메뉴 건너뛰기




Volumn 48, Issue 1, 2015, Pages 10-19

Subspace learning for unsupervised feature selection via matrix factorization

Author keywords

Feature selection; Kernel method; Machine learning; Matrix factorization; Subspace distance; Unsupervised learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; DATA MINING; EXTRACTION; FACTORIZATION; ITERATIVE METHODS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MATRIX ALGEBRA; UNSUPERVISED LEARNING;

EID: 85027928396     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.08.004     Document Type: Article
Times cited : (147)

References (44)
  • 4
    • 79960425522 scopus 로고    scopus 로고
    • Finding structure with randomness probabilistic algorithms for constructing approximate matrix decompositions
    • N. Halko, P.-G. Martinsson, and J.A. Tropp Finding structure with randomness probabilistic algorithms for constructing approximate matrix decompositions SIAM Rev. 53 2 2011 217 288
    • (2011) SIAM Rev. , vol.53 , Issue.2 , pp. 217-288
    • Halko, N.1    Martinsson, P.-G.2    Tropp, J.A.3
  • 7
    • 51649097829 scopus 로고    scopus 로고
    • PCA and SVD with nonnegative loadings
    • S. Lipovetsky PCA and SVD with nonnegative loadings Pattern Recognit. 42 1 2009 68 76
    • (2009) Pattern Recognit. , vol.42 , Issue.1 , pp. 68-76
    • Lipovetsky, S.1
  • 8
    • 33747738463 scopus 로고
    • Singular value decomposition and least squares solutions
    • G. Golub, and C. Reinsch Singular value decomposition and least squares solutions Numer. Math. 14 5 1970 403 420
    • (1970) Numer. Math. , vol.14 , Issue.5 , pp. 403-420
    • Golub, G.1    Reinsch, C.2
  • 9
    • 17444431214 scopus 로고    scopus 로고
    • Singular value decomposition in additive, multiplicative, and logistic forms
    • S. Lipovetsky, and W.M. Conklin Singular value decomposition in additive, multiplicative, and logistic forms Pattern Recognit. 38 7 2005 1099 1110
    • (2005) Pattern Recognit. , vol.38 , Issue.7 , pp. 1099-1110
    • Lipovetsky, S.1    Conklin, W.M.2
  • 10
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi, and G.H. John Wrappers for feature subset selection Artif. Intell. 97 1-2 1997 273 324
    • (1997) Artif. Intell. , vol.97 , Issue.12 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 11
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • S. Maldonado, and R. Weber A wrapper method for feature selection using support vector machines Inf. Sci. 179 13 2009 2208 2217
    • (2009) Inf. Sci. , vol.179 , Issue.13 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 14
    • 0035393361 scopus 로고    scopus 로고
    • Multiclass linear dimension reduction by weighted pairwise fisher criteria
    • R. Duin, and R. Haeb-Umbach Multiclass linear dimension reduction by weighted pairwise fisher criteria IEEE Trans. Pattern Anal. Mach. Intell. 23 7 2001 762 766
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.7 , pp. 762-766
    • Duin, R.1    Haeb-Umbach, R.2
  • 15
    • 0019608020 scopus 로고
    • On an extended Fisher criterion for feature selection
    • W. Malina On an extended Fisher criterion for feature selection IEEE Trans. Pattern Anal. Mach. Intell. 5 1981 611 614
    • (1981) IEEE Trans. Pattern Anal. Mach. Intell. , vol.5 , pp. 611-614
    • Malina, W.1
  • 16
    • 4544340625 scopus 로고    scopus 로고
    • Essence of kernel Fisher discriminant KPCA plus LDA
    • J. Yang, Z. Jin, J. Yang, D. Zhang, and A.F. Frangi Essence of kernel Fisher discriminant KPCA plus LDA Pattern Recognit. 37 10 2004 2097 2100
    • (2004) Pattern Recognit. , vol.37 , Issue.10 , pp. 2097-2100
    • Yang, J.1    Jin, Z.2    Yang, J.3    Zhang, D.4    Frangi, A.F.5
  • 18
    • 33144458972 scopus 로고    scopus 로고
    • Efficient and robust feature extraction by maximum margin criterion
    • H. Li, T. Jiang, and K. Zhang Efficient and robust feature extraction by maximum margin criterion IEEE Trans. Neural Netw. 17 1 2006 157 165
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.1 , pp. 157-165
    • Li, H.1    Jiang, T.2    Zhang, K.3
  • 19
    • 84878017358 scopus 로고    scopus 로고
    • Large margin subspace learning for feature selection
    • B. Liu, B. Fang, X. Liu, J. Chen, Z. Huang, and X. He Large margin subspace learning for feature selection Pattern Recognit. 46 10 2013 2798 2806
