-
1
-
-
84864335232
-
A survey on gas sensing technology
-
[1] Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., Ning, H., A survey on gas sensing technology. Sensors 12 (2012), 635–9665.
-
(2012)
Sensors
, vol.12
, pp. 635-9665
-
-
Liu, X.1
Cheng, S.2
Liu, H.3
Hu, S.4
Zhang, D.5
Ning, H.6
-
2
-
-
85028242293
-
Future building gas sensing applications
-
M. Fleischer M. Lahmann Industrial application Springer
-
[2] Ahmed, O., Future building gas sensing applications. Fleischer, M., Lahmann, M., (eds.) Solid State Gas Sensors, 2012, Industrial application, Springer, 3–13.
-
(2012)
Solid State Gas Sensors
, pp. 3-13
-
-
Ahmed, O.1
-
3
-
-
33947477650
-
A new detector for gaseous components using semiconductive thin films
-
[3] Seiyama, T., Kato, A., Fujiishi, K., Nagatani, M., A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34:11 (1962), 1502–1503.
-
(1962)
Anal. Chem.
, vol.34
, Issue.11
, pp. 1502-1503
-
-
Seiyama, T.1
Kato, A.2
Fujiishi, K.3
Nagatani, M.4
-
4
-
-
84905189505
-
2: a comprehensive review on structures and gas sensors
-
[4] Das, S., Jayaraman, V., SnO2: a comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66 (2014), 112–255.
-
(2014)
Prog. Mater. Sci.
, vol.66
, pp. 112-255
-
-
Das, S.1
Jayaraman, V.2
-
5
-
-
85007235971
-
2 gas–sensor applications: a review
-
[5] Kumar, R., Al-Dossary, O., Kumar, G., Umar, A., Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett. 7:2 (2015), 97–120.
-
(2015)
Nano-Micro Lett.
, vol.7
, Issue.2
, pp. 97-120
-
-
Kumar, R.1
Al-Dossary, O.2
Kumar, G.3
Umar, A.4
-
6
-
-
35449008163
-
Gas sensors based on nanostructured materials
-
[6] Cadena, G.J., Riu, J., Rius, F.X., Gas sensors based on nanostructured materials. Analyst 132 (2007), 1083–1099.
-
(2007)
Analyst
, vol.132
, pp. 1083-1099
-
-
Cadena, G.J.1
Riu, J.2
Rius, F.X.3
-
7
-
-
83755178670
-
Oxygen sensors made by monolayer graphene under room temperature
-
[7] Chen, C.W., Hung, S.C., Yang, M.D., Yeh, C.W., Wu, C.H., Chi, G.C., Ren, F., Pearton, S.J., Oxygen sensors made by monolayer graphene under room temperature. Appl. Phys. Lett. 99 (2011), 243502–243504.
-
(2011)
Appl. Phys. Lett.
, vol.99
, pp. 243502-243504
-
-
Chen, C.W.1
Hung, S.C.2
Yang, M.D.3
Yeh, C.W.4
Wu, C.H.5
Chi, G.C.6
Ren, F.7
Pearton, S.J.8
-
8
-
-
84949293783
-
Graphene-oxide nano composites for chemical sensor applications
-
[8] Latif, U., Dickert, F.L., Graphene-oxide nano composites for chemical sensor applications. Sensors 15 (2015), 30504–33052.
-
(2015)
Sensors
, vol.15
, pp. 30504-33052
-
-
Latif, U.1
Dickert, F.L.2
-
9
-
-
56349096394
-
Strong suppression of electrical noise in bilayer graphene nanodevices
-
[9] Lin, Y.M., Avouris, P., Strong suppression of electrical noise in bilayer graphene nanodevices. Nano Lett. 8 (2008), 2119–2125.
-
(2008)
Nano Lett.
, vol.8
, pp. 2119-2125
-
-
Lin, Y.M.1
Avouris, P.2
-
10
-
-
77952416022
-
Suspended graphene sensors with improved signal and reduced noise
-
[10] Cheng, Z.G., Li, Q., Li, Z.J., Zhou, Q.Y., Fang, Y., Suspended graphene sensors with improved signal and reduced noise. Nano Lett. 10 (2010), 1864–1868.
-
(2010)
Nano Lett.
, vol.10
, pp. 1864-1868
-
-
Cheng, Z.G.1
Li, Q.2
Li, Z.J.3
Zhou, Q.Y.4
Fang, Y.5
-
11
-
-
34548388792
-
Detection of individual gas molecules adsorbed on graphene
-
[11] Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6 (2007), 652–655.
