-
1
-
-
10944272743
-
Antibacterial resistance worldwide: Causes, challenges and responses
-
Levy, S. B.; Marshall, B. Antibacterial Resistance Worldwide: Causes, Challenges and Responses. Nat. Med. 2004, 10, S122−S129.
-
(2004)
Nat. Med.
, vol.10
, pp. S122-S129
-
-
Levy, S.B.1
Marshall, B.2
-
2
-
-
70350620147
-
Application of carbon nanotube technology for removal of contaminants in drinking water: A review
-
Upadhyayula, V. K.; Deng, S.; Mitchell, M. C.; Smith, G. B. Application of Carbon Nanotube Technology for Removal of Contaminants in Drinking Water: A Review. Sci. Total Environ. 2009, 408, 1−13.
-
(2009)
Sci. Total Environ.
, vol.408
, pp. 1-13
-
-
Upadhyayula, V.K.1
Deng, S.2
Mitchell, M.C.3
Smith, G.B.4
-
3
-
-
84861134871
-
Dosing regimen matters: The importance of early intervention and rapid attainment of the pharmacokinetic/Pharmacodynamic target
-
Martinez, M. N.; Papich, M. G.; Drusano, G. L. Dosing Regimen Matters: The Importance of Early Intervention and Rapid Attainment of The Pharmacokinetic/Pharmacodynamic Target. Antimicrob. Agents Chemother. 2012, 56, 2795−2805.
-
(2012)
Antimicrob. Agents Chemother.
, vol.56
, pp. 2795-2805
-
-
Martinez, M.N.1
Papich, M.G.2
Drusano, G.L.3
-
4
-
-
84878357278
-
An insight into future antibacterial therapy
-
Cozzone, A. J. An Insight into Future Antibacterial Therapy. Emerging Microbes Infect. 2012, 1, e38.
-
(2012)
Emerging Microbes Infect
, vol.1
, pp. e38
-
-
Cozzone, A.J.1
-
5
-
-
84875751789
-
Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: A comparative study
-
Azam, A.; Ahmed, A. S.; Oves, M.; Khan, M. S.; Habib, S. S.; Memic, A. Antimicrobial Activity of Metal Oxide Nanoparticles Against Gram-positive and Gram-negative Bacteria: A Comparative Study. Int. J. Nanomed. 2012, 7, 6003−6009.
-
(2012)
Int. J. Nanomed.
, vol.7
, pp. 6003-6009
-
-
Azam, A.1
Ahmed, A.S.2
Oves, M.3
Khan, M.S.4
Habib, S.S.5
Memic, A.6
-
6
-
-
84890387667
-
The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on streptococcus mutans using a suite of bioassays
-
Besinis, A.; De Peralta, T.; Handy, R. D. The Antibacterial Effects of Silver, Titanium Dioxide and Silica Dioxide Nanoparticles Compared to The Dental Disinfectant Chlorhexidine on Streptococcus Mutans Using A Suite of Bioassays. Nanotoxicology 2014, 8, 1−16.
-
(2014)
Nanotoxicology
, vol.8
, pp. 1-16
-
-
Besinis, A.1
De Peralta, T.2
Handy, R.D.3
-
7
-
-
84929674514
-
Antibacterial activity of znO nanoparticle on gram-positive and gram-negative bacteria
-
Emami-Karvani, Z.; Chehrazi, P. Antibacterial Activity of ZnO Nanoparticle on Gram-positive and gram-negative Bacteria. Afr. J. Microbiol. Res. 2011, 5, 1368−1373.
-
(2011)
Afr. J. Microbiol. Res.
, vol.5
, pp. 1368-1373
-
-
Emami-Karvani, Z.1
Chehrazi, P.2
-
8
-
-
84888157808
-
Synthesis, characterization, and antimicrobial properties of copper nanoparticles
-
Usman, M. S.; El Zowalaty, M. E.; Shameli, K.; Zainuddin, N.; Salama, M.; Ibrahim, N. A. Synthesis, Characterization, and Antimicrobial Properties of Copper Nanoparticles. Int. J. Nanomed. 2013, 8, 4467−4479.
-
(2013)
Int. J. Nanomed.
