메뉴 건너뛰기




Volumn 13, Issue 12, 2002, Pages 1815-1821

Determination of multi-component flow process parameters based on electrical capacitance tomography data using artificial neural networks

Author keywords

Electrical capacitance tomography; Multi component flows; Neural networks; Process interpretation

Indexed keywords

CAPACITANCE; COMPUTER SIMULATION; NEURAL NETWORKS; TOMOGRAPHY;

EID: 0036994410     PISSN: 09570233     EISSN: None     Source Type: Journal    
DOI: 10.1088/0957-0233/13/12/303     Document Type: Article
Times cited : (23)

References (24)
  • 2
    • 0030088222 scopus 로고    scopus 로고
    • Recent developments and industrial/research applications of capacitance tomography
    • Reinecke N and Mewes D 1996 Recent developments and industrial/research applications of capacitance tomography Meas. Sci. Technol. 7 233-46
    • (1996) Meas. Sci. Technol. , vol.7 , pp. 233-246
    • Reinecke, N.1    Mewes, D.2
  • 4
    • 0029410581 scopus 로고
    • Electrical capacitance tomography - From design to applications
    • Yang W Q, Beck M S and Byars M 1995 Electrical capacitance tomography-from design to applications Meas. Control 28 261-6
    • (1995) Meas. Control , vol.28 , pp. 261-266
    • Yang, W.Q.1    Beck, M.S.2    Byars, M.3
  • 5
    • 0024478870 scopus 로고
    • 8-electrode capacitance system for two-component flow identification: Tomographic flow imaging
    • Xie C G, Plaskowski A and Beck M S 1989 8-electrode capacitance system for two-component flow identification: tomographic flow imaging IEE Proc. 136 173-83
    • (1989) IEE Proc. , vol.136 , pp. 173-183
    • Xie, C.G.1    Plaskowski, A.2    Beck, M.S.3
  • 6
    • 0030088214 scopus 로고    scopus 로고
    • A review of reconstruction techniques for capacitance tomography
    • Isaksen Ø 1996 A review of reconstruction techniques for capacitance tomography Meas. Sci. Technol. 7 325-37
    • (1996) Meas. Sci. Technol. , vol.7 , pp. 325-337
    • Isaksen, Ø.1
  • 7
    • 0039532391 scopus 로고
    • Electrical field interaction and an enhanced reconstruction algorithm in capacitance process tomography
    • Chen Q, Hoyle B S and Strangeways H J 1992 Electrical field interaction and an enhanced reconstruction algorithm in capacitance process tomography Proc. 1st ECAPT Conf. (Manchester, 1994) pp 205-12
    • (1992) Proc. 1st ECAPT Conf. (Manchester, 1994) , pp. 205-212
    • Chen, Q.1    Hoyle, B.S.2    Strangeways, H.J.3
  • 9
    • 0002101148 scopus 로고
    • An implicit model based reconstruction algorithm for use with a capacitance tomography system
    • Isaksen Ø and Nordtvedt J E 1994 An implicit model based reconstruction algorithm for use with a capacitance tomography system Proc. 3rd ECAPT Conf. (Porto, 1994) pp 215-26
    • (1994) Proc. 3rd ECAPT Conf. (Porto, 1994) , pp. 215-226
    • Isaksen, Ø.1    Nordtvedt, J.E.2
  • 10
    • 0027806171 scopus 로고
    • A new reconstruction algorithm for process tomography
    • Isaksen Ø and Nordtvedt J E 1993 A new reconstruction algorithm for process tomography Meas. Sci. Technol. 4 1464-75
    • (1993) Meas. Sci. Technol. , vol.4 , pp. 1464-1475
    • Isaksen, Ø.1    Nordtvedt, J.E.2
  • 12
    • 0001044176 scopus 로고
    • Neural networks and their applications
    • Bishop C M 1994 Neural networks and their applications Rev. Sci. Instrum. 65 1803-32
    • (1994) Rev. Sci. Instrum. , vol.65 , pp. 1803-1832
    • Bishop, C.M.1
  • 15
    • 0029306722 scopus 로고
    • Performance of neural network in capacitance-based tomographic process measurement systems
    • Nooralahiyan A Y, Hoyle B S and Bailey N J 1995 Performance of neural network in capacitance-based tomographic process measurement systems Meas. Control 28 109-12
    • (1995) Meas. Control , vol.28 , pp. 109-112
    • Nooralahiyan, A.Y.1    Hoyle, B.S.2    Bailey, N.J.3
  • 17
    • 0030616234 scopus 로고    scopus 로고
    • Three-component tomographic flow imaging using artificial neural network reconstruction
    • Nooralahiyan A Y and Hoyle B S 1997 Three-component tomographic flow imaging using artificial neural network reconstruction Chem. Eng. 52 2139-48
    • (1997) Chem. Eng. , vol.52 , pp. 2139-2148
    • Nooralahiyan, A.Y.1    Hoyle, B.S.2
  • 18
    • 0032673769 scopus 로고    scopus 로고
    • Hardware implentation of RAM-based neural networks for tomographic data processing
    • Williams P and York T 1999 Hardware implentation of RAM-based neural networks for tomographic data processing IEE Proc. Comput. Digit. Tech. 146 114-18
    • (1999) IEE Proc. Comput. Digit. Tech. , vol.146 , pp. 114-118
    • Williams, P.1    York, T.2
  • 21
    • 0030388467 scopus 로고    scopus 로고
    • Direct finite element solution for the capacitance, conductance or inductance, and force in linear electrostatic and magnetostatic problems
    • Spink D M 1996 Direct finite element solution for the capacitance, conductance or inductance, and force in linear electrostatic and magnetostatic problems Int. J. Comput. Math. Electr. Electron. Eng. 15 70-84
    • (1996) Int. J. Comput. Math. Electr. Electron. Eng. , vol.15 , pp. 70-84
    • Spink, D.M.1
  • 23
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay D J C 1992 Bayesian interpolation Neural Comput. 4 415-47
    • (1992) Neural Comput. , vol.4 , pp. 415-447
    • MacKay, D.J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.