-
1
-
-
80052218917
-
Domestic wastewater treatment as a net energy producer-can this be achieved
-
P. L. McCarty, J. Bae, J. Kim, Domestic wastewater treatment as a net energy producer-can this be achieved Environ. Sci. Technol. 45, 7100-7106 (2001).
-
(2001)
Environ. Sci. Technol.
, vol.45
, pp. 7100-7106
-
-
McCarty, P.L.1
Bae, J.2
Kim, J.3
-
3
-
-
64749084426
-
Exoelectrogenic bacteria that power microbial fuel cells
-
B. E. Logan, Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7, 375-381 (2009).
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 375-381
-
-
Logan, B.E.1
-
4
-
-
33750196473
-
Interfacing electrocatalysis and biocatalysis with tungsten carbide: A high-performance, noble-metal-free microbial fuel cell
-
M. Rosenbaun, F. Zhao, U. Schröder, F. Scholz, Interfacing electrocatalysis and biocatalysis with tungsten carbide: A high-performance, noble-metal-free microbial fuel cell. Angew. Chem. Int. Ed. 45, 6658-6661 (2006).
-
(2006)
Angew. Chem. Int. Ed.
, vol.45
, pp. 6658-6661
-
-
Rosenbaun, M.1
Zhao, F.2
Schröder, U.3
Scholz, F.4
-
5
-
-
84875192340
-
Conjugated oligoelectrolytes increase power generation in E. Coli microbial fuel cells
-
H. Hou, X. Chen, A. W. Thomas, C. Catania, N. D. Kirchhofer, L. E. Garner, A. Han, G. C. Bazan, Conjugated oligoelectrolytes increase power generation in E. coli microbial fuel cells. Adv. Mater. 25, 1593-1597 (2013).
-
(2013)
Adv. Mater.
, vol.25
, pp. 1593-1597
-
-
Hou, H.1
Chen, X.2
Thomas, A.W.3
Catania, C.4
Kirchhofer, N.D.5
Garner, L.E.6
Han, A.7
Bazan, G.C.8
-
6
-
-
84864831407
-
Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
-
B. E. Logan, K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337, 686-690 (2012).
-
(2012)
Science
, vol.337
, pp. 686-690
-
-
Logan, B.E.1
Rabaey, K.2
-
7
-
-
77957019058
-
Sustainable wastewater treatment: How might microbial fuel cells contribute
-
T. O. Oh, J. R. Kim, G. C. Premier, T. H. Lee, C. Kim, W. T. Sloan, Sustainable wastewater treatment: How might microbial fuel cells contribute. Biotechnol. Adv. 28, 871-881 (2010).
-
(2010)
Biotechnol. Adv.
, vol.28
, pp. 871-881
-
-
Oh, T.O.1
Kim, J.R.2
Premier, G.C.3
Lee, T.H.4
Kim, C.5
Sloan, W.T.6
-
8
-
-
84947724411
-
-
John Wiley & Sons Inc., Hoboken, NJ
-
B. E. Logan, in Microbial Fuel Cells (John Wiley & Sons Inc., Hoboken, NJ, 2008).
-
(2008)
Microbial Fuel Cells
-
-
Logan, B.E.1
-
9
-
-
33748564008
-
Microbial fuel cells-Challenges and applications
-
B. E. Logan, J. M. Regan, Microbial fuel cells-Challenges and applications. Environ. Sci. Technol. 40, 5172-5180 (2006).
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 5172-5180
-
-
Logan, B.E.1
Regan, J.M.2
-
10
-
-
63449140090
-
Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell
-
A. Aldrovandi, E. Marsili, L. Stante, P. Paganin, S. Tabacchioni, A. Giordano, Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell. Bioresour. Technol. 100, 3252-3260 (2009).
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 3252-3260
-
-
Aldrovandi, A.1
Marsili, E.2
Stante, L.3
Paganin, P.4
Tabacchioni, S.5
Giordano, A.6
-
11
-
-
33846314249
-
Electrochemistry for a cleaner environment
-
D. Simonsson, Electrochemistry for a cleaner environment. Chem. Soc. Rev. 26, 181-189 (1997).
-
(1997)
Chem. Soc. Rev.
, vol.26
, pp. 181-189
-
-
Simonsson, D.1
-
12
-
-
78651107055
-
Microbial fuel cells for energy selfsufficient domestic wastewater treatment-A review and discussion from energetic consideration
-
O. Lefebvre, A. Uzabiaga, I. S. Chang, B.-H. Kim, H. Y. Ng, Microbial fuel cells for energy selfsufficient domestic wastewater treatment-A review and discussion from energetic consideration. Appl. Microbiol. Biotechnol. 89, 259-270 (2011).
