-
1
-
-
84943160849
-
CRISPR-Cas immunity in prokaryotes
-
Marraffini, L.A., CRISPR-Cas immunity in prokaryotes. Nature 526 (2015), 55–61.
-
(2015)
Nature
, vol.526
, pp. 55-61
-
-
Marraffini, L.A.1
-
2
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu, P.D., Lander, E.S., Zhang, F., Development and applications of CRISPR-Cas9 for genome engineering. Cell 157 (2014), 1262–1278.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
3
-
-
84930613203
-
CRISPR, the disruptor
-
Ledford, H., CRISPR, the disruptor. Nat News, 522, 2015, 20.
-
(2015)
Nat News
, vol.522
, pp. 20
-
-
Ledford, H.1
-
4
-
-
84882787078
-
The CRISPR craze
-
Pennisi, E., The CRISPR craze. Science 341 (2013), 833–836.
-
(2013)
Science
, vol.341
, pp. 833-836
-
-
Pennisi, E.1
-
5
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
This study updated the classification and nomenclature of CRISPR-Cas systems and outlined their occurrence and diversity in bacteria and archaea.
-
Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft, D.H., et al. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13 (2015), 722–736 This study updated the classification and nomenclature of CRISPR-Cas systems and outlined their occurrence and diversity in bacteria and archaea.
-
(2015)
Nat Rev Microbiol
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
Saunders, S.J.6
Barrangou, R.7
Brouns, S.J.J.8
Charpentier, E.9
Haft, D.H.10
-
6
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns, S.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J., Snijders, A.P., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 (2008), 960–964.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.5
Snijders, A.P.6
Dickman, M.J.7
Makarova, K.S.8
Koonin, E.V.9
van der Oost, J.10
-
7
-
-
84873571066
-
In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus
-
Sinkunas, T., Gasiunas, G., Waghmare, S.P., Dickman, M.J., Barrangou, R., Horvath, P., Siksnys, V., In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus. EMBO J 32 (2013), 385–394.
-
(2013)
EMBO J
, vol.32
, pp. 385-394
-
-
Sinkunas, T.1
Gasiunas, G.2
Waghmare, S.P.3
Dickman, M.J.4
Barrangou, R.5
Horvath, P.6
Siksnys, V.7
-
8
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau, J.E., Dupuis, M.E., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadan, A.H., Moineau, S., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 (2010), 67–71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
Fremaux, C.7
Horvath, P.8
Magadan, A.H.9
Moineau, S.10
-
9
-
-
84866859751
-
Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V., Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci 109 (2012), 15539–15540.
-
(2012)
Proc Natl Acad Sci
, vol.109
, pp. 15539-15540
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
10
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–821.
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
11
-
-
84986898390
-
Applications of CRISPR technologies in research and beyond
-
Barrangou, R., Doudna, J.A., Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34 (2016), 933–941.
-
(2016)
Nat Biotechnol
, vol.34
, pp. 933-941
-
-
Barrangou, R.1
Doudna, J.A.2
-
12
-
-
84983208863
-
Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases
-
This report established a proof of concept that CRISPR-Cas9 systems can be delivered by phages to target E. coli in vitro and in vivo.
-
Citorik, R.J., Mimee, M., Lu, T.K., Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32 (2014), 1141–1145 This report established a proof of concept that CRISPR-Cas9 systems can be delivered by phages to target E. coli in vitro and in vivo.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1141-1145
-
-
Citorik, R.J.1
Mimee, M.2
Lu, T.K.3
-
13
-
-
84882986957
-
Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system
-
Bikard, D., Jiang, W., Samai, P., Hochschild, A., Zhang, F., Marraffini, L.A., Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41 (2013), 7429–7437.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 7429-7437
-
-
Bikard, D.1
Jiang, W.2
Samai, P.3
Hochschild, A.4
Zhang, F.5
Marraffini, L.A.6
-
14
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR-Cas systems
-
Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L.A., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31 (2013), 233–239.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
15
-
-
84941084492
-
Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression
-
Luo, M.L., Mullis, A.S., Leenay, R.T., Beisel, C.L., Repurposing endogenous type I CRISPR-Cas systems for programmable gene repression. Nucleic Acids Res 43 (2015), 674–681.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 674-681
-
-
Luo, M.L.1
Mullis, A.S.2
Leenay, R.T.3
Beisel, C.L.4
-
16
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P., Lim, W.A., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152 (2013), 1173–1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
Arkin, A.P.6
Lim, W.A.7
-
17
-
-
85002289002
-
Sensitizing pathogens to antibiotics using the CRISPR-Cas system
-
Goren, M., Yosef, I., Qimron, U., Sensitizing pathogens to antibiotics using the CRISPR-Cas system. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother 30 (2017), 1–6.