, vol.8
, pp. 4467-4479
-
-
Usman, M.S.1
El Zowalaty, M.E.2
Shameli, K.3
Zainuddin, N.4
Salama, M.5
Ibrahim, N.A.6
-
10
-
-
54749125053
-
Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity
-
Kang, S.; Mauter, M. S.; Elimelech, M. Physicochemical Determinants of Multiwalled Carbon Nanotube Bacterial Cytotoxicity. Environ. Sci. Technol. 2008, 42, 7528−7534.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 7528-7534
-
-
Kang, S.1
Mauter, M.S.2
Elimelech, M.3
-
11
-
-
80052080009
-
Superstructures and SERS properties of gold nanocrystals with different shapes
-
Zhu, Z.; Meng, H.; Liu, W.; Liu, X.; Gong, J.; Qiu, X.; Jiang, L.; Wang, D.; Tang, Z. Superstructures and SERS Properties of Gold Nanocrystals with Different Shapes. Angew. Chem. 2011, 123, 1631− 1634.
-
(2011)
Angew. Chem.
, vol.123
, pp. 1631-1634
-
-
Zhu, Z.1
Meng, H.2
Liu, W.3
Liu, X.4
Gong, J.5
Qiu, X.6
Jiang, L.7
Wang, D.8
Tang, Z.9
-
12
-
-
80053306864
-
Improving the yield of mono-DNA-Functionalized gold nanoparticles through dual steric hindrance
-
Li, Z.; Cheng, E.; Huang, W.; Zhang, T.; Yang, Z.; Liu, D.; Tang, Z. Improving The Yield of Mono-DNA-Functionalized Gold Nanoparticles Through Dual Steric Hindrance. J. Am. Chem. Soc. 2011, 133, 15284−15287.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 15284-15287
-
-
Li, Z.1
Cheng, E.2
Huang, W.3
Zhang, T.4
Yang, Z.5
Liu, D.6
Tang, Z.7
-
13
-
-
80052606133
-
Self-Assembly of self-Limiting monodisperse supraparticles from polydisperse nanoparticles
-
Xia, Y.; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z.; Glotzer, S. C.; Kotov, N. A. Self-Assembly of Self-Limiting Monodisperse Supraparticles from Polydisperse Nanoparticles. Nat. Nanotechnol. 2011, 6, 580−587.
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 580-587
-
-
Xia, Y.1
Nguyen, T.D.2
Yang, M.3
Lee, B.4
Santos, A.5
Podsiadlo, P.6
Tang, Z.7
Glotzer, S.C.8
Kotov, N.A.9
-
14
-
-
84944077342
-
A zeta potential value determines the aggregates size of pentasubstituted [60] fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells
-
Deryabin, D. G.; Efremova, L. V.; Vasilchenko, A. S.; Saidakova, E. V.; Sizova, E. A.; Troshin, P. A.; Zhilenkov, A. V.; Khakina, E. E. A Zeta Potential Value Determines the Aggregates Size of Pentasubstituted [60] Fullerene Derivatives in Aqueous Suspension Whereas Positive Charge is Required for Toxicity Against Bacterial Cells. J. Nanobiotechnol. 2015, 13, 50.
-
(2015)
J. Nanobiotechnol.
, vol.13
, pp. 50
-
-
Deryabin, D.G.1
Efremova, L.V.2
Vasilchenko, A.S.3
Saidakova, E.V.4
Sizova, E.A.5
Troshin, P.A.6
Zhilenkov, A.V.7
Khakina, E.E.8
-
15
-
-
34548089991
-
Single-Walled carbon nanotubes exhibit strong antimicrobial activity
-
Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23, 8670−8673.
-
(2007)
Langmuir
, vol.23
, pp. 8670-8673
-
-
Kang, S.1
Pinault, M.2
Pfefferle, L.D.3
Elimelech, M.4
-
16
-
-
77957913029
-
Antimicrobial activity of single-Walled carbon nanotubes: Length effect
-
Yang, C.; Mamouni, J.; Tang, Y.; Yang, L. Antimicrobial Activity of Single-Walled Carbon Nanotubes: Length Effect. Langmuir 2010, 26, 16013−16019.
-
(2010)
Langmuir
, vol.26
, pp. 16013-16019
-
-
Yang, C.1
Mamouni, J.2
Tang, Y.3
Yang, L.4
-
17
-
-
65249111486
-
Inactivation of bacterial pathogens by carbon nanotubes in suspensions
-
Arias, L. R.; Yang, L. Inactivation of Bacterial Pathogens by Carbon Nanotubes in Suspensions. Langmuir 2009, 25, 3003−3012.
-
(2009)
Langmuir
, vol.25
, pp. 3003-3012
-
-
Arias, L.R.1
Yang, L.2
-
18
-
-
84855402622
-
Antimicrobial activity of single-Walled carbon nanotubes suspended in different surfactants
-
Dong, L.; Henderson, A.; Field, C. Antimicrobial Activity of Single-Walled Carbon Nanotubes Suspended in Different Surfactants. J. Nanotechnol. 2012, 2012, 928924.
-
(2012)
J. Nanotechnol.
, vol.2012
, pp. 928924
-
-
Dong, L.1
Henderson, A.2
Field, C.3
-
19
-
-
77957325055
-
Electronic-Structure-Dependent bacterial cytotoxicity of single-Walled carbon nanotubes
-
Vecitis, C. D.; Zodrow, K. R.; Kang, S.; Elimelech, M. Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. ACS Nano 2010, 4, 5471−5479.
-
(2010)
ACS Nano
, vol.4
, pp. 5471-5479
-
-
Vecitis, C.D.1
Zodrow, K.R.2
Kang, S.3
Elimelech, M.4
-
20
-
-
84864573657
-
Biomedical applications of graphene
-
Shen, H.; Zhang, L.; Liu, M.; Zhang, Z. Biomedical Applications of Graphene. Theranostics 2012, 2, 283−294.
-
(2012)
Theranostics
, vol.2
, pp. 283-294
-
-
Shen, H.1
Zhang, L.2
Liu, M.3
Zhang, Z.4
-
21
-
-
78049352115
-
Toxicity of graphene and graphene oxide nanowalls against bacteria
-
Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 2010, 4, 5731−5736.
-
(2010)
ACS Nano
, vol.4
, pp. 5731-5736
-
-
Akhavan, O.1
Ghaderi, E.2
-
22
-
-
84937144286
-
Environmental applications of graphene-based nanomaterials
-
Perreault, F.; de Faria, A. F.; Elimelech, M. Environmental Applications of Graphene-based Nanomaterials. Chem. Soc. Rev. 2015, 44, 5861−5896.
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 5861-5896
-
-
Perreault, F.1
De Faria, A.F.2
Elimelech, M.3
-
23
-
-
77955522923
-
Graphene-Based antibacterial paper
-
Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-Based Antibacterial Paper. ACS Nano 2010, 4, 4317−4323.
-
(2010)
ACS Nano
, vol.4
, pp. 4317-4323
-
-
Hu, W.1
Peng, C.2
Luo, W.3
Lv, M.4
Li, X.5
Li, D.6
Huang, Q.7
Fan, C.8
-
24
-
-
84880675612
-
Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites
-
Li, Y.; Yuan, H.; Bussche, A.; Creighton, M.; Hurt, R. H.; Kane, A. B.; Gao, H. Graphene Microsheets Enter Cells Through Spontaneous Membrane Penetration at Edge Asperities and Corner Sites. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12295−12300.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 12295-12300
-
-
Li, Y.1
Yuan, H.2
Bussche, A.3
Creighton, M.4
Hurt, R.H.5
Kane, A.B.6
Gao, H.7
-
25
-
-
84900035137
-
Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets
-
Mao, J.; Guo, R.; Yan, L. T. Simulation and Analysis of Cellular Internalization Pathways and Membrane Perturbation for Graphene Nanosheets. Biomaterials 2014, 35, 6069−6077.
