii Filtering: a method for solving graph problems in MapReduce Proc. 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'11) San Jose, California, USA 2011
-
(2011)
Proc. 23rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'11)
-
-
Lattanzi, S.1
Moseley, B.2
Suri, S.3
Vassilvitskii, S.4
-
28
-
-
67651111624
-
Graph twiddling in a MapReduce world
-
J. Conhen Graph twiddling in a MapReduce world Comput. Sci. Eng. 11 4 2009 29 41
-
(2009)
Comput. Sci. Eng.
, vol.11
, Issue.4
, pp. 29-41
-
-
Conhen, J.1
-
29
-
-
84873198422
-
MapReduce algorithms for big data analysis
-
K. Shim MapReduce algorithms for big data analysis Proc. VLDB Endow. 5 12 2012 2016 2017
-
(2012)
Proc. VLDB Endow.
, vol.5
, Issue.12
, pp. 2016-2017
-
-
Shim, K.1
-
32
-
-
84905087407
-
-
accessed on March 05, 2013
-
Managing and mining billion-node graphs http://kdd2012.sigkdd.org/sites/ images/summerschool/Haixun-Wang.pdf accessed on March 05, 2013
-
Managing and Mining Billion-node Graphs
-
-
|