메뉴 건너뛰기




Volumn 26, Issue 11, 2015, Pages 2664-2677

Active Learning-Based Pedagogical Rule Extraction

Author keywords

Active learning; comprehensibility; neural network; random forest (RF); rule extraction; Support vector machine (SVM)

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; DECISION TREES; EXTRACTION; NEURAL NETWORKS; SUPPORT VECTOR MACHINES;

EID: 85027923673     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2015.2389037     Document Type: Article
Times cited : (60)

References (61)
  • 1
    • 0003487601 scopus 로고    scopus 로고
    • Neural networks: A pattern recognition perspective
    • C. M. Bishop, "Neural networks: A pattern recognition perspective," Neural Netw., pp. 1-23, 1996.
    • (1996) Neural Netw , pp. 1-23
    • Bishop, C.M.1
  • 3
    • 0002900451 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • New York, NY, USA: Springer-Verlag
    • T. G. Dietterich, "Ensemble methods in machine learning," in Multiple Classifier Systems. New York, NY, USA: Springer-Verlag, 2000.
    • (2000) Multiple Classifier Systems
    • Dietterich, T.G.1
  • 4
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • Jul./Aug.
    • S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, "Benchmarking classification models for software defect prediction: A proposed framework and novel findings," IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485-496, Jul./Aug. 2008.
    • (2008) IEEE Trans. Softw. Eng. , vol.34 , Issue.4 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 5
  • 6
    • 78649436569 scopus 로고    scopus 로고
    • Winning the KDD cup orange challenge with ensemble selection
    • Paris, France
    • A. Niculescu-Mizil et al., "Winning the KDD cup orange challenge with ensemble selection," in Proc. JMLR Workshop Conf., vol. 7, Paris, France, 2009, pp. 23-34.
    • (2009) Proc. JMLR Workshop Conf. , vol.7 , pp. 23-34
    • Niculescu-Mizil, A.1
  • 7
    • 0035210113 scopus 로고    scopus 로고
    • Acceptance of rules generated by machine learning among medical experts
    • M. J. Pazzani, S. Mani, and W. R. Shankle, "Acceptance of rules generated by machine learning among medical experts," Methods Inf. Med., vol. 40, no. 5, pp. 380-385, 2001.
    • (2001) Methods Inf. Med. , vol.40 , Issue.5 , pp. 380-385
    • Pazzani, M.J.1    Mani, S.2    Shankle, W.R.3
  • 9
    • 34447292534 scopus 로고    scopus 로고
    • Comprehensible credit scoring models using rule extraction from support vector machines
    • Dec.
    • D. Martens, B. Baesens, T. Van Gestel, and J. Vanthienen, "Comprehensible credit scoring models using rule extraction from support vector machines," Eur. J. Oper. Res., vol. 183, no. 3, pp. 1466-1476, Dec. 2007.
    • (2007) Eur. J. Oper. Res. , vol.183 , Issue.3 , pp. 1466-1476
    • Martens, D.1    Baesens, B.2    Van Gestel, T.3    Vanthienen, J.4
  • 11
    • 84990553644 scopus 로고
    • Multiattribute data presentation and human judgment: A cognitive fit perspective
    • Sep.
    • N. S. Umanath and I. Vessey, "Multiattribute data presentation and human judgment: A cognitive fit perspective," Decision Sci., vol. 25, nos. 5-6, pp. 795-824, Sep. 1994.
    • (1994) Decision Sci. , vol.25 , Issue.5-6 , pp. 795-824
    • Umanath, N.S.1    Vessey, I.2
  • 12
    • 0034561873 scopus 로고    scopus 로고
    • Providing decisional guidance for multicriteria decision making in groups
    • Dec.
    • M. Limayem and G. DeSanctis, "Providing decisional guidance for multicriteria decision making in groups," Inf. Syst. Res., vol. 11, no. 4, pp. 386-401, Dec. 2000.
    • (2000) Inf. Syst. Res. , vol.11 , Issue.4 , pp. 386-401
    • Limayem, M.1    DeSanctis, G.2
  • 13
    • 9144266376 scopus 로고    scopus 로고
    • DSS effectiveness in marketing resource allocation decisions: Reality vs. Perception
    • Sep.
    • G. L. Lilien, A. Rangaswamy, G. H. Van Bruggen, and K. Starke, "DSS effectiveness in marketing resource allocation decisions: Reality vs. perception," Inf. Syst. Res., vol. 15, no. 3, pp. 216-235, Sep. 2004.
    • (2004) Inf. Syst. Res. , vol.15 , Issue.3 , pp. 216-235
    • Lilien, G.L.1    Rangaswamy, A.2    Van Bruggen, G.H.3    Starke, K.4
  • 14
    • 33847131967 scopus 로고    scopus 로고
    • The differential use and effect of knowledge-based system explanations in novice and expert judgment decisions
    • Mar.
    • V. Arnold, N. Clark, P. A. Collier, S. A. Leech, and S. G. Sutton, "The differential use and effect of knowledge-based system explanations in novice and expert judgment decisions," MIS Quart., vol. 30, no. 1, pp. 79-97, Mar. 2006.
    • (2006) MIS Quart , vol.30 , Issue.1 , pp. 79-97
    • Arnold, V.1    Clark, N.2    Collier, P.A.3    Leech, S.A.4    Sutton, S.G.5
  • 15
    • 77954295387 scopus 로고    scopus 로고
    • How incorporating feedback mechanisms in a DSS affects DSS evaluations
    • Dec.
    • U. Kayande, A. D. Bruyn, G. L. Lilien, A. Rangaswamy, and G. H. van Bruggen, "How incorporating feedback mechanisms in a DSS affects DSS evaluations," Inf. Syst. Res., vol. 20, no. 4, pp. 527-546, Dec. 2008.
    • (2008) Inf. Syst. Res. , vol.20 , Issue.4 , pp. 527-546
    • Kayande, U.1    Bruyn, A.D.2    Lilien, G.L.3    Rangaswamy, A.4    Van Bruggen, G.H.5
  • 16
    • 85028208443 scopus 로고
    • The comprehensibility manifesto
    • Y. Kodratoff, "The comprehensibility manifesto," AI Commun., 1994.
    • (1994) AI Commun
    • Kodratoff, Y.1
  • 17
    • 85156234012 scopus 로고    scopus 로고
    • Extracting tree-structured representations of trained networks
    • Cambridge, MA, USA: MIT Press
    • M. W. Craven and J. W. Shavlik, "Extracting tree-structured representations of trained networks," in Advances in Neural Information Processing Systems, vol. 8. Cambridge, MA, USA: MIT Press, 1996, pp. 24-30.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 24-30
    • Craven, M.W.1    Shavlik, J.W.2
  • 18
    • 68549115709 scopus 로고    scopus 로고
    • Decompositional rule extraction from support vector machines by active learning
    • Feb.
    • D. Martens, T. Van Gestel, and B. Baesens, "Decompositional rule extraction from support vector machines by active learning," IEEE Trans. Knowl. Data Eng., vol. 21, no. 2, pp. 178-191, Feb. 2008.
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.2 , pp. 178-191
    • Martens, D.1    Van Gestel, T.2    Baesens, B.3
  • 19
    • 83655163932 scopus 로고    scopus 로고
    • Guest editorial white box nonlinear prediction models
    • Dec.
    • B. Baesens, D. Martens, R. Setiono, and J. M. Zurada, "Guest editorial white box nonlinear prediction models," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 2406-2408, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 2406-2408
    • Baesens, B.1    Martens, D.2    Setiono, R.3    Zurada, J.M.4
  • 20
    • 0002283033 scopus 로고    scopus 로고
    • From data mining to knowledge discovery in databases
    • U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, "From data mining to knowledge discovery in databases," AI Mag., vol. 17, no. 3, pp. 37-54, 1996.
    • (1996) AI Mag. , vol.17 , Issue.3 , pp. 37-54
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 21
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • L. Breiman, "Statistical modeling: The two cultures," Statist. Sci., vol. 16, no. 3, pp. 199-231, 2001.
    • (2001) Statist. Sci. , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 23
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Dec.
    • R. Andrews, J. Diederich, and A. B. Tickle, "Survey and critique of techniques for extracting rules from trained artificial neural networks," Knowl.-Based Syst., vol. 8, no. 6, pp. 373-389, Dec. 1995.