-
(2017)
Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother
, vol.30
, pp. 1-6
-
-
Goren, M.1
Yosef, I.2
Qimron, U.3
-
18
-
-
38949214103
-
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
-
Horvath, P., Romero, D.A., Coute-Monvoisin, A.C., Richards, M., Deveau, H., Moineau, S., Boyaval, P., Fremaux, C., Barrangou, R., Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190 (2008), 1401–1412.
-
(2008)
J Bacteriol
, vol.190
, pp. 1401-1412
-
-
Horvath, P.1
Romero, D.A.2
Coute-Monvoisin, A.C.3
Richards, M.4
Deveau, H.5
Moineau, S.6
Boyaval, P.7
Fremaux, C.8
Barrangou, R.9
-
19
-
-
77955085897
-
Self-targeting by CRISPR: gene regulation or autoimmunity?
-
Stern, A., Keren, L., Wurtzel, O., Amitai, G., Sorek, R., Self-targeting by CRISPR: gene regulation or autoimmunity?. Trends Genet 26 (2010), 335–340.
-
(2010)
Trends Genet
, vol.26
, pp. 335-340
-
-
Stern, A.1
Keren, L.2
Wurtzel, O.3
Amitai, G.4
Sorek, R.5
-
20
-
-
79959963663
-
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
-
Semenova, E., Jore, M.M., Datsenko, K.A., Semenova, A., Westra, E.R., Wanner, B., van der Oost, J., Brouns, S.J., Severinov, K., Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A 108 (2011), 10098–10103.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 10098-10103
-
-
Semenova, E.1
Jore, M.M.2
Datsenko, K.A.3
Semenova, A.4
Westra, E.R.5
Wanner, B.6
van der Oost, J.7
Brouns, S.J.8
Severinov, K.9
-
21
-
-
79960029056
-
RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions
-
Wiedenheft, B., van Duijn, E., Bultema, J.B., Waghmare, S.P., Zhou, K., Barendregt, A., Westphal, W., Heck, A.J., Boekema, E.J., Dickman, M.J., et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci U S A 108 (2011), 10092–10097.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 10092-10097
-
-
Wiedenheft, B.1
van Duijn, E.2
Bultema, J.B.3
Waghmare, S.P.4
Zhou, K.5
Barendregt, A.6
Westphal, W.7
Heck, A.J.8
Boekema, E.J.9
Dickman, M.J.10
-
22
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C., Doudna, J.A., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507 (2014), 62–67.
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
23
-
-
84874619358
-
Strong bias in the bacterial CRISPR elements that confer immunity to phage
-
Paez-Espino, D., Morovic, W., Sun, C.L., Thomas, B.C., Ueda, K., Stahl, B., Barrangou, R., Banfield, J.F., Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat Commun, 4, 2013, 1430.
-
(2013)
Nat Commun
, vol.4
, pp. 1430
-
-
Paez-Espino, D.1
Morovic, W.2
Sun, C.L.3
Thomas, B.C.4
Ueda, K.5
Stahl, B.6
Barrangou, R.7
Banfield, J.F.8
-
24
-
-
84864864464
-
Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
-
Datsenko, K.A., Pougach, K., Tikhonov, A., Wanner, B.L., Severinov, K., Semenova, E., Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun, 3, 2012, 945.
-
(2012)
Nat Commun
, vol.3
, pp. 945
-
-
Datsenko, K.A.1
Pougach, K.2
Tikhonov, A.3
Wanner, B.L.4
Severinov, K.5
Semenova, E.6
-
25
-
-
84928473578
-
CRISPR adaptation biases explain preference for acquisition of foreign DNA
-
Levy, A., Goren, M.G., Yosef, I., Auster, O., Manor, M., Amitai, G., Edgar, R., Qimron, U., Sorek, R., CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520 (2015), 505–510.
-
(2015)
Nature
, vol.520
, pp. 505-510
-
-
Levy, A.1
Goren, M.G.2
Yosef, I.3
Auster, O.4
Manor, M.5
Amitai, G.6
Edgar, R.7
Qimron, U.8
Sorek, R.9
-
26
-
-
85017152413
-
CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity
-
Modell, J.W., Jiang, W., Marraffini, L.A., CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature 544 (2017), 101–104.
-
(2017)
Nature
, vol.544
, pp. 101-104
-
-
Modell, J.W.1
Jiang, W.2
Marraffini, L.A.3
-
27
-
-
84990860399
-
Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system
-
Staals, R.H.J., Jackson, S.A., Biswas, A., Brouns, S.J.J., Brown, C.M., Fineran, P.C., Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system. Nat Commun, 7, 2016, 12853.
-
(2016)
Nat Commun
, vol.7
, pp. 12853
-
-
Staals, R.H.J.1
Jackson, S.A.2
Biswas, A.3
Brouns, S.J.J.4
Brown, C.M.5
Fineran, P.C.6
-
28
-
-
78649342032
-
The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction
-
This is the first report of artificial self targeting by a CRISPR system.
-
Edgar, R., Qimron, U., The Escherichia coli CRISPR system protects from lambda lysogenization, lysogens, and prophage induction. J Bacteriol 192 (2010), 6291–6294 This is the first report of artificial self targeting by a CRISPR system.
-
(2010)
J Bacteriol
, vol.192
, pp. 6291-6294
-
-
Edgar, R.1
Qimron, U.2
-
29
-
-
84903362877
-
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems
-
This study showed that endogenous CRISPR-Cas systems can be repurposed to generate programmable cell death in bacteria and selectively target different genotypes in a mixed population.
-
Gomaa, A.A., Klumpe, H.E., Luo, M.L., Selle, K., Barrangou, R., Beisel, C.L., Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. MBio 5 (2013), e00928–e1013 This study showed that endogenous CRISPR-Cas systems can be repurposed to generate programmable cell death in bacteria and selectively target different genotypes in a mixed population.
-
(2013)
MBio
, vol.5
, pp. e00928-e1013
-
-
Gomaa, A.A.1
Klumpe, H.E.2
Luo, M.L.3
Selle, K.4
Barrangou, R.5
Beisel, C.L.6
-
30
-
-
84876845227
-
Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands
-
This early report revealed the lethality and some genomic outcomes of self-targeting by CRISPR-Cas systems.
-
Vercoe, R.B., Chang, J.T., Dy, R.L., Taylor, C., Gristwood, T., Clulow, J.S., Richter, C., Przybilski, R., Pitman, A.R., Fineran, P.C., Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet, 9, 2013, e1003454 This early report revealed the lethality and some genomic outcomes of self-targeting by CRISPR-Cas systems.
-
(2013)
PLoS Genet
, vol.9
, pp. e1003454
-
-
Vercoe, R.B.1
Chang, J.T.2
Dy, R.L.3
Taylor, C.4
Gristwood, T.5
Clulow, J.S.6
Richter, C.7
Przybilski, R.8
Pitman, A.R.9
Fineran, P.C.10
-
31
-
-
84861996069
-
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
-
Westra, E.R., van Erp, P.B., Kunne, T., Wong, S.P., Staals, R.H., Seegers, C.L., Bollen, S., Jore, M.M., Semenova, E., Severinov, K., et al. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46 (2012), 595–605.
-
(2012)
Mol Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
van Erp, P.B.2
Kunne, T.3
Wong, S.P.4
Staals, R.H.5
Seegers, C.L.6
Bollen, S.7
Jore, M.M.8
Semenova, E.9
Severinov, K.10
-
32
-
-
84930197469
-
Targeted DNA degradation using a CRISPR device stably carried in the host genome
-
Caliando, B.J., Voigt, C.A., Targeted DNA degradation using a CRISPR device stably carried in the host genome. Nat Commun, 6, 2015, 6989.
-
(2015)
Nat Commun
, vol.6
, pp. 6989
-
-
Caliando, B.J.1
Voigt, C.A.2
-
33
-
-
84865144676
-
CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection
-
Bikard, D., Hatoum-Aslan, A., Mucida, D., Marraffini, L.A., CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12 (2012), 177–186.
-
(2012)
Cell Host Microbe
, vol.12
, pp. 177-186
-
-
Bikard, D.1
Hatoum-Aslan, A.2
Mucida, D.3
Marraffini, L.A.4
-
34
-
-
81255160844
-
Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference
-
Beloglazova, N., Petit, P., Flick, R., Brown, G., Savchenko, A., Yakunin, A.F., Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference. EMBO J 30 (2011), 4616–4627.