-
(2014)
Biomaterials
, vol.35
, pp. 6069-6077
-
-
Mao, J.1
Guo, R.2
Yan, L.T.3
-
26
-
-
84866641682
-
Facile synthesis of surfactant-Free au cluster/Graphene hybrids for high-Performance oxygen reduction reaction
-
Yin, H.; Tang, H.; Wang, D.; Gao, Y.; Tang, Z. Facile Synthesis of Surfactant-Free Au Cluster/Graphene Hybrids for High-Performance Oxygen Reduction Reaction. ACS Nano 2012, 6, 8288−8297.
-
(2012)
ACS Nano
, vol.6
, pp. 8288-8297
-
-
Yin, H.1
Tang, H.2
Wang, D.3
Gao, Y.4
Tang, Z.5
-
27
-
-
85038108998
-
Three-Dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells
-
Zhao, S.; Li, Y.; Yin, H.; Liu, Z.; Luan, E.; Zhao, F.; Tang, Z.; Liu, S. Three-Dimensional Graphene/Pt Nanoparticle Composites as Freestanding Anode for Enhancing Performance of Microbial Fuel Cells. Sci. Adv. 2015, 1, e1500372.
-
(2015)
Sci. Adv.
, vol.1
, pp. e1500372
-
-
Zhao, S.1
Li, Y.2
Yin, H.3
Liu, Z.4
Luan, E.5
Zhao, F.6
Tang, Z.7
Liu, S.8
-
28
-
-
84937002149
-
Core-Shell upconversion nanoparticle@Metal-Organic framework nanop-robes for luminescent/Magnetic dual-Mode targeted imaging
-
Li, Y.; Tang, J.; He, L.; Liu, Y.; Liu, Y.; Chen, C.; Tang, Z. Core-Shell Upconversion Nanoparticle@Metal-Organic Framework Nanop-robes for Luminescent/Magnetic Dual-Mode Targeted Imaging. Adv. Mater. 2015, 27, 4075−4080.
-
(2015)
Adv. Mater.
, vol.27
, pp. 4075-4080
-
-
Li, Y.1
Tang, J.2
He, L.3
Liu, Y.4
Liu, Y.5
Chen, C.6
Tang, Z.7
-
29
-
-
84892635812
-
Graphene oxide exhibits broad-Spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation
-
Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene Oxide Exhibits Broad-Spectrum Antimicrobial Activity Against Bacterial Phytopathogens and Fungal Conidia by Intertwining and Membrane Perturbation. Nanoscale 2014, 6, 1879−1889.
-
(2014)
Nanoscale
, vol.6
, pp. 1879-1889
-
-
Chen, J.1
Peng, H.2
Wang, X.3
Shao, F.4
Yuan, Z.5
Han, H.6
-
30
-
-
80053318851
-
Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress
-
Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 2011, 5, 6971−6980.
-
(2011)
ACS Nano
, vol.5
, pp. 6971-6980
-
-
Liu, S.1
Zeng, T.H.2
Hofmann, M.3
Burcombe, E.4
Wei, J.5
Jiang, R.6
Kong, J.7
Chen, Y.8
-
31
-
-
84875110619
-
Oxidative stress-Mediated antibacterial activity of graphene oxide and reduced graphene oxide in pseudomonas aeruginosa
-
Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Kim, J. H. Oxidative Stress-Mediated Antibacterial Activity of Graphene Oxide and Reduced Graphene Oxide in Pseudomonas Aeruginosa. Int. J. Nanomed. 2012, 7, 5901−5914.
-
(2012)
Int. J. Nanomed.
, vol.7
, pp. 5901-5914
-
-
Gurunathan, S.1
Han, J.W.2
Dayem, A.A.3
Eppakayala, V.4
Kim, J.H.5
-
32
-
-
71149087169
-
2 thin film for photoinactivation of bacteria in solar light irradiation
-
2 Thin film for Photoinactivation of Bacteria in Solar Light Irradiation. J. Phys. Chem. C 2009, 113, 20214−20220.
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 20214-20220
-
-
Akhavan, O.1
Ghaderi, E.2
-
33
-
-
84865508704
-
Lateral dimension-dependent antibacterial activity of graphene oxide sheets
-
Liu, S.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral Dimension-dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir 2012, 28, 12364−12372.