    • (1995) Knowl.-Based Syst. , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 24
    • 76749170318 scopus 로고    scopus 로고
    • An efficient explanation of individual classifications using game theory
    • Mar.
    • E. Strumbelj and I. Kononenko, "An efficient explanation of individual classifications using game theory," J. Mach. Learn., vol. 11, pp. 1-18, Mar. 2010.
    • (2010) J. Mach. Learn. , vol.11 , pp. 1-18
    • Strumbelj, E.1    Kononenko, I.2
  • 25
    • 52949101606 scopus 로고    scopus 로고
    • Explaining classifications for individual instances
    • May
    • M. Robnik-Sikonja and I. Kononenko, "Explaining classifications for individual instances," IEEE Trans. Knowl. Data Eng., vol. 20, no. 5, pp. 589-600, May 2008.
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.5 , pp. 589-600
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 26
    • 84919337364 scopus 로고    scopus 로고
    • Explaining data-driven document classifications
    • Mar.
    • D. Martens and F. Provost, "Explaining data-driven document classifications," MIS Quart., vol. 38, no. 1, pp. 73-100, Mar. 2014.
    • (2014) MIS Quart. , vol.38 , Issue.1 , pp. 73-100
    • Martens, D.1    Provost, F.2
  • 27
    • 0033343363 scopus 로고    scopus 로고
    • ANN-DT: An algorithm for extraction of decision trees from artificial neural networks
    • Nov.
    • G. P. J. Schmitz, C. Aldrich, and F. S. Gouws, "ANN-DT: An algorithm for extraction of decision trees from artificial neural networks," IEEE Trans. Neural Netw., vol. 10, no. 6, pp. 1392-1401, Nov. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.6 , pp. 1392-1401
    • Schmitz, G.P.J.1    Aldrich, C.2    Gouws, F.S.3
  • 29
    • 33748862421 scopus 로고    scopus 로고
    • Rule-based learning systems for support vector machines
    • H. Nuñez, C. Angulo, and A. Català, "Rule-based learning systems for support vector machines," Neural Process. Lett., vol. 24, no. 1, pp. 1-18, 2002.
    • (2002) Neural Process. Lett. , vol.24 , Issue.1 , pp. 1-18
    • Nuñez, H.1    Angulo, C.2    Català, A.3
  • 30
    • 0038030864 scopus 로고    scopus 로고
    • Extracting symbolic rules from trained neural network ensembles
    • Jan.
    • Z.-H. Zhou, Y. Jiang, and S.-F. Chen, "Extracting symbolic rules from trained neural network ensembles," AI Commun., vol. 16, no. 1, pp. 3-15, Jan. 2003.
    • (2003) AI Commun. , vol.16 , Issue.1 , pp. 3-15
    • Zhou, Z.-H.1    Jiang, Y.2    Chen, S.-F.3
  • 31
    • 38049061293 scopus 로고    scopus 로고
    • Extraction of fuzzy rules from trained neural network using evolutionary algorithm
    • U. Markowska-Kaczmar and W. Trelak, "Extraction of fuzzy rules from trained neural network using evolutionary algorithm," in Proc. Eur. Symp. Artif. Neural Netw. (ESANN), 2003, pp. 149-154.
    • (2003) Proc. Eur. Symp. Artif. Neural Netw. (ESANN) , pp. 149-154
    • Markowska-Kaczmar, U.1    Trelak, W.2
  • 32
    • 2942627098 scopus 로고    scopus 로고
    • A new approach to the extraction of ANN rules and to their generalization capacity through GP
    • J. R. Rabunãl, J. Dorado, A. Pazos, J. Pereira, and D. Rivero, "A new approach to the extraction of ANN rules and to their generalization capacity through GP," Neural Comput., vol. 16, no. 7, pp. 1483-1523, 2004.
    • (2004) Neural Comput , vol.16 , Issue.7 , pp. 1483-1523
    • Rabunãl, J.R.1    Dorado, J.2    Pazos, A.3    Pereira, J.4    Rivero, D.5
  • 34
    • 33745202712 scopus 로고    scopus 로고
    • Eclectic rule-extraction from support vector machines
    • N. Barakat and J. Diederich, "Eclectic rule-extraction from support vector machines," Int. J. Comput. Intell., vol. 2, no. 1, pp. 59-62, 2005.