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.89
, pp. 259-270
-
-
Lefebvre, O.1
Uzabiaga, A.2
Chang, I.S.3
Kim, B.-H.4
Ng, H.Y.5
-
13
-
-
1842778990
-
Production of electricity during wastewater treatment using a single chamber microbial fuel cell
-
H. Liu, R. Ramnarayanan, B. E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281-2285 (2004).
-
(2004)
Environ. Sci. Technol.
, vol.38
, pp. 2281-2285
-
-
Liu, H.1
Ramnarayanan, R.2
Logan, B.E.3
-
14
-
-
36749077086
-
Sustainable and efficient biohydrogen production via electrohydrogenesis
-
S. Cheng, B. E. Logan, Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. U.S.A. 104, 18871-18873 (2007).
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 18871-18873
-
-
Cheng, S.1
Logan, B.E.2
-
15
-
-
27744521813
-
Remediation and recovery of uranium from contaminated subsurface environments with electrodes
-
K. B. Gregory, D. R. Lovley, Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39, 8943-8947 (2005).
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 8943-8947
-
-
Gregory, K.B.1
Lovley, D.R.2
-
16
-
-
77952908796
-
Copper recovery combined with electricity production in a microbial fuel cell
-
A. Ter Heijne, F. Liu, R. van der Weijden, J. Weijma, C. J. N. Buisman, H. V. M. Hamelers, Copper recovery combined with electricity production in a microbial fuel cell. Environ. Sci. Technol. 44, 4376-4381 (2010).
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 4376-4381
-
-
Ter Heijne, A.1
Liu, F.2
Van der Weijden, R.3
Weijma, J.4
Buisman, C.J.N.5
Hamelers, H.V.M.6
-
17
-
-
0036022521
-
Harnessing microbially generated power on the seafloor
-
L. M. Tender, C. E. Reimers, H. A. Stecher III, D. E. Holmes, D. R. Bond, D. A. Lowy, K. Pilobello, S. J. Fertig, D. R. Lovley, Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20, 821-825 (2002).
-
(2002)
Nat. Biotechnol.
, vol.20
, pp. 821-825
-
-
Tender, L.M.1
Reimers, C.E.2
Stecher, H.A.3
Holmes, D.E.4
Bond, D.R.5
Lowy, D.A.6
Pilobello, K.7
Fertig, S.J.8
Lovley, D.R.9
-
18
-
-
78650259349
-
Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production
-
M. Mehanna, P. D. Kiely, D. F. Call, B. E. Logan, Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ. Sci. Technol. 44, 9578-9583 (2010).
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 9578-9583
-
-
Mehanna, M.1
Kiely, P.D.2
Call, D.F.3
Logan, B.E.4
-
19
-
-
70349108272
-
A new method for water desalination using microbial desalination cells
-
X. Cao, X. Huang, P. Liang, K. Xiao, Y. Zhou, X. Zhang, B. E. Logan, A new method for water desalination using microbial desalination cells. Environ. Sci. Technol. 43, 7148-7152 (2009).
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 7148-7152
-
-
Cao, X.1
Huang, X.2
Liang, P.3
Xiao, K.4
Zhou, Y.5
Zhang, X.6
Logan, B.E.7
-
20
-
-
78650700266
-
Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells
-
H. Luo, P. E. Jenkins, Z. Ren, Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ. Sci. Technol. 45, 340-344 (2011).
-
(2011)
Environ. Sci. Technol.
, vol.45
, pp. 340-344
-
-
Luo, H.1
Jenkins, P.E.2
Ren, Z.3
-
22
-
-
79952134269
-
A mL-scale micromachined microbial fuel cell having high power density
-
S. Choi, H.-S. Lee, Y. Yang, P. Parameswaran, C. I. Torres, B. E. Rittmann, J. Chae, A mL-scale micromachined microbial fuel cell having high power density. Lab Chip 11, 1110-1117 (2011).
-
(2011)
Lab Chip
, vol.11
, pp. 1110-1117
-
-
Choi, S.1
Lee, H.-S.2
Yang, Y.3
Parameswaran, P.4
Torres, C.I.5
Rittmann, B.E.6
Chae, J.7
-
23
-
-
79955465102
-
A graphene modified anode to improve the performance of microbial fuel cells
-
Y. Zhang, G. Mo, X. Li, W. Zhang, J. Zhang, J. Ye, X. Huang, C. Yu, A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources 196, 5402-5407 (2011).
-
(2011)
J. Power Sources
, vol.196
, pp. 5402-5407
-
-
Zhang, Y.1
Mo, G.2
Li, X.3
Zhang, W.4
Zhang, J.5
Ye, J.6
Huang, X.7
Yu, C.8
-
24
-
-
77955185967
-
Electrochemical evaluation of Ti/TiO2-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for syntheticwastewater treatment
-
X. D. Benetton, S. G. Navarro-Ávila, C. Carrera-Figueiras, Electrochemical evaluation of Ti/TiO2-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for syntheticwastewater treatment. J. New Mater. Electrochem. Sys. 13, 1-6 (2010).
-
(2010)
J. New Mater. Electrochem. Sys.
, vol.13
, pp. 1-6
-
-
Benetton, X.D.1
Navarro-Ávila, S.G.2
Carrera-Figueiras, C.3
-
25
-
-
43049095141
-
Performance of non-porous graphite and titanium-based anodes in microbial fuel cells
-
A. ter Heijne, H. V. M. Hamelers, M. Saakes, C. J. N. Buisman, Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim. Acta 53, 5697-5703 (2008).
-
(2008)
Electrochim. Acta
, vol.53
, pp. 5697-5703
-
-
Ter Heijne, A.1
Hamelers, H.V.M.2
Saakes, M.3
Buisman, C.J.N.4
-
26
-
-
84858953535
-
Energy and environmental nanotechnology in conductive paper and textiles
-
L. Hu, Y. Cui, Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ. Sci. 5, 6423-6435 (2012).
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 6423-6435
-
-
Hu, L.1
Cui, Y.2
-
27
-
-
84919707347
-
Carbonized nanoscale metal-organic frameworks as high performance electrocatalysts for oxygen reduction reaction
-
S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, Z. Tang, Carbonized nanoscale metal-organic frameworks as high performance electrocatalysts for oxygen reduction reaction. ACS Nano 8, 12660-12668 (2014).
-
(2014)
ACS Nano
, vol.8
, pp. 12660-12668
-
-
Zhao, S.1
Yin, H.2
Du, L.3
He, L.4
Zhao, K.5
Chang, L.6
Yin, G.7
Zhao, H.8
Liu, S.9
Tang, Z.10
-
28
-
-
84860368898
-
Graphene-sponges as high-performance low-cost anodes for microbial fuel cells
-
X. Xie, G. Yu, N. Liu, Z. Bao, C. S. Criddle, Y. Cui, Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci. 5, 6862-6866 (2012).
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 6862-6866
-
-
Xie, X.1
Yu, G.2
Liu, N.3
Bao, Z.4
Criddle, C.S.5
Cui, Y.6
-
29
-
-
33846180377
-
Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering
-
Z. Y. Tang, Y. Wang, P. Podsiadlo, N. A. Kotov, Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater. 18, 3203-3224 (2006).
-
(2006)
Adv. Mater.
, vol.18
, pp. 3203-3224
-
-
Tang, Z.Y.1
Wang, Y.2
Podsiadlo, P.3
Kotov, N.A.4
-
30
-
-
84896955496
-
Uptake of selfsecreted flavins as bound cofactors for extracellular electron transfer in Geobacter species
-
A. Okamoto, K. Saito, K. Inoue, K. H. Nealson, K. Hashimoto, R. Nakamura, Uptake of selfsecreted flavins as bound cofactors for extracellular electron transfer in Geobacter species. Energy Environ. Sci. 7, 1357-1361 (2014).
-
(2014)
Energy Environ. Sci.
, vol.7
, pp. 1357-1361
-
-
Okamoto, A.1
Saito, K.2
Inoue, K.3
Nealson, K.H.4
Hashimoto, K.5
Nakamura, R.6
-
31
-
-
78449295718
-
Redox-responsive switching in bacterial respiratory pathways involving extracellular electron transfer
-
H. Liu, S. Matsuda, S. Kato, K. Hashimoto, S. Nakanishi, Redox-responsive switching in bacterial respiratory pathways involving extracellular electron transfer. Chem Sus Chem 3, 1253-1256 (2010).
-
(2010)
Chem Sus Chem
, vol.3
, pp. 1253-1256
-
-
Liu, H.1
Matsuda, S.2
Kato, S.3
Hashimoto, K.4
Nakanishi, S.5
-
32
-
-
84865217839
-
Control of bacterial extracellular electron transfer by a solid-state mediator of polyaniline nanowire arrays
-
C. Ding, H. Liu, Y. Zhu, M. Wan, L. Jiang, Control of bacterial extracellular electron transfer by a solid-state mediator of polyaniline nanowire arrays. Energy Environ. Sci. 5, 8517-8522 (2012).
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8517-8522
-
-
Ding, C.1
Liu, H.2
Zhu, Y.3
Wan, M.4
Jiang, L.5
-
33
-
-
33846842443
-
Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
-
J. R. Kim, S. Cheng, S.-E. Oh, B. E. Logan, Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 41, 1004-1009 (2007).
-
(2007)
Environ. Sci. Technol.
, vol.41
, pp. 1004-1009
-
-
Kim, J.R.1
Cheng, S.2
Oh, S.-E.3
Logan, B.E.4
-
34
-
-
70350772359
-
Separator characteristics for increasing performance of microbial fuel cells
-
X. Zhang, S. Cheng, X. Wang, X. Huang, B. E. Logan, Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol. 43, 8456-8461 (2009).
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 8456-8461
-
-
Zhang, X.1
Cheng, S.2
Wang, X.3
Huang, X.4
Logan, B.E.5
-
35
-
-
73649124257
-
Microbial fuel cells: The effects of configurations, electrolyte solutions, and electrode materials on power generation
-
F. Li, Y. Sharma, Y. Lei, B. Li, Q. Zhou, Microbial fuel cells: The effects of configurations, electrolyte solutions, and electrode materials on power generation. Appl. Biochem. Biotechnol. 160, 168-181 (2010).
-
(2010)
Appl. Biochem. Biotechnol.
, vol.160
, pp. 168-181
-
-
Li, F.1
Sharma, Y.2
Lei, Y.3
Li, B.4
Zhou, Q.5
-
36
-
-
84909989274
-
Nanoparticle facilitated extracellular electron transfer in microbial fuel cells
-
X. Jiang, J. Hu, A. M. Lieber, C. S. Jackan, J. C. Biffinger, L. A. Fitzgerald, B. R. Ringeisen, C. M. Lieber, Nanoparticle facilitated extracellular electron transfer in microbial fuel cells. Nano Lett. 14, 6737-6742 (2014).
-
(2014)
Nano Lett.
, vol.14
, pp. 6737-6742
-
-
Jiang, X.1
Hu, J.2
Lieber, A.M.3
Jackan, C.S.4
Biffinger, J.C.5
Fitzgerald, L.A.6
Ringeisen, B.R.7
Lieber, C.M.8
-
37
-
-
0141542682
-
Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
-
S. K. Chaudhuri, D. R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21, 1229-1232 (2003).
-
(2003)
Nat. Biotechnol.
, vol.21
, pp. 1229-1232
-
-
Chaudhuri, S.K.1
Lovley, D.R.2
-
38
-
-
33645761181
-
Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing
-
S. Cheng, H. Liu, B. E. Logan, Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 40, 2426-2432 (2006).
-
(2006)
Environ. Sci. Technol.
, vol.40
, pp. 2426-2432
-
-
Cheng, S.1
Liu, H.2
Logan, B.E.3
-
39
-
-
62849104654
-
Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs)
-
D. Jiang, B. Li, Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs). Water Sci. Technol. 59, 557-563 (2009).
-
(2009)
Water Sci. Technol.
, vol.59
, pp. 557-563
-
-
Jiang, D.1
Li, B.2
-
40
-
-
46849100204
-
Activated carbon cloth as anode for sulfate removal in a microbial fuel cell
-
F. Zhao, N. Rahunen, J. R. Varcoe, A. Chandra, C. Avignone-rossa, A. E. Thumser, R. C. T. Slade, Activated carbon cloth as anode for sulfate removal in a microbial fuel cell. Environ. Sci. Technol. 42, 4971-4976 (2008).
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 4971-4976
-
-
Zhao, F.1
Rahunen, N.2
Varcoe, J.R.3
Chandra, A.4
Avignone-Rossa, C.5
Thumser, A.E.6
Slade, R.C.T.7
-
41
-
-
84859141906
-
Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells
-
Y.-C. Yong, X.-C. Dong, M. B. Chan-Park, H. Song, P. Chen, Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6, 2394-2400 (2012).
-
(2012)
ACS Nano
, vol.6
, pp. 2394-2400
-
-
Yong, Y.-C.1
Dong, X.-C.2
Chan-Park, M.B.3
Song, H.4
Chen, P.5
-
42
-
-
84860339743
-
Facile fabrication of scalable, hierarchically structured polymer/carbon architectures for bioelectrodes
-
H. R. Luckarift, S. R. Sizemore, K. E. Farrington, J. Roy, C. Lau, P. B. Atanassov, G. R. Johnson, Facile fabrication of scalable, hierarchically structured polymer/carbon architectures for bioelectrodes. ACS Appl. Mater. Interfaces 4, 2082-2087 (2012).
-
(2012)
ACS Appl. Mater. Interfaces
, vol.4
, pp. 2082-2087
-
-
Luckarift, H.R.1
Sizemore, S.R.2
Farrington, K.E.3
Roy, J.4
Lau, C.5
Atanassov, P.B.6
Johnson, G.R.7
-
43
-
-
17744405443
-
A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude
-
U. Schröder, J. Nieben, F. Scholz, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. 42, 2880-2883 (2003).
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 2880-2883
-
-
Schröder, U.1
Nieben, J.2
Scholz, F.3
-
44
-
-
80052373256
-
Power production enhancement with a polyaniline modified anode in microbial fuel cells
-
B. Lai, X. Tang, H. Li, Z. Du, X. W. Liu, Q. Zhang, Power production enhancement with a polyaniline modified anode in microbial fuel cells. Biosens. Bioelectron. 28, 373-377 (2011).