-
(2012)
Langmuir
, vol.28
, pp. 12364-12372
-
-
Liu, S.1
Hu, M.2
Zeng, T.H.3
Wu, R.4
Jiang, R.5
Wei, J.6
Wang, L.7
Kong, J.8
Chen, Y.9
-
34
-
-
35748971728
-
Intrinsic ripples in graphene
-
Fasolino, A.; Los, J. H.; Katsnelson, M. I. Intrinsic Ripples in Graphene. Nat. Mater. 2007, 6, 858−861.
-
(2007)
Nat. Mater.
, vol.6
, pp. 858-861
-
-
Fasolino, A.1
Los, J.H.2
Katsnelson, M.I.3
-
35
-
-
84875465990
-
Multifunctionality and control of the crumpling and unfolding of large-area graphene
-
Zang, J.; Ryu, S.; Pugno, N.; Wang, Q.; Tu, Q.; Buehler, M. J.; Zhao, X. Multifunctionality and Control of the Crumpling and Unfolding of Large-area Graphene. Nat. Mater. 2013, 12, 321−325.
-
(2013)
Nat. Mater.
, vol.12
, pp. 321-325
-
-
Zang, J.1
Ryu, S.2
Pugno, N.3
Wang, Q.4
Tu, Q.5
Buehler, M.J.6
Zhao, X.7
-
36
-
-
84922047646
-
Stretchable and high-performance supercapacitors with crumpled graphene papers
-
Zang, J.; Cao, C.; Feng, Y.; Liu, J.; Zhao, X. Stretchable and High-performance Supercapacitors with Crumpled Graphene Papers. Sci. Rep. 2014, 4, 6492.
-
(2014)
Sci. Rep.
, vol.4
, pp. 6492
-
-
Zang, J.1
Cao, C.2
Feng, Y.3
Liu, J.4
Zhao, X.5
-
37
-
-
0032516193
-
Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer
-
Bowden, N.; Brittain, S.; Evans, A. G.; Hutchinson, J. W.; Whitesides, G. M. Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on An Elastomeric Polymer. Nature 1998, 393, 146−149.
-
(1998)
Nature
, vol.393
, pp. 146-149
-
-
Bowden, N.1
Brittain, S.2
Evans, A.G.3
Hutchinson, J.W.4
Whitesides, G.M.5
-
38
-
-
4344569742
-
A buckling-based metrology for measuring the elastic moduli of polymeric thin films
-
Stafford, C. M.; Harrison, C.; Beers, K. L.; Karim, A.; Amis, E. J.; VanLandingham, M. R.; Kim, H. C.; Volksen, W.; Miller, R. D.; Simonyi, E. E. A buckling-based Metrology for Measuring the Elastic Moduli of Polymeric Thin Films. Nat. Mater. 2004, 3, 545−550.
-
(2004)
Nat. Mater.
, vol.3
, pp. 545-550
-
-
Stafford, C.M.1
Harrison, C.2
Beers, K.L.3
Karim, A.4
Amis, E.J.5
VanLandingham, M.R.6
Kim, H.C.7
Volksen, W.8
Miller, R.D.9
Simonyi, E.E.10
-
39
-
-
56949104599
-
Chemical analysis of graphene oxide films after heat and chemical treatments by x-ray photoelectron and micro-Raman spectroscopy
-
Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. Chemical Analysis of Graphene Oxide Films after Heat and Chemical Treatments by X-ray Photoelectron and Micro-Raman Spectroscopy. Carbon 2009, 47, 145−152.
-
(2009)
Carbon
, vol.47
, pp. 145-152
-
-
Yang, D.1
Velamakanni, A.2
Bozoklu, G.3
Park, S.4
Stoller, M.5
Piner, R.D.6
Stankovich, S.7
Jung, I.8
Field, D.A.9
Ventrice, C.A.10
-
40
-
-
84961162070
-
Biological and environmental interactions of emerging two-dimensional nanomaterials
-
Wang, Z.; Zhu, W.; Qiu, Y.; Yi, X.; von dem Bussche, A.; Kane, A.; Gao, H.; Koski, K.; Hurt, R. Biological and Environmental Interactions of Emerging Two-dimensional Nanomaterials. Chem. Soc. Rev. 2016, 45, 1750−1780.
