메뉴 건너뛰기




Volumn 1, Issue 10, 2015, Pages

Energy Resources: Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells

Author keywords

[No Author keywords available]

Indexed keywords

ANODES; BACTERIA; CARBON; CHARGE TRANSFER; ELECTRODES; ELECTROLYTES; ENERGY RESOURCES; FUEL CELLS; GRAPHENE; NANOPARTICLES; PLATINUM; WASTE TREATMENT; WASTEWATER TREATMENT;

EID: 85038108998     PISSN: None     EISSN: 23752548     Source Type: Journal    
DOI: 10.1126/sciadv.1500372     Document Type: Article
Times cited : (228)

References (81)
  • 1
    • 80052218917 scopus 로고    scopus 로고
    • Domestic wastewater treatment as a net energy producer-can this be achieved
    • P. L. McCarty, J. Bae, J. Kim, Domestic wastewater treatment as a net energy producer-can this be achieved Environ. Sci. Technol. 45, 7100-7106 (2001).
    • (2001) Environ. Sci. Technol. , vol.45 , pp. 7100-7106
    • McCarty, P.L.1    Bae, J.2    Kim, J.3
  • 3
    • 64749084426 scopus 로고    scopus 로고
    • Exoelectrogenic bacteria that power microbial fuel cells
    • B. E. Logan, Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7, 375-381 (2009).
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 375-381
    • Logan, B.E.1
  • 4
    • 33750196473 scopus 로고    scopus 로고
    • Interfacing electrocatalysis and biocatalysis with tungsten carbide: A high-performance, noble-metal-free microbial fuel cell
    • M. Rosenbaun, F. Zhao, U. Schröder, F. Scholz, Interfacing electrocatalysis and biocatalysis with tