-
4
-
-
79960425522
-
Finding structure with randomness probabilistic algorithms for constructing approximate matrix decompositions
-
N. Halko, P.-G. Martinsson, and J.A. Tropp Finding structure with randomness probabilistic algorithms for constructing approximate matrix decompositions SIAM Rev. 53 2 2011 217 288
-
(2011)
SIAM Rev.
, vol.53
, Issue.2
, pp. 217-288
-
-
Halko, N.1
Martinsson, P.-G.2
Tropp, J.A.3
-
7
-
-
51649097829
-
PCA and SVD with nonnegative loadings
-
S. Lipovetsky PCA and SVD with nonnegative loadings Pattern Recognit. 42 1 2009 68 76
-
(2009)
Pattern Recognit.
, vol.42
, Issue.1
, pp. 68-76
-
-
Lipovetsky, S.1
-
8
-
-
33747738463
-
Singular value decomposition and least squares solutions
-
G. Golub, and C. Reinsch Singular value decomposition and least squares solutions Numer. Math. 14 5 1970 403 420
-
(1970)
Numer. Math.
, vol.14
, Issue.5
, pp. 403-420
-
-
Golub, G.1
Reinsch, C.2
-
9
-
-
17444431214
-
Singular value decomposition in additive, multiplicative, and logistic forms
-
S. Lipovetsky, and W.M. Conklin Singular value decomposition in additive, multiplicative, and logistic forms Pattern Recognit. 38 7 2005 1099 1110
-
(2005)
Pattern Recognit.
, vol.38
, Issue.7
, pp. 1099-1110
-
-
Lipovetsky, S.1
Conklin, W.M.2
-
10
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi, and G.H. John Wrappers for feature subset selection Artif. Intell. 97 1-2 1997 273 324
-
(1997)
Artif. Intell.
, vol.97
, Issue.12
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
11
-
-
64749086339
-
A wrapper method for feature selection using support vector machines
-
S. Maldonado, and R. Weber A wrapper method for feature selection using support vector machines Inf. Sci. 179 13 2009 2208 2217
-
(2009)
Inf. Sci.
, vol.179
, Issue.13
, pp. 2208-2217
-
-
Maldonado, S.1
Weber, R.2
-
12
-
-
78149289039
-
Feature selection for clustering - A filter solution
-
M. Dash, K. Choi, P. Scheuermann, H. Liu, Feature selection for clustering - a filter solution, in: IEEE International Conference on Data Mining, 2002, pp. 115-122.
-
(2002)
IEEE International Conference on Data Mining
, pp. 115-122
-
-
Dash, M.1
Choi, K.2
Scheuermann, P.3
Liu, H.4
-
14
-
-
0035393361
-
Multiclass linear dimension reduction by weighted pairwise fisher criteria
-
R. Duin, and R. Haeb-Umbach Multiclass linear dimension reduction by weighted pairwise fisher criteria IEEE Trans. Pattern Anal. Mach. Intell. 23 7 2001 762 766
-
(2001)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.23
, Issue.7
, pp. 762-766
-
-
Duin, R.1
Haeb-Umbach, R.2
-
15
-
-
0019608020
-
On an extended Fisher criterion for feature selection
-
W. Malina On an extended Fisher criterion for feature selection IEEE Trans. Pattern Anal. Mach. Intell. 5 1981 611 614
-
(1981)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.5
, pp. 611-614
-
-
Malina, W.1
-
16
-
-
4544340625
-
Essence of kernel Fisher discriminant KPCA plus LDA
-
J. Yang, Z. Jin, J. Yang, D. Zhang, and A.F. Frangi Essence of kernel Fisher discriminant KPCA plus LDA Pattern Recognit. 37 10 2004 2097 2100
-
(2004)
Pattern Recognit.
, vol.37
, Issue.10
, pp. 2097-2100
-
-
Yang, J.1
Jin, Z.2
Yang, J.3
Zhang, D.4
Frangi, A.F.5
-
17
-
-
14344253100
-
Margin based feature selection - Theory and algorithms
-
R. Gilad-Bachrach, A. Navot, N. Tishby, Margin based feature selection - theory and algorithms, in: Proceedings of the Twenty-First International Conference on Machine Learning, 2004, pp. 43-50.
-
(2004)
Proceedings of the Twenty-First International Conference on Machine Learning
, pp. 43-50
-
-
Gilad-Bachrach, R.1
Navot, A.2
Tishby, N.3
-
18
-
-
33144458972
-
Efficient and robust feature extraction by maximum margin criterion
-
H. Li, T. Jiang, and K. Zhang Efficient and robust feature extraction by maximum margin criterion IEEE Trans. Neural Netw. 17 1 2006 157 165
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.1
, pp. 157-165
-
-
Li, H.1
Jiang, T.2
Zhang, K.3
-
19
-
-
84878017358
-
Large margin subspace learning for feature selection
-
B. Liu, B. Fang, X. Liu, J. Chen, Z. Huang, and X. He Large margin subspace learning for feature selection Pattern Recognit. 46 10 2013 2798 2806
-
(2013)
Pattern Recognit.