-
(2011)
Biosens. Bioelectron.
, vol.28
, pp. 373-377
-
-
Lai, B.1
Tang, X.2
Li, H.3
Du, Z.4
Liu, X.W.5
Zhang, Q.6
-
45
-
-
79951539607
-
Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells
-
X. Xie, L. Hu, M. Pasta, G. F. Wells, D. Kong, C. S. Criddle, Y. Cui, Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett. 11, 291-296 (2011).
-
(2011)
Nano Lett.
, vol.11
, pp. 291-296
-
-
Xie, X.1
Hu, L.2
Pasta, M.3
Wells, G.F.4
Kong, D.5
Criddle, C.S.6
Cui, Y.7
-
46
-
-
84858071900
-
Structural optimization of contact electrodes in microbial fuel cells for current density enhancements
-
S. Inoue, E. A. Parrab, A. Higa, Y. Q. Jiang, P. Wang, C. R. Buied, J. D. Coatese, L. Lin, Structural optimization of contact electrodes in microbial fuel cells for current density enhancements. Sens. Actuators A Phys. 177, 30-36 (2012).
-
(2012)
Sens. Actuators A Phys.
, vol.177
, pp. 30-36
-
-
Inoue, S.1
Parrab, E.A.2
Higa, A.3
Jiang, Y.Q.4
Wang, P.5
Buied, C.R.6
Coatese, J.D.7
Lin, L.8
-
47
-
-
79953667601
-
Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells
-
X. Xie, M. Pasta, L. Hu, Y. Yang, J. McDonough, J. Cha, C. S. Criddle, Y. Cui Nano-structured textiles as high-performance aqueous cathodes for microbial fuel cells. Energy Environ. Sci. 4, 1293-1297 (2011).
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1293-1297
-
-
Xie, X.1
Pasta, M.2
Hu, L.3
Yang, Y.4
McDonough, J.5
Cha, J.6
Criddle, C.S.7
Cui, Y.8
-
48
-
-
84856953893
-
Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 mL) microbial fuel cell
-
J. E. Mink, J. P. Rojas, B. E. Logan, M. M. Hussain, Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 mL) microbial fuel cell. Nano Lett. 12, 791-795 (2012).
-
(2012)
Nano Lett.
, vol.12
, pp. 791-795
-
-
Mink, J.E.1
Rojas, J.P.2
Logan, B.E.3
Hussain, M.M.4
-
49
-
-
84860461429
-
Graphene/carbon cloth anode for highperformance mediatorless microbial fuel cells
-
J. Liu, Y. Qiao, C. X. Guo, S. Lim, H. Song, C. M. Li, Graphene/carbon cloth anode for highperformance mediatorless microbial fuel cells. Bioresour. Technol. 114, 275-280 (2012).
-
(2012)
Bioresour. Technol.
, vol.114
, pp. 275-280
-
-
Liu, J.1
Qiao, Y.2
Guo, C.X.3
Lim, S.4
Song, H.5
Li, C.M.6
-
50
-
-
84857750356
-
Crumpled graphene particles for microbial fuel cell electrodes
-
L. Xiao, J. Damien, J. Luo, H. D. Dong, J. Huang, Z. He, Crumpled graphene particles for microbial fuel cell electrodes. J. Power Sources 208, 187-192 (2012).
-
(2012)
J. Power Sources
, vol.208
, pp. 187-192
-
-
Xiao, L.1
Damien, J.2
Luo, J.3
Dong, H.D.4
Huang, J.5
He, Z.6
-
51
-
-
35348947475
-
Effective and low-cost platinum electrodes for microbial fuel cells deposited by electron beam evaporation
-
H. I. Park, U. Mushtaq, D. Perello, I. Lee, S. K. Cho, A. Star, M. Yun, Effective and low-cost platinum electrodes for microbial fuel cells deposited by electron beam evaporation. Energy Fuels 21, 2984-2990 (2007).
-
(2007)
Energy Fuels
, vol.21
, pp. 2984-2990
-
-
Park, H.I.1
Mushtaq, U.2
Perello, D.3
Lee, I.4
Cho, S.K.5
Star, A.6
Yun, M.7
-
52
-
-
78650586403
-
Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells
-
Y. Fan, S. Xu, R. Schaller, J. Jiao, F. Chaplen, H. Liu, Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens. Bioelectron. 26, 1908-1912 (2011).
-
(2011)
Biosens. Bioelectron.