-
(2007)
Nat. Mater.
, vol.6
, pp. 652-655
-
-
Schedin, F.1
Geim, A.K.2
Morozov, S.V.3
Hill, E.W.4
Blake, P.5
Katsnelson, M.I.6
Novoselov, K.S.7
-
12
-
-
82955183645
-
Graphene chemistry: synthesis and manipulation
-
[12] Sun, Z., James, D.K., Tour, J.M., Graphene chemistry: synthesis and manipulation. J. Phys. Chem. Lett. 2 (2011), 2425–2432.
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, pp. 2425-2432
-
-
Sun, Z.1
James, D.K.2
Tour, J.M.3
-
13
-
-
78751553091
-
Computational assessment of 1,3-dipolar cycloadditions to graphene
-
[13] Cao, Y., Houk, K.N., Computational assessment of 1,3-dipolar cycloadditions to graphene. J. Mater. Chem. 21 (2011), 1503–1508.
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 1503-1508
-
-
Cao, Y.1
Houk, K.N.2
-
14
-
-
84855197818
-
Enhanced gas sensor based on nitrogen-vacancy graphene nanoribbons
-
[14] Wei, X.L., Chen, Y.P., Liu, W.L., Zhong, J.X., Enhanced gas sensor based on nitrogen-vacancy graphene nanoribbons. Phys. Lett. A 376 (2012), 559–562.
-
(2012)
Phys. Lett. A
, vol.376
, pp. 559-562
-
-
Wei, X.L.1
Chen, Y.P.2
Liu, W.L.3
Zhong, J.X.4
-
15
-
-
85028236309
-
2 gas sensing
-
[15] Niu, F., Liu, J.M., Tao, L.M., Wang, W., Song, W.G., Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. Phys. Lett. A 376 (2012), 559–562.
-
(2012)
Phys. Lett. A
, vol.376
, pp. 559-562
-
-
Niu, F.1
Liu, J.M.2
Tao, L.M.3
Wang, W.4
Song, W.G.5
-
16
-
-
84873337794
-
2 sensors based on chemically modified graphene
-
[16] Yuan, W., Liu, A., Huang, L., Li, C., Shi, G., High-performance NO2 sensors based on chemically modified graphene. Adv. Mater. 25 (2013), 766–771.
-
(2013)
Adv. Mater.
, vol.25
, pp. 766-771
-
-
Yuan, W.1
Liu, A.2
Huang, L.3
Li, C.4
Shi, G.5
-
17
-
-
80055097086
-
ZnO decorated luminescent graphene as a potential gas sensor at room temperature
-
[17] Singh, G., Choudhary, A., Haranath, D., Joshi, A.G., Singh, N., Singh, S., Pasricha, R., ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon 50 (2012), 385–394.
-
(2012)
Carbon
, vol.50
, pp. 385-394
-
-
Singh, G.1
Choudhary, A.2
Haranath, D.3
Joshi, A.G.4
Singh, N.5
Singh, S.6
Pasricha, R.7
-
18
-
-
84858222542
-
2 gas sensor
-
[18] Deng, S., Tjoa, V., Fan, H.M., Tan, H.R., Sayle, D.C., Olivo, M., Mhaisalkar, S., Wei, J., Sow, C.H., Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134 (2012), 4905–4917.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 4905-4917
-
-
Deng, S.1
Tjoa, V.2
Fan, H.M.3
Tan, H.R.4
Sayle, D.C.5
Olivo, M.6
Mhaisalkar, S.7
Wei, J.8
Sow, C.H.9
-
19
-
-
84907897654
-
Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nanofibers
-
[19] Yuan, W., Huang, L., Zhou, Q., Shi, G., Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nanofibers. ACS Appl. Mater. Interfaces 6:19 (2014), 17003–17008.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, Issue.19
, pp. 17003-17008
-
-
Yuan, W.1
Huang, L.2
Zhou, Q.3
Shi, G.4
-
20
-
-
84902973114
-
Graphene-based gas sensor: metal decoration effect and application to a flexible device
-
[20] Cho, B., Yoon, J., Hahm, M.G., Kim, D.H., Kim, A.R., Kahng, Y.H., Park, S.W., Lee, Y.J., Park, S.G., Kwon, J.D., Kim, C.S., Song, M.K., Jeong, Y.S., Se Nam, K., Ko, H.C., Graphene-based gas sensor: metal decoration effect and application to a flexible device. J. Mater. Chem. C 2 (2014), 5280–5285.