, vol.46
, Issue.10
, pp. 2798-2806
-
-
Liu, B.1
Fang, B.2
Liu, X.3
Chen, J.4
Huang, Z.5
He, X.6
-
20
-
-
0242302657
-
Consistency-based search in feature selection
-
M. Dash, and H. Liu Consistency-based search in feature selection Artif. Intell. 151 2003 155 176
-
(2003)
Artif. Intell.
, vol.151
, pp. 155-176
-
-
Dash, M.1
Liu, H.2
-
21
-
-
64149088421
-
On the consistency of feature selection using greedy least squares regression
-
T. Zhang On the consistency of feature selection using greedy least squares regression J. Mach. Learn. Res. 10 2009 555 568
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 555-568
-
-
Zhang, T.1
-
22
-
-
84862024860
-
Feature selection via dependence maximization
-
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt Feature selection via dependence maximization J. Mach. Learn. Res. 13 2012 1393 1434
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 1393-1434
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Bedo, J.4
Borgwardt, K.5
-
24
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
A.L. Blum, and P. Langley Selection of relevant features and examples in machine learning Artif. Intell. 97 1997 245 271
-
(1997)
Artif. Intell.
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
25
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
L. Yu, and H. Liu Efficient feature selection via analysis of relevance and redundancy J. Mach. Learn. Res. 5 2004 1205 1224
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
26
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
R. Battiti Using mutual information for selecting features in supervised neural net learning IEEE Trans. Neural Netw. 5 4 1994 537 550
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, Issue.4
, pp. 537-550
-
-
Battiti, R.1
-
27
-
-
0036933407
-
Input feature selection by mutual information based on Parzen window
-
N. Kwak, and C.-H. Choi Input feature selection by mutual information based on Parzen window IEEE Trans. Pattern Anal. Mach. Intell. 24 12 2002 1667 1671
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, Issue.12
, pp. 1667-1671
-
-
Kwak, N.1
Choi, C.-H.2
-
28
-
-
0036127473
-
Input feature selection for classification problems
-
N. Kwak, and C.-H. Choi Input feature selection for classification problems IEEE Trans. Neural Netw. 13 1 2002 143 159
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, Issue.1
, pp. 143-159
-
-
Kwak, N.1
Choi, C.-H.2
-
30
-
-
84876024189
-
Efficient greedy feature selection for unsupervised learning
-
A.K. Farahat, A. Ghodsi, and M.S. Kamel Efficient greedy feature selection for unsupervised learning Knowl. Inf. Syst. 35 2013 285 310
-
(2013)
Knowl. Inf. Syst.
, vol.35
, pp. 285-310
-
-
Farahat, A.K.1
Ghodsi, A.2
Kamel, M.S.3
-
33
-
-
84995303159
-
Unsupervised dimensionality reduction via gradient-based matrix factorization with two adaptive learning rates
-
V. Nikulin, T.-H. Huang, Unsupervised dimensionality reduction via gradient-based matrix factorization with two adaptive learning rates, in: Workshop on Unsupervised and Transfer Learning, 2012, pp. 181-195.
-
(2012)
Workshop on Unsupervised and Transfer Learning
, pp. 181-195
-
-
Nikulin, V.1
Huang, T.-H.2
-
35
-
-
29144498423
-
Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition
-
L. Wang, X. Wang, and J. Feng Subspace distance analysis with application to adaptive Bayesian algorithm for face recognition Pattern Recognit. 39 2006 456 464
-
(2006)
Pattern Recognit.
, vol.39
, pp. 456-464
-
-
Wang, L.1
Wang, X.2
Feng, J.3
-
36
-
-
4644322072
-
Learning over sets using kernel principal angles
-
L. Wolf, and A. Shashua Learning over sets using kernel principal angles J. Mach. Learn. Res. 4 2003 913 931
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 913-931
-
-
Wolf, L.1
Shashua, A.2
-
37
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D.D. Lee, and H.S. Seung Learning the parts of objects by non-negative matrix factorization Nature 401 1999 788 791
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
38
-
-
33749255098
-
On the equivalence of nonnegative matrix factorization and spectral clustering
-
C. Ding, X. He, H.D. Simon, On the equivalence of nonnegative matrix factorization and spectral clustering, in: SIAM International Conference on Data Mining, 2005, pp. 606-610.
-
(2005)
SIAM International Conference on Data Mining
, pp. 606-610
-
-
Ding, C.1
He, X.2
Simon, H.D.3
-
40
-
-
84864039505
-
Laplacian score for feature selection
-
X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: Advances in Neural Information Processing Systems, 2005, pp. 507-514.
-
(2005)
Advances in Neural Information Processing Systems
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
41
-
-
77956216411
-
Unsupervised feature selection for multi-cluster data
-
D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, pp. 333-342.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
-
42
-
-
84881041271
-
21 norm regularized discriminative feature selection for unsupervised learning
-
2, 1 norm regularized discriminative feature selection for unsupervised learning, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, 2011, pp. 1589-1594.
-
(2011)
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence
, pp. 1589-1594
-
-
Yang, Y.1
Shen, H.2
Ma, Z.3
Huang, Z.4
Zhou, X.5
|