, vol.26
, pp. 1908-1912
-
-
Fan, Y.1
Xu, S.2
Schaller, R.3
Jiao, J.4
Chaplen, F.5
Liu, H.6
-
53
-
-
41749102338
-
Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells
-
Y. Qiao, S.-J. Bao, C. M. Li, X.-Q. Cui, Z.-S. Lu, J. Guo, Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2, 113-119 (2008).
-
(2008)
ACS Nano
, vol.2
, pp. 113-119
-
-
Qiao, Y.1
Bao, S.-J.2
Li, C.M.3
Cui, X.-Q.4
Lu, Z.-S.5
Guo, J.6
-
54
-
-
34249326597
-
Carbon nanotube/polyaniline composite as anode material for microbial fuel cells
-
Y. Qiao, C. M. Li, S.-J. Bao, Q.-L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170, 79-84 (2007).
-
(2007)
J. Power Sources
, vol.170
, pp. 79-84
-
-
Qiao, Y.1
Li, C.M.2
Bao, S.-J.3
Bao, Q.-L.4
-
55
-
-
77955529587
-
Self-assembled graphene hydrogel via a one-step hydrothermal process
-
Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324-4330 (2010).
-
(2010)
ACS Nano
, vol.4
, pp. 4324-4330
-
-
Xu, Y.1
Sheng, K.2
Li, C.3
Shi, G.4
-
56
-
-
84887918905
-
Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water
-
H. Yin, S. Zhao, J. Wang, H. Tang, L. Chang, L. He, H. Zhao, Y. Gao, Z. Tang, Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater. 25, 6270-6276 (2013).
-
(2013)
Adv. Mater.
, vol.25
, pp. 6270-6276
-
-
Yin, H.1
Zhao, S.2
Wang, J.3
Tang, H.4
Chang, L.5
He, L.6
Zhao, H.7
Gao, Y.8
Tang, Z.9
-
57
-
-
0034307014
-
Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys
-
M. Grivet, J. J. Morrier, G. Benay, O. Barsotti, Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys. J. Mater. Sci. Mater. Med. 11, 637-642 (2000).
-
(2000)
J. Mater. Sci. Mater. Med.
, vol.11
, pp. 637-642
-
-
Grivet, M.1
Morrier, J.J.2
Benay, G.3
Barsotti, O.4
-
58
-
-
85009704370
-
Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4
-
C.-m. Ding, M.-l. Lv, Y. Zhu, L. Jiang, H. Liu, Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. Angew. Chem. Int. Ed. 127, 1466-1471 (2015).
-
(2015)
Angew. Chem. Int. Ed.
, vol.127
, pp. 1466-1471
-
-
Ding, C.-M.1
Lv, M.-L.2
Zhu, Y.3
Jiang, L.4
Liu, H.5
-
59
-
-
84875122181
-
Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells
-
G. G. Kumar, V. G. S. Sarathi, K. S. Nahm, Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens. Bioelectron. 43, 461-475 (2013).
-
(2013)
Biosens. Bioelectron.
, vol.43
, pp. 461-475
-
-
Kumar, G.G.1
Sarathi, V.G.S.2
Nahm, K.S.3
-
60
-
-
77956928791
-
A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1
-
M. Sun, F. Zhang, Z.-H. Tong, G.-P. Sheng, Y.-Z. Chen, Y. Zhao, Y.-P. Chen, S.-Y. Zhou, G. Liu, Y.-C. Tian, H.-Q. Yu, A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosens. Bioelectron. 26, 338-343 (2010).
-
(2010)
Biosens. Bioelectron.
, vol.26
, pp. 338-343
-
-
Sun, M.1
Zhang, F.2
Tong, Z.-H.3
Sheng, G.-P.4
Chen, Y.-Z.5
Zhao, Y.6
Chen, Y.-P.7
Zhou, S.-Y.8
Liu, G.9
Tian, Y.-C.10
Yu, H.-Q.11
-
61
-
-
84867317699
-
The accurate use of impedance analysis for the study of microbial electrochemical systems
-
X. Dominguez-Benetton, S. Sevda, K. Vanbroekhoven, D. Pant, The accurate use of impedance analysis for the study of microbial electrochemical systems. Chem. Soc. Rev. 41, 7228-7246 (2012).
-
(2012)
Chem. Soc. Rev.
, vol.41
, pp. 7228-7246
-
-
Dominguez-Benetton, X.1
Sevda, S.2
Vanbroekhoven, K.3
Pant, D.4
-
62
-
-
69249104648
-
Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies
-
Z. He, F. Mansfeld, Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci. 2, 215-219 (2009).
-
(2009)
Energy Environ. Sci.
, vol.2
, pp. 215-219
-
-
He, Z.1
Mansfeld, F.2
-
63
-
-
36849008648
-
Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms
-
Y. Fan, H. Hu, H. Liu, Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 41, 8154-8158 (2007).
-
(2007)
Environ. Sci. Technol.