-
(2011)
EMBO J
, vol.30
, pp. 4616-4627
-
-
Beloglazova, N.1
Petit, P.2
Flick, R.3
Brown, G.4
Savchenko, A.5
Yakunin, A.F.6
-
35
-
-
79953779608
-
Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system
-
Sinkunas, T., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., Siksnys, V., Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30 (2011), 1335–1342.
-
(2011)
EMBO J
, vol.30
, pp. 1335-1342
-
-
Sinkunas, T.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
36
-
-
84871340015
-
Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB
-
Wigley, D.B., Bacterial DNA repair: recent insights into the mechanism of RecBCD, AddAB and AdnAB. Nat Rev Microbiol 11 (2013), 9–13.
-
(2013)
Nat Rev Microbiol
, vol.11
, pp. 9-13
-
-
Wigley, D.B.1
-
37
-
-
84970046200
-
Consequences of Cas9 cleavage in the chromosome of Escherichia coli
-
This study investigated the outcomes of Cas9-based self-targeting in bacteria and established the interplay between DNA damage and DNA repair.
-
Cui, L., Bikard, D., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res 44 (2016), 4243–4251 This study investigated the outcomes of Cas9-based self-targeting in bacteria and established the interplay between DNA damage and DNA repair.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 4243-4251
-
-
Cui, L.1
Bikard, D.2
-
38
-
-
0141762466
-
Genetically modified filamentous phage as bactericidal agents: a pilot study
-
Hagens, S., Bläsi, U., Genetically modified filamentous phage as bactericidal agents: a pilot study. Lett Appl Microbiol 37 (2003), 318–323.
-
(2003)
Lett Appl Microbiol
, vol.37
, pp. 318-323
-
-
Hagens, S.1
Bläsi, U.2
-
39
-
-
67149123645
-
Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an inducer-independent promoter for biocontrol of Escherichia coli
-
Moradpour, Z., Sepehrizadeh, Z., Rahbarizadeh, F., Ghasemian, A., Yazdi, M.T., Shahverdi, A.R., Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an inducer-independent promoter for biocontrol of Escherichia coli. FEMS Microbiol Lett 296 (2009), 67–71.
-
(2009)
FEMS Microbiol Lett
, vol.296
, pp. 67-71
-
-
Moradpour, Z.1
Sepehrizadeh, Z.2
Rahbarizadeh, F.3
Ghasemian, A.4
Yazdi, M.T.5
Shahverdi, A.R.6
-
40
-
-
0037379524
-
Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections
-
Westwater, C., Kasman, L.M., Schofield, D.A., Werner, P.A., Dolan, J.W., Schmidt, M.G., Norris, J.S., Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother 47 (2003), 1301–1307.
-
(2003)
Antimicrob Agents Chemother
, vol.47
, pp. 1301-1307
-
-
Westwater, C.1
Kasman, L.M.2
Schofield, D.A.3
Werner, P.A.4
Dolan, J.W.5
Schmidt, M.G.6
Norris, J.S.7
-
41
-
-
4644257971
-
Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage
-
Hagens, S., Habel, A., Ahsen, U. von, Gabain, A. von, Bläsi, U., Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother 48 (2004), 3817–3822.
-
(2004)
Antimicrob Agents Chemother
, vol.48
, pp. 3817-3822
-
-
Hagens, S.1
Habel, A.2
Ahsen, U.V.3
Gabain, A.V.4
Bläsi, U.5
-
42
-
-
84983142945
-
Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials
-
This report established a proof of concept that CRISPR-Cas9 systems can be delivered by phages to target S. aureus in vitro and in vivo.
-
Bikard, D., Euler, C.W., Jiang, W., Nussenzweig, P.M., Goldberg, G.W., Duportet, X., Fischetti, V.A., Marraffini, L.A., Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32 (2014), 1146–1150 This report established a proof of concept that CRISPR-Cas9 systems can be delivered by phages to target S. aureus in vitro and in vivo.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 1146-1150
-
-
Bikard, D.1
Euler, C.W.2
Jiang, W.3
Nussenzweig, P.M.4
Goldberg, G.W.5
Duportet, X.6
Fischetti, V.A.7
Marraffini, L.A.8
-
43
-
-
84931291929
-
Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria
-
This study provides novel strategies to re-sensitize bacteria to antibiotics using plasmid targeting CRISPR-Cas systems.