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 1750-1780
-
-
Wang, Z.1
Zhu, W.2
Qiu, Y.3
Yi, X.4
Von Dem Bussche, A.5
Kane, A.6
Gao, H.7
Koski, K.8
Hurt, R.9
-
41
-
-
79956150165
-
Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation
-
Akhavan, O.; Ghaderi, E.; Esfandiar, A. Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-infrared Irradiation. J. Phys. Chem. B 2011, 115, 6279−6288.
-
(2011)
J. Phys. Chem. B
, vol.115
, pp. 6279-6288
-
-
Akhavan, O.1
Ghaderi, E.2
Esfandiar, A.3
-
42
-
-
84938670726
-
Wrinkled, wavelength-tunable graphene-based surface topographies for directing cell alignment and morphology
-
Wang, Z.; Tonderys, D.; Leggett, S. E.; Williams, E. K.; Kiani, M. T.; Steinberg, R. S.; Qiu, Y.; Wong, I. Y.; Hurt, R. H. Wrinkled, Wavelength-tunable Graphene-based Surface Topographies for Directing Cell Alignment and Morphology. Carbon 2016, 97, 14−24.
-
(2016)
Carbon
, vol.97
, pp. 14-24
-
-
Wang, Z.1
Tonderys, D.2
Leggett, S.E.3
Williams, E.K.4
Kiani, M.T.5
Steinberg, R.S.6
Qiu, Y.7
Wong, I.Y.8
Hurt, R.H.9
-
43
-
-
80052581373
-
Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene
-
Sasidharan, A.; Panchakarla, L. S.; Chandran, P.; Menon, D.; Nair, S.; Rao, C. N. R.; Koyakutty, M. Differential Nano-bio Interactions and Toxicity Effects of Pristine Versus Functionalized Graphene. Nanoscale 2011, 3, 2461−2464.
-
(2011)
Nanoscale
, vol.3
, pp. 2461-2464
-
-
Sasidharan, A.1
Panchakarla, L.S.2
Chandran, P.3
Menon, D.4
Nair, S.5
Rao, C.N.R.6
Koyakutty, M.7
-
44
-
-
84896277984
-
Strongly-Coupled freestanding hybrid films of graphene and layered titanate nanosheets: An effective way to tailor the physicochemical and antibacterial properties of graphene film
-
Kim, I. Y.; Park, S.; Kim, H.; Park, S.; Ruoff, R. S.; Hwang, S. J. Strongly-Coupled Freestanding Hybrid Films of Graphene and Layered Titanate Nanosheets: An Effective Way to Tailor the Physicochemical and Antibacterial Properties of Graphene Film. Adv. Funct. Mater. 2014, 24, 2288−2294.
-
(2014)
Adv. Funct. Mater.
, vol.24
, pp. 2288-2294
-
-
Kim, I.Y.1
Park, S.2
Kim, H.3
Park, S.4
Ruoff, R.S.5
Hwang, S.J.6
-
45
-
-
84940092765
-
Graphene induces formation of pores that kill spherical and rod-Shaped bacteria
-
Pham, V. T. H.; Truong, V. K.; Quinn, M. D. J.; Notley, S. M.; Guo, Y.; Baulin, V. A.; Al Kobaisi, M.; Crawford, R. J.; Ivanova, E. P. Graphene Induces Formation of Pores That Kill Spherical and Rod-Shaped Bacteria. ACS Nano 2015, 9, 8458−8467.
-
(2015)
ACS Nano
, vol.9
, pp. 8458-8467
-
-
Pham, V.T.H.1
Truong, V.K.2
Quinn, M.D.J.3
Notley, S.M.4
Guo, Y.5
Baulin, V.A.6
Al Kobaisi, M.7
Crawford, R.J.8
Ivanova, E.P.9
-
46
-
-
84881373331
-
Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets
-
Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H. Destructive Extraction of Phospholipids from Escherichia Coli Membranes by Graphene Nanosheets. Nat. Nanotechnol. 2013, 8, 594−601.