, vol.41
, pp. 8154-8158
-
-
Fan, Y.1
Hu, H.2
Liu, H.3
-
64
-
-
79551568355
-
Vertically aligned graphene electrode for lithium ion battery with high rate capability
-
X. Xiao, P. Liu, J. S. Wang, M. W. Verbrugge, M. P. Balogh, Vertically aligned graphene electrode for lithium ion battery with high rate capability. Electrochem. Commun. 13, 209-212 (2011).
-
(2011)
Electrochem. Commun.
, vol.13
, pp. 209-212
-
-
Xiao, X.1
Liu, P.2
Wang, J.S.3
Verbrugge, M.W.4
Balogh, M.P.5
-
65
-
-
84902243006
-
Li4Ti5O12-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: A synergistic effect of doping, incorporating a conductive phase and reducing the particle size
-
C. Lin, X. Fan, Y. Xin, F. Cheng, M. O. Lai, H. Zhou, L. Lu, Li4Ti5O12-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: A synergistic effect of doping, incorporating a conductive phase and reducing the particle size. J. Mater. Chem. A 2, 9982-9993 (2014).
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 9982-9993
-
-
Lin, C.1
Fan, X.2
Xin, Y.3
Cheng, F.4
Lai, M.O.5
Zhou, H.6
Lu, L.7
-
66
-
-
21344461500
-
Extracellular electron transfer via microbial nanowires
-
G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovley, Extracellular electron transfer via microbial nanowires. Nature 435, 1098-1101 (2005).
-
(2005)
Nature
, vol.435
, pp. 1098-1101
-
-
Reguera, G.1
McCarthy, K.D.2
Mehta, T.3
Nicoll, J.S.4
Tuominen, M.T.5
Lovley, D.R.6
-
67
-
-
80052557316
-
Tunable metallic-like conductivity in microbial nanowire networks
-
N. S. Malvankar, M. Vargas, K. P. Nevin, A. E. Franks, C. Leang, B.-C. Kim, K. Inoue, T. Mester, S. F. Covalla, J. P. Johnson, V. M. Rotello, M. T. Tuominen, D. R. Lovley, Tunable metallic-like conductivity in microbial nanowire networks. Nat. Nanotechnol. 6, 573-579 (2011).
-
(2011)
Nat. Nanotechnol.
, vol.6
, pp. 573-579
-
-
Malvankar, N.S.1
Vargas, M.2
Nevin, K.P.3
Franks, A.E.4
Leang, C.5
Kim, B.-C.6
Inoue, K.7
Mester, T.8
Covalla, S.F.9
Johnson, J.P.10
Rotello, V.M.11
Tuominen, M.T.12
Lovley, D.R.13
-
68
-
-
78149245960
-
Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1
-
M. Y. El-Naggar, G. Wanger, K. M. Leung, T. D. Yuzvinsky, G. Southam, J. Yang, W. M. Lau, K. H. Nealson, Y. A. Gorby, Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc. Natl. Acad. Sci. U.S.A. 107, 18127-18131 (2010).
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 18127-18131
-
-
El-Naggar, M.Y.1
Wanger, G.2
Leung, K.M.3
Yuzvinsky, T.D.4
Southam, G.5
Yang, J.6
Lau, W.M.7
Nealson, K.H.8
Gorby, Y.A.9
-
69
-
-
33746624663
-
Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms
-
Y. A. Gorby, S. Yanina, J. S.McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson, J. K. Fredrickson, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl. Acad. Sci. U.S.A. 103, 11358-11363 (2006).
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 11358-11363
-
-
Gorby, Y.A.1
Yanina, S.2
McLean, J.S.3
Rosso, K.M.4
Moyles, D.5
Dohnalkova, A.6
Beveridge, T.J.7
Chang, I.S.8
Kim, B.H.9
Kim, K.S.10
Culley, D.E.11
Reed, S.B.12
Romine, M.F.13
Saffarini, D.A.14
Hill, E.A.15
Shi, L.16
Elias, D.A.17
Kennedy, D.W.18
Pinchuk, G.19
Watanabe, K.20
Ishii, S.21
Logan, B.22
Nealson, K.H.23
Fredrickson, J.K.24
more..
-
70
-
-
78650844252
-
Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell
-
H. Li, J. Ni, Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell. Bioresour. Technol. 102, 2731-2735 (2011).
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 2731-2735
-
-
Li, H.1
Ni, J.2
-
71
-
-
84856284205
-
Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes
-
S. Xu, H. Liu, Y. Fan, R. Schaller, J. Jun, F. Chaplen, Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl. Microbiol. Biotechnol. 93, 871-880 (2011).