    • (2005) Int. J. Comput. Intell. , vol.2 , Issue.1 , pp. 59-62
    • Barakat, N.1    Diederich, J.2
  • 35
  • 36
    • 84870011323 scopus 로고    scopus 로고
    • Risk management and regulatory compliance: A data mining framework based on neural network rule extraction
    • Milwaukee, WI, USA, Dec.
    • R. Setiono, B. Baesens, and C. Mues, "Risk management and regulatory compliance: A data mining framework based on neural network rule extraction," in Proc. Int. Conf. Inf. Syst., Milwaukee, WI, USA, Dec. 2006.
    • (2006) Proc. Int. Conf. Inf. Syst.
    • Setiono, R.1    Baesens, B.2    Mues, C.3
  • 38
    • 34247555584 scopus 로고    scopus 로고
    • Rule extraction from support vector machines: A sequential covering approach
    • Jun.
    • N. H. Barakat and A. Bradley, "Rule extraction from support vector machines: A sequential covering approach," IEEE Trans. Knowl. Data Eng., vol. 19, no. 6, pp. 729-741, Jun. 2007.
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.6 , pp. 729-741
    • Barakat, N.H.1    Bradley, A.2
  • 39
    • 77951181829 scopus 로고    scopus 로고
    • Support vector regression based hybrid rule extraction methods for forecasting
    • Aug.
    • M. A. H. Farquad, V. Ravi, and S. B. Raju, "Support vector regression based hybrid rule extraction methods for forecasting," Expert Syst. Appl., vol. 37, no. 8, pp. 5577-5589, Aug. 2010.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.8 , pp. 5577-5589
    • Farquad, M.A.H.1    Ravi, V.2    Raju, S.B.3
  • 40
    • 84863248452 scopus 로고    scopus 로고
    • Rule extraction algorithm from support vector machines and its application to credit screening
    • Sep.
    • C.-T. Su and Y.-C. Chen, "Rule extraction algorithm from support vector machines and its application to credit screening," Soft Comput., vol. 16, no. 4, pp. 645-658, Sep. 2011.
    • (2011) Soft Comput. , vol.16 , Issue.4 , pp. 645-658
    • Su, C.-T.1    Chen, Y.-C.2
  • 41
    • 83655193106 scopus 로고    scopus 로고
    • Extracting rules from neural networks as decision diagrams
    • Dec.
    • J. Chorowski and J. M. Zurada, "Extracting rules from neural networks as decision diagrams," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 2435-2446, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 2435-2446
    • Chorowski, J.1    Zurada, J.M.2
  • 42
    • 84920171485 scopus 로고
    • Using sampling and queries to extract rules from trained neural networks
    • New Brunswick, NJ, USA
    • M. Craven and J. Shavlik, "Using sampling and queries to extract rules from trained neural networks," in Proc. 11th Int. Conf. Mach. Learn., New Brunswick, NJ, USA, 1994, pp. 37-45.
    • (1994) Proc. 11th Int. Conf. Mach. Learn. , pp. 37-45
    • Craven, M.1    Shavlik, J.2
  • 43
    • 12444252767 scopus 로고    scopus 로고
    • Rule extraction: Where do we go from here
    • Working Paper
    • M. Craven and J. Shavlik, "Rule extraction: Where do we go from here?" in Proc. Mach. Learn. Res. Group Working Paper, 1999, pp. 1-6.
    • (1999) Proc. Mach. Learn. Res. Group , pp. 1-6
    • Craven, M.1    Shavlik, J.2
  • 44
    • 79951515446 scopus 로고    scopus 로고
    • An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models
    • Apr.
    • K. Dejaeger, J. Huysmans, C. Mues, J. Vanthienen, and B. Baesens, "An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models," Decision Support Syst., vol. 51, no. 1, pp. 141-154, Apr. 2010.