-
Yosef, I., Manor, M., Kiro, R., Qimron, U., Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc Natl Acad Sci 112 (2015), 7267–7272 This study provides novel strategies to re-sensitize bacteria to antibiotics using plasmid targeting CRISPR-Cas systems.
-
(2015)
Proc Natl Acad Sci
, vol.112
, pp. 7267-7272
-
-
Yosef, I.1
Manor, M.2
Kiro, R.3
Qimron, U.4
-
44
-
-
77956621546
-
H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO
-
Westra, E.R., Pul, Ü., Heidrich, N., Jore, M.M., Lundgren, M., Stratmann, T., Wurm, R., Raine, A., Mescher, M., Van Heereveld, L., et al. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol 77 (2010), 1380–1393.
-
(2010)
Mol Microbiol
, vol.77
, pp. 1380-1393
-
-
Westra, E.R.1
Pul, Ü.2
Heidrich, N.3
Jore, M.M.4
Lundgren, M.5
Stratmann, T.6
Wurm, R.7
Raine, A.8
Mescher, M.9
Van Heereveld, L.10
-
45
-
-
77951104433
-
Bacteriophage resistance mechanisms
-
Labrie, S.J., Samson, J.E., Moineau, S., Bacteriophage resistance mechanisms. Nat Rev Microbiol 8 (2010), 317–327.
-
(2010)
Nat Rev Microbiol
, vol.8
, pp. 317-327
-
-
Labrie, S.J.1
Samson, J.E.2
Moineau, S.3
-
46
-
-
0035115171
-
Bacteriophage therapy
-
Sulakvelidze, A., Alavidze, Z., Morris, J.G., Bacteriophage therapy. Antimicrob Agents Chemother 45 (2001), 649–659.
-
(2001)
Antimicrob Agents Chemother
, vol.45
, pp. 649-659
-
-
Sulakvelidze, A.1
Alavidze, Z.2
Morris, J.G.3
-
47
-
-
84942256417
-
Engineering modular viral scaffolds for targeted bacterial population editing
-
Ando, H., Lemire, S., Pires, D.P., Lu, T.K., Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst 1 (2015), 187–196.
-
(2015)
Cell Syst
, vol.1
, pp. 187-196
-
-
Ando, H.1
Lemire, S.2
Pires, D.P.3
Lu, T.K.4
-
48
-
-
84992701148
-
Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa
-
Mapes, A.C., Trautner, B.W., Liao, K.S., Ramig, R.F., Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa. Bacteriophage, 6, 2016, e1096995.
-
(2016)
Bacteriophage
, vol.6
, pp. e1096995
-
-
Mapes, A.C.1
Trautner, B.W.2
Liao, K.S.3
Ramig, R.F.4
-
49
-
-
85019872748
-
Extending the host range of bacteriophage particles for DNA transduction
-
721–728.e3
-
Yosef, I., Goren, M.G., Globus, R., Molshanski-Mor, S., Qimron, U., Extending the host range of bacteriophage particles for DNA transduction. Mol Cell, 66, 2017 721–728.e3.
-
(2017)
Mol Cell
, vol.66
-
-
Yosef, I.1
Goren, M.G.2
Globus, R.3
Molshanski-Mor, S.4
Qimron, U.5
-
50
-
-
84937886246
-
CRISPR-based screening of genomic island excision events in bacteria
-
This report established that native CRISPR-Cas systems can be co-opted to select for rare deletion events of expendable genetic islands.
-
Selle, K., Klaenhammer, T.R., Barrangou, R., CRISPR-based screening of genomic island excision events in bacteria. Proc Natl Acad Sci 112 (2015), 8076–8081 This report established that native CRISPR-Cas systems can be co-opted to select for rare deletion events of expendable genetic islands.
-
(2015)
Proc Natl Acad Sci
, vol.112
, pp. 8076-8081
-
-
Selle, K.1
Klaenhammer, T.R.2
Barrangou, R.3
-
51
-
-
84990838988
-
Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species
-
Pawluk, A., Staals, R.H.J., Taylor, C., Watson, B.N.J., Saha, S., Fineran, P.C., Maxwell, K.L., Davidson, A.R., Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol, 1, 2016, 16085.
-
(2016)
Nat Microbiol
, vol.1
, pp. 16085
-
-
Pawluk, A.1
Staals, R.H.J.2
Taylor, C.3
Watson, B.N.J.4
Saha, S.5
Fineran, P.C.6
Maxwell, K.L.7
Davidson, A.R.8
|