    • (2013) Pattern Recognit. , vol.46 , Issue.10 , pp. 2798-2806
    • Liu, B.1    Fang, B.2    Liu, X.3    Chen, J.4    Huang, Z.5    He, X.6
  • 20
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash, and H. Liu Consistency-based search in feature selection Artif. Intell. 151 2003 155 176
    • (2003) Artif. Intell. , vol.151 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 21
    • 64149088421 scopus 로고    scopus 로고
    • On the consistency of feature selection using greedy least squares regression
    • T. Zhang On the consistency of feature selection using greedy least squares regression J. Mach. Learn. Res. 10 2009 555 568
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 555-568
    • Zhang, T.1
  • 24
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A.L. Blum, and P. Langley Selection of relevant features and examples in machine learning Artif. Intell. 97 1997 245 271
    • (1997) Artif. Intell. , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 25
    • 25144492516 scopus 로고    scopus 로고
    • Efficient feature selection via analysis of relevance and redundancy
    • L. Yu, and H. Liu Efficient feature selection via analysis of relevance and redundancy J. Mach. Learn. Res. 5 2004 1205 1224
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1205-1224
    • Yu, L.1    Liu, H.2
  • 26
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • R. Battiti Using mutual information for selecting features in supervised neural net learning IEEE Trans. Neural Netw. 5 4 1994 537 550
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 27
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by mutual information based on Parzen window
    • N. Kwak, and C.-H. Choi Input feature selection by mutual information based on Parzen window IEEE Trans. Pattern Anal. Mach. Intell. 24 12 2002 1667 1671
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.-H.2
  • 28
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • N. Kwak, and C.-H. Choi Input feature selection for classification problems IEEE Trans. Neural Netw. 13 1 2002 143 159
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.-H.2
  • 30
    • 84876024189 scopus 로고    scopus 로고
    • Efficient greedy feature selection for unsupervised learning
    • A.K. Farahat, A. Ghodsi, and M.S. Kamel Efficient greedy feature selection for unsupervised learning Knowl. Inf. Syst. 35 2013 285 310
    • (2013) Knowl. Inf. Syst. , vol.35 , pp. 285-310
    • Farahat, A.K.1    Ghodsi, A.2    Kamel, M.S.3
  • 33
    • 84995303159 scopus 로고    scopus 로고
    • Unsupervised dimensionality reduction via gradient-based matrix factorization with two adaptive learning rates
    • V. Nikulin, T.-H. Huang, Unsupervised dimensionality reduction via gradient-based matrix factorization with two adaptive learning rates, in: Workshop on Unsupervised and Transfer Learning, 2012, pp. 181-195.
    • (2012) Workshop on Unsupervised and Transfer Learning , pp. 181-195
    • Nikulin, V.1    Huang, T.-H.2
  • 35
    • 29144498423 scopus 로고    scopus 로고
    • Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition
    • L. Wang, X. Wang, and J. Feng Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition Pattern Recognit. 39 2006 456 464
    • (2006) Pattern Recognit. , vol.39 , pp. 456-464
    • Wang, L.1    Wang, X.2    Feng, J.3
  • 36
    • 4644322072 scopus 로고    scopus 로고
    • Learning over sets using kernel principal angles
    • L. Wolf, and A. Shashua Learning over sets using kernel principal angles J. Mach. Learn. Res. 4 2003 913 931
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 913-931
    • Wolf, L.1    Shashua, A.2
  • 37
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D.D. Lee, and H.S. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 1999 788 791
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 38
    • 33749255098 scopus 로고    scopus 로고
    • On the equivalence of nonnegative matrix factorization and spectral clustering
    • C. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, in: SIAM International Conference on Data Mining, 2005, pp. 606-610.
    • (2005) SIAM International Conference on Data Mining , pp. 606-610
    • Ding, C.1    He, X.2    Simon, H.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.