-
(2014)
J. Mater. Chem. C
, vol.2
, pp. 5280-5285
-
-
Cho, B.1
Yoon, J.2
Hahm, M.G.3
Kim, D.H.4
Kim, A.R.5
Kahng, Y.H.6
Park, S.W.7
Lee, Y.J.8
Park, S.G.9
Kwon, J.D.10
Kim, C.S.11
Song, M.K.12
Jeong, Y.S.13
Se Nam, K.14
Ko, H.C.15
-
21
-
-
84905215134
-
Functioncalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing
-
[21] Zhao, F., Cheng, H., Hu, Y., Song, L., Zhang, Z., Jiang, L., Qu, L., Functioncalized graphitic carbon nitride for metal-free, flexible and rewritable nonvolatile memory device via direct laser-writing. Sci. Rep. 4 (2014), 5882–5889.
-
(2014)
Sci. Rep.
, vol.4
, pp. 5882-5889
-
-
Zhao, F.1
Cheng, H.2
Hu, Y.3
Song, L.4
Zhang, Z.5
Jiang, L.6
Qu, L.7
-
22
-
-
84907904002
-
Graphitic carbon nitride: synthesis, properties, and applications in catalysis
-
[22] Zhu, J., Xiao, P., Li, H., Carabineiro, S.A.C., Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Interfaces 6 (2014), 16449–16465.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 16449-16465
-
-
Zhu, J.1
Xiao, P.2
Li, H.3
Carabineiro, S.A.C.4
-
23
-
-
84899873420
-
4) material: electronic structure, photocatalytic and photoelectronic properties
-
[23] Dong, G., Zhang, Y., Pan, Q., Qiu, J., A fantastic graphitic carbon nitride (g-C3N4) material: electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C 20 (2014), 33–50.
-
(2014)
J. Photochem. Photobiol. C
, vol.20
, pp. 33-50
-
-
Dong, G.1
Zhang, Y.2
Pan, Q.3
Qiu, J.4
-
24
-
-
84951989075
-
High-yield exfoliation of graphene using ternary-solvent strategy for detecting volatile organic compounds
-
[24] Zhang, S., Zhang, Z., Yang, W., High-yield exfoliation of graphene using ternary-solvent strategy for detecting volatile organic compounds. Appl. Surf. Sci. 360 (2016), 323–328.
-
(2016)
Appl. Surf. Sci.
, vol.360
, pp. 323-328
-
-
Zhang, S.1
Zhang, Z.2
Yang, W.3
-
25
-
-
84946103141
-
Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications
-
[25] Zhang, J., Chen, Y., Wang, X., Two-dimensional covalent carbon nitride nanosheets: synthesis, functionalization, and applications. Energy Environ. Sci. 8 (2015), 3092–3108.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 3092-3108
-
-
Zhang, J.1
Chen, Y.2
Wang, X.3
-
26
-
-
84902809964
-
Proton-functionalized two-dimensional graphitic carbon nitride nanosheets: an excellent metal-/label-free biosensing platform
-
[26] Ma, T.Y., Tang, Y., Dai, S., Qiao, A.Z., Proton-functionalized two-dimensional graphitic carbon nitride nanosheets: an excellent metal-/label-free biosensing platform. Small 10:12 (2014), 2382–2389.
-
(2014)
Small
, vol.10
, Issue.12
, pp. 2382-2389
-
-
Ma, T.Y.1
Tang, Y.2
Dai, S.3
Qiao, A.Z.4
-
27
-
-
51349127170
-
High-yield production of graphene by liquid-phase exfoliation of graphite
-
[27] Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun'Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3 (2008), 563–568.
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 563-568
-
-
Hernandez, Y.1
Nicolosi, V.2
Lotya, M.3
Blighe, F.M.4
Sun, Z.5
De, S.6
McGovern, I.T.7
Holland, B.8
Byrne, M.9
Gun'Ko, Y.K.10
Boland, J.J.11
Niraj, P.12
Duesberg, G.13
Krishnamurthy, S.14
Goodhue, R.15
Hutchison, J.16
Scardaci, V.17
Ferrari, A.C.18
Coleman, J.N.19
-
28
-
-
49149087482
-
Towards solutions of single-walled carbon nanotubes in common solvents
-
[28] Bergin, S.D., Nicolosi, V., Streich, P.V., Giordani, S., Sun, Z., Windle, A.H., Ryan, P., Niraj, N.P.P., Wang, Z.T., Carpenter, L., Blau, W.J., Boland, J.J., Hamilton, J.P., Coleman, J.N., Towards solutions of single-walled carbon nanotubes in common solvents. Adv. Mater. 20:10 (2008), 1876–1881.