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.93
, pp. 871-880
-
-
Xu, S.1
Liu, H.2
Fan, Y.3
Schaller, R.4
Jun, J.5
Chaplen, F.6
-
72
-
-
74849126212
-
Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures
-
V. J. Watson, B. E. Logan, Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnol. Bioeng. 105, 489-498 (2010).
-
(2010)
Biotechnol. Bioeng.
, vol.105
, pp. 489-498
-
-
Watson, V.J.1
Logan, B.E.2
-
73
-
-
77954307691
-
Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells
-
A. Kouzuma, X.-Y. Meng, N. Kimura, K. Hashimoto, K. Watanabe, Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl. Environ. Microbiol. 76, 4151-4157 (2010).
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 4151-4157
-
-
Kouzuma, A.1
Meng, X.-Y.2
Kimura, N.3
Hashimoto, K.4
Watanabe, K.5
-
74
-
-
84883235524
-
Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode
-
J. E. Mink, M. M. Hussain, Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode. ACS Nano 7, 6921-6927 (2013).
-
(2013)
ACS Nano
, vol.7
, pp. 6921-6927
-
-
Mink, J.E.1
Hussain, M.M.2
-
75
-
-
78650827567
-
Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor
-
M. A. Rosenbaum, H. Y. Bar, Q. K. Beg, D. Segre, J. Booth, M. A. Cotta, L. T. Angenent, Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor. Bioresour. Technol. 102, 2623-2628 (2011).
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 2623-2628
-
-
Rosenbaum, M.A.1
Bar, H.Y.2
Beg, Q.K.3
Segre, D.4
Booth, J.5
Cotta, M.A.6
Angenent, L.T.7
-
76
-
-
77951011764
-
Comparative microbial fuel cell evaluations of Shewanella spp
-
O. Bretschger, A. C. M. Cheung, F. Mansfeld, K. H. Nealson, Comparative microbial fuel cell evaluations of Shewanella spp. Electroanalysis 22, 883-894 (2010).
-
(2010)
Electroanalysis
, vol.22
, pp. 883-894
-
-
Bretschger, O.1
Cheung, A.C.M.2
Mansfeld, F.3
Nealson, K.H.4
-
77
-
-
84884637623
-
Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells
-
C. Zhao, P. Gai, C. Liu, X. Wang, H. Xu, J. Zhang, J.-J. Zhu, Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J. Mater. Chem. A 1, 12587-12594 (2013).
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 12587-12594
-
-
Zhao, C.1
Gai, P.2
Liu, C.3
Wang, X.4
Xu, H.5
Zhang, J.6
Zhu, J.-J.7
-
78
-
-
84879763677
-
High biocurrent generation in Shewanellainoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode
-
C. Zhao, Y. Wang, F. Shi, J. Zhang, J.-J. Zhu, High biocurrent generation in Shewanellainoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode. Chem. Commun. 49, 6668-6670 (2013).
-
(2013)
Chem. Commun.
, vol.49
, pp. 6668-6670
-
-
Zhao, C.1
Wang, Y.2
Shi, F.3
Zhang, J.4
Zhu, J.-J.5
-
79
-
-
79956370455
-
Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells
-
W.-W. Li, G.-P. Sheng, X.-W. Liu, P.-J. Cai, M. Sun, X. Xiao, Y.-K.Wang, Z.-H. Tong, F. Dong, H.-Q. Yu, Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosens. Bioelectron. 26, 3987-3992 (2011).
-
(2011)
Biosens. Bioelectron.
, vol.26
, pp. 3987-3992
-
-
Li, W.-W.1
Sheng, G.-P.2
Liu, X.-W.3
Cai, P.-J.4
Sun, M.5
Xiao, X.6
Wang, Y.-K.7
Tong, Z.-H.8
Dong, F.9
Yu, H.-Q.10
-
80
-
-
79955628225
-
Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bioelectrochemical systems
-
Y.-X. Huang, X.-W. Liu, J.-F. Xie, G.-P. Sheng, G.-Y. Wang, Y.-Y. Zhang, A.-W. Xu, H.-Q. Yu, Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bioelectrochemical systems. Chem. Commun. 47, 5795-5797 (2011).
-
(2011)
Chem. Commun.
, vol.47
, pp. 5795-5797
-
-
Huang, Y.-X.1
Liu, X.-W.2
Xie, J.-F.3
Sheng, G.-P.4
Wang, G.-Y.5
Zhang, Y.-Y.6
Xu, A.-W.7
Yu, H.-Q.8
-
81
-
-
82255169399
-
Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells
-
Y.-Y. Yu, H.-I. Chen, Y.-C. Yong, D.-H. Kim, H. Song, Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells. Chem. Commun. 47, 12825-12827 (2011).
-
(2011)
Chem. Commun.
, vol.47
, pp. 12825-12827
-
-
Yu, Y.-Y.1
Chen, H.-I.2
Yong, Y.-C.3
Kim, D.-H.4
Song, H.5
|