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 594-601
-
-
Tu, Y.1
Lv, M.2
Xiu, P.3
Huynh, T.4
Zhang, M.5
Castelli, M.6
Liu, Z.7
Huang, Q.8
Fan, C.9
Fang, H.10
-
47
-
-
80055109585
-
The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways
-
Li, Y.; Liu, Y.; Fu, Y.; Wei, T.; Le Guyader, L.; Gao, G.; Liu, R. S.; Chang, Y. Z.; Chen, C. The Triggering of Apoptosis in Macrophages by Pristine Graphene through The MAPK and TGF-beta Signaling Pathways. Biomaterials 2012, 33, 402−411.
-
(2012)
Biomaterials
, vol.33
, pp. 402-411
-
-
Li, Y.1
Liu, Y.2
Fu, Y.3
Wei, T.4
Le Guyader, L.5
Gao, G.6
Liu, R.S.7
Chang, Y.Z.8
Chen, C.9
-
48
-
-
80053513845
-
Antioxidant deactivation on graphenic nanocarbon surfaces
-
Liu, X.; Sen, S.; Liu, J.; Kulaots, I.; Geohegan, D.; Kane, A.; Puretzky, A. A.; Rouleau, C. M.; More, K. L.; Palmore, G. T. Antioxidant Deactivation on Graphenic Nanocarbon Surfaces. Small 2011, 7, 2775−2785.
-
(2011)
Small
, vol.7
, pp. 2775-2785
-
-
Liu, X.1
Sen, S.2
Liu, J.3
Kulaots, I.4
Geohegan, D.5
Kane, A.6
Puretzky, A.A.7
Rouleau, C.M.8
More, K.L.9
Palmore, G.T.10
-
49
-
-
84959422835
-
Mechanisms of the antimicrobial activities of graphene materials
-
Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. Mechanisms of The Antimicrobial Activities of Graphene Materials. J. Am. Chem. Soc. 2016, 138, 2064−2077.
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 2064-2077
-
-
Zou, X.1
Zhang, L.2
Wang, Z.3
Luo, Y.4
-
50
-
-
21244475101
-
Phosphatidyle-thanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane
-
Murzyn, K.; Rog, T.; Pasenkiewicz-Gierula, M. Phosphatidyle-thanolamine-phosphatidylglycerol Bilayer as A Model of The Inner Bacterial Membrane. Biophys. J. 2005, 88, 1091−1103.
-
(2005)
Biophys. J.
, vol.88
, pp. 1091-1103
-
-
Murzyn, K.1
Rog, T.2
Pasenkiewicz-Gierula, M.3
-
51
-
-
84896312410
-
Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer
-
Li, J.; Wang, G.; Zhu, H.; Zhang, M.; Zheng, X.; Di, Z.; Liu, X.; Wang, X. Antibacterial Activity of Large-area Monolayer Graphene Film Manipulated by Charge Transfer. Sci. Rep. 2014, 4, 4359.
-
(2014)
Sci. Rep.
, vol.4
, pp. 4359
-
-
Li, J.1
Wang, G.2
Zhu, H.3
Zhang, M.4
Zheng, X.5
Di, Z.6
Liu, X.7
Wang, X.8
-
52
-
-
84938125654
-
Antimicrobial properties of graphene oxide nanosheets: Why size matters
-
Perreault, F.; de Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano 2015, 9, 7226−7236.
-
(2015)
ACS Nano
, vol.9
, pp. 7226-7236
-
-
Perreault, F.1
De Faria, A.F.2
Nejati, S.3
Elimelech, M.4
-
53
-
-
84904023454
-
Surface modification of membrane filters using graphene and graphene oxide-Based nanomaterials for bacterial inactivation and removal
-
Musico, Y. L.; Santos, C. M.; Dalida, M. L.; Rodrigues, D. F. Surface Modification of Membrane Filters Using Graphene and Graphene Oxide-Based Nanomaterials for Bacterial Inactivation and Removal. ACS Sustainable Chem. Eng. 2014, 2, 1559−1565.
-
(2014)
ACS Sustainable Chem. Eng.
, vol.2
, pp. 1559-1565
-
-
Musico, Y.L.1
Santos, C.M.2
Dalida, M.L.3
Rodrigues, D.F.4
|