-
(2008)
Adv. Mater.
, vol.20
, Issue.10
, pp. 1876-1881
-
-
Bergin, S.D.1
Nicolosi, V.2
Streich, P.V.3
Giordani, S.4
Sun, Z.5
Windle, A.H.6
Ryan, P.7
Niraj, N.P.P.8
Wang, Z.T.9
Carpenter, L.10
Blau, W.J.11
Boland, J.J.12
Hamilton, J.P.13
Coleman, J.N.14
-
29
-
-
84860363272
-
Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds
-
[29] Cunningham, G., Lotya, M., Cucinotta, C.S., Sanvito, S., Bergin, S.D., Menzel, R., Shaffer, M.S., Coleman, J.N., Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6 (2012), 3468–3480.
-
(2012)
ACS Nano
, vol.6
, pp. 3468-3480
-
-
Cunningham, G.1
Lotya, M.2
Cucinotta, C.S.3
Sanvito, S.4
Bergin, S.D.5
Menzel, R.6
Shaffer, M.S.7
Coleman, J.N.8
-
30
-
-
57849130247
-
A metal-free polymeric photocatalyst for hydrogen production from water under visible light
-
[30] Wang, X.C., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., Antonietti, M., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8 (2009), 76–80.
-
(2009)
Nat. Mater.
, vol.8
, pp. 76-80
-
-
Wang, X.C.1
Maeda, K.2
Thomas, A.3
Takanabe, K.4
Xin, G.5
Carlsson, J.M.6
Domen, K.7
Antonietti, M.8
-
31
-
-
84877153986
-
Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light
-
[31] Yang, S., Gong, Y., Zhang, J., Zhan, L., Ma, L., Fang, Z., Vajtai, R., Wang, X., Ajayan, P.M., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25:17 (2013), 2452–2456.
-
(2013)
Adv. Mater.
, vol.25
, Issue.17
, pp. 2452-2456
-
-
Yang, S.1
Gong, Y.2
Zhang, J.3
Zhan, L.4
Ma, L.5
Fang, Z.6
Vajtai, R.7
Wang, X.8
Ajayan, P.M.9
-
32
-
-
84920434903
-
4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations
-
[32] Jiang, J., Yang, L.O., Zhu, L., Zheng, A., Zou, J., Yi, X., Tang, H., Dependence of electronic structure of g-C3N4 on the layer number of its nanosheets: a study by Raman spectroscopy coupled with first-principles calculations. Carbon 80 (2014), 213–221.
-
(2014)
Carbon
, vol.80
, pp. 213-221
-
-
Jiang, J.1
Yang, L.O.2
Zhu, L.3
Zheng, A.4
Zou, J.5
Yi, X.6
Tang, H.7
-
33
-
-
67849107990
-
Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments
-
[33] Zhang, Y., Thomas, A., Antonietti, M., Wang, X., Activation of carbon nitride solids by protonation: morphology changes, enhanced ionic conductivity, and photoconduction experiments. J. Am. Chem. Soc. 131 (2009), 50–51.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 50-51
-
-
Zhang, Y.1
Thomas, A.2
Antonietti, M.3
Wang, X.4
-
34
-
-
84929463340
-
4 nanosheets heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods
-
[34] Zhang, S.W., Li, J.X., Wang, X.K., Huang, Y.S., Zeng, M.Y., Xu, J.Z., Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheets heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods. J. Mater. Chem. A 3 (2015), 10119–10126.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 10119-10126
-
-
Zhang, S.W.1
Li, J.X.2
Wang, X.K.3
Huang, Y.S.4
Zeng, M.Y.5
Xu, J.Z.6
-
35
-
-
34249889935
-
Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects
-
[35] Ferrari, A.C., Raman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143 (2007), 47–57.
-
(2007)
Solid State Commun.
, vol.143
, pp. 47-57
-
-
Ferrari, A.C.1
-
36
-
-
84971338597
-
4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO)
-
[36] Wen, M.Q., Xiong, T., Zang, Z.G., Wei, W., Tang, X.S., Dong, F., Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Opt. Express 24 (2016), 10205–10212.