    • (2010) Decision Support Syst. , vol.51 , Issue.1 , pp. 141-154
    • Dejaeger, K.1    Huysmans, J.2    Mues, C.3    Vanthienen, J.4    Baesens, B.5
  • 45
    • 33846942854 scopus 로고    scopus 로고
    • Discovering the mysteries of neural networks
    • Dec.
    • U. Markowska-Kaczmar and M. Chumieja, "Discovering the mysteries of neural networks," Int. J. Hybrid Intell. Syst., vol. 1, nos. 3-4, pp. 153-163, Dec. 2004.
    • (2004) Int. J. Hybrid Intell. Syst. , vol.1 , Issue.3-4 , pp. 153-163
    • Markowska-Kaczmar, U.1    Chumieja, M.2
  • 47
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • May
    • D. Cohn, L. Atlas, and R. Ladner, "Improving generalization with active learning," Mach. Learn., vol. 15, no. 2, pp. 201-221, May 1994.
    • (1994) Mach. Learn. , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 48
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • B. D. Ripley, "Neural networks and related methods for classification," J. Roy. Statist. Soc. Ser. B (Methodological), vol. 56, no. 3, pp. 409-456, 1994.
    • (1994) J. Roy. Statist. Soc. Ser. B (Methodological) , vol.56 , Issue.3 , pp. 409-456
    • Ripley, B.D.1
  • 49
    • 84968497764 scopus 로고
    • Conditioning of quasi-Newton methods for function minimization
    • D. F. Shanno, "Conditioning of quasi-Newton methods for function minimization," Math. Comput., vol. 24, no. 111, pp. 647-656, 1970.
    • (1970) Math. Comput. , vol.24 , Issue.111 , pp. 647-656
    • Shanno, D.F.1
  • 51
    • 84946031884 scopus 로고
    • Procedures for detecting outlying observations in samples
    • F. E. Grubbs, "Procedures for detecting outlying observations in samples," Technometrics, vol. 11, no. 1, pp. 1-21, 1969.
    • (1969) Technometrics , vol.11 , Issue.1 , pp. 1-21
    • Grubbs, F.E.1
  • 52
    • 85149612939 scopus 로고
    • Fast effective rule induction
    • Tahoe City, CA, USA
    • W. W. Cohen, "Fast effective rule induction," in Proc. 12th Int. Conf. Mach. Learn., vol. 3. Tahoe City, CA, USA, 1995, pp. 115-123.
    • (1995) Proc. 12th Int. Conf. Mach. Learn. , vol.3 , pp. 115-123
    • Cohen, W.W.1
  • 54
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • J. C. Platt, "Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods," Adv. Large Margin Classifiers, vol. 10, no. 3, pp. 61-74, 1999.
    • (1999) Adv. Large Margin Classifiers , vol.10 , Issue.3 , pp. 61-74
    • Platt, J.C.1
  • 55
    • 79954992997 scopus 로고    scopus 로고
    • A simple method for estimating conditional probabilities for SVMs
    • Humboldt Univ. Berlin, Berlin, Germany, Tech. Rep.
    • S. Rüping, "A simple method for estimating conditional probabilities for SVMs," Dept. Comput. Sci., Humboldt Univ. Berlin, Berlin, Germany, Tech. Rep., 2004.
    • (2004) Dept. Comput. Sci.
    • Rüping, S.1
  • 56
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 59
    • 0037534150 scopus 로고    scopus 로고
    • Using neural network rule extraction and decision tables for credit-risk evaluation
    • B. Baesens, R. Setiono, C. Mues, and J. Vanthienen, "Using neural network rule extraction and decision tables for credit-risk evaluation," Manage. Sci., vol. 49, no. 3, pp. 312-329, 2003.
    • (2003) Manage. Sci. , vol.49 , Issue.3 , pp. 312-329
    • Baesens, B.1    Setiono, R.2    Mues, C.3    Vanthienen, J.4
  • 60
    • 84919632065 scopus 로고    scopus 로고
    • Learning understandable neural networks with nonnegative weight constraints
    • Jan.
    • J. Chorowski and J. M. Zurada, "Learning understandable neural networks with nonnegative weight constraints," IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 1, pp. 62-69, Jan. 2015.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.1 , pp. 62-69
    • Chorowski, J.1    Zurada, J.M.2
  • 61
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Jan.
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Jan. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.