-
(2016)
Opt. Express
, vol.24
, pp. 10205-10212
-
-
Wen, M.Q.1
Xiong, T.2
Zang, Z.G.3
Wei, W.4
Tang, X.S.5
Dong, F.6
-
37
-
-
84904720497
-
2/graphene nanocomposite as a high performance anode for lithium ion batteries
-
[37] Liu, Y., Zhao, Y., Jiao, L., Chen, J., A graphene-like MoS2/graphene nanocomposite as a high performance anode for lithium ion batteries. J. Mater. Chem. A 2 (2014), 13109–13117.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 13109-13117
-
-
Liu, Y.1
Zhao, Y.2
Jiao, L.3
Chen, J.4
-
38
-
-
77956973003
-
Charge-transfer with graphene and nanotube
-
[38] Rao, C.N.R., Voggu, R., Charge-transfer with graphene and nanotube. Mater. Today 13:9 (2010), 34–40.
-
(2010)
Mater. Today
, vol.13
, Issue.9
, pp. 34-40
-
-
Rao, C.N.R.1
Voggu, R.2
-
39
-
-
84907976180
-
Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode
-
[39] Fu, Y., Zhu, J., Hu, C., Wu, X., Wang, X., Covalently coupled hybrid of graphitic carbon nitride with reduced graphene oxide as a superior performance lithium-ion battery anode. Nanoscale 6 (2014), 12555–12564.
-
(2014)
Nanoscale
, vol.6
, pp. 12555-12564
-
-
Fu, Y.1
Zhu, J.2
Hu, C.3
Wu, X.4
Wang, X.5
-
40
-
-
84896386203
-
Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage
-
[40] Wang, X., Weng, Q., Liu, X., Wang, X., Tang, D.M., Tian, W., Zhang, C., Yi, W., Liu, D., Bando, Y., Golberg, D., Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett. 14 (2014), 1164–1171.
-
(2014)
Nano Lett.
, vol.14
, pp. 1164-1171
-
-
Wang, X.1
Weng, Q.2
Liu, X.3
Wang, X.4
Tang, D.M.5
Tian, W.6
Zhang, C.7
Yi, W.8
Liu, D.9
Bando, Y.10
Golberg, D.11
-
41
-
-
84863246895
-
Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response
-
[41] Du, A., Sanvito, S., Li, Z., Wang, D., Jiao, Y., Liao, T., Sun, Q., Ng, Y.H., Zhu, Z., Amal, R., Smith, S.C., Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response. J. Am. Chem. Soc. 134 (2012), 4393–4397.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 4393-4397
-
-
Du, A.1
Sanvito, S.2
Li, Z.3
Wang, D.4
Jiao, Y.5
Liao, T.6
Sun, Q.7
Ng, Y.H.8
Zhu, Z.9
Amal, R.10
Smith, S.C.11
-
42
-
-
84990874689
-
p-Doped graphene/graphitic carbon nitride hybrid electrocatalysts: unraveling charge transfer mechanisms for enhanced hydrogen evolution reaction performance
-
[42] Tan, X., Tahini, H.A., Smith, S.C., p-Doped graphene/graphitic carbon nitride hybrid electrocatalysts: unraveling charge transfer mechanisms for enhanced hydrogen evolution reaction performance. ACS Catal. 6 (2016), 7071–7077.
-
(2016)
ACS Catal.
, vol.6
, pp. 7071-7077
-
-
Tan, X.1
Tahini, H.A.2
Smith, S.C.3
-
43
-
-
0040218420
-
Protonation effect on CN bond length of Alkylamines studied by molecular orbital calculations
-
[43] Ishida, H., Protonation effect on CN bond length of Alkylamines studied by molecular orbital calculations. Z. Naturforsch. 55 (2000), 769–771.
-
(2000)
Z. Naturforsch.
, vol.55
, pp. 769-771
-
-
Ishida, H.1
-
44
-
-
56249136229
-
2 thin films irradiated with a high-energy ion beam
-
[44] Rani, S., Bhatnagar, M.C., Roy, S.C., Puri, N.K., Kanjilal, D., p-Type gas-sensing behavior of undoped SnO2 thin films irradiated with a high-energy ion beam. Sens. Actuator B 135 (2008), 35–39.
-
(2008)
Sens. Actuator B
, vol.135
, pp. 35-39
-
-
Rani, S.1
Bhatnagar, M.C.2
Roy, S.C.3
Puri, N.K.4
Kanjilal, D.5
-
45
-
-
84874872034
-
2 nanocrystalline composite rods by electrospinning method with enhanced gas sensitive performance at room temperature
-
[45] Jiang, C., Xu, S., Zhang, G., Li, L., Yang, Y., Shi, K., Facile synthesis of CaO-SnO2 nanocrystalline composite rods by electrospinning method with enhanced gas sensitive performance at room temperature. CrystEngComm 15 (2013), 2482–2490.
-
(2013)
CrystEngComm
, vol.15
, pp. 2482-2490
-
-
Jiang, C.1
Xu, S.2
Zhang, G.3
Li, L.4
Yang, Y.5
Shi, K.6
-
46
-
-
84858972234
-
Metal oxide nanostructures and their gas sensing properties: a review
-
[46] Sun, Y., Liu, S., Meng, F., Liu, J., Jin, Z., Kong, L.T., Liu, J., Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12 (2012), 2610–2631.
-
(2012)
Sensors
, vol.12
, pp. 2610-2631
-
-
Sun, Y.1
Liu, S.2
Meng, F.3
Liu, J.4
Jin, Z.5
Kong, L.T.6
Liu, J.7
-
47
-
-
84922473331
-
Graphene on paper: a simple low-cost chemical sensing platform
-
[47] Kumar, S., Kaushik, S., Pratap, R., Raghavan, S., Graphene on paper: a simple low-cost chemical sensing platform. ACS Appl. Mater. Interfaces 7 (2015), 2189–2194.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 2189-2194
-
-
Kumar, S.1
Kaushik, S.2
Pratap, R.3
Raghavan, S.4
-
48
-
-
77951256574
-
Graphene-based nitrogen dioxide gas sensors
-
[48] Ko, G., Kim, H.Y., Ahn, J., Park, Y.M., Lee, K.Y., Kim, J., Graphene-based nitrogen dioxide gas sensors. Curr. Appl. Phys. 10 (2010), 1002–1004.
-
(2010)
Curr. Appl. Phys.
, vol.10
, pp. 1002-1004
-
-
Ko, G.1
Kim, H.Y.2
Ahn, J.3
Park, Y.M.4
Lee, K.Y.5
Kim, J.6
-
49
-
-
79957846816
-
2 detection
-
[49] Pearce, R., Lakimov, T., Andersson, M., Hultman, L., Spetz, A.L., Yakimova, R., Epitaxially grown graphene based gas sensors for ultra sensitive NO2 detection. Sens. Actuators B 155 (2011), 451–455.
-
(2011)
Sens. Actuators B
, vol.155
, pp. 451-455
-
-
Pearce, R.1
Lakimov, T.2
Andersson, M.3
Hultman, L.4
Spetz, A.L.5
Yakimova, R.6
-
50
-
-
84914141416
-
2-based gas sensors
-
[50] Donarelli, M., Preziosoa, S., Perrozzi, F., Bisti, F., Nardonea, M., Giancaterini, L., Cantalini, C., Ottavianoa, L., Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors. Sens. Actuators B 207 (2015), 602–613.
-
(2015)
Sens. Actuators B
, vol.207
, pp. 602-613
-
-
Donarelli, M.1
Preziosoa, S.2
Perrozzi, F.3
Bisti, F.4
Nardonea, M.5
Giancaterini, L.6
Cantalini, C.7
Ottavianoa, L.8
-
51
-
-
84976541524
-
Ultrasonic promoted synthesis of novel s-triazine-Schiff base derivatives; molecular structure, spectroscopic studies and their preliminary anti-proliferative activities
-
[51] El-Faham, A., Soliman, S.M., Ghabbour, H.A., Elnakady, Y.A., Mohaya, T.A., Siddiqui, M.R.H., Albericio, F., Ultrasonic promoted synthesis of novel s-triazine-Schiff base derivatives; molecular structure, spectroscopic studies and their preliminary anti-proliferative activities. J. Mol. Struct. 1125 (2016), 121–135.
-
(2016)
J. Mol. Struct.
, vol.1125
, pp. 121-135
-
-
El-Faham, A.1
Soliman, S.M.2
Ghabbour, H.A.3
Elnakady, Y.A.4
Mohaya, T.A.5
Siddiqui, M.R.H.6
Albericio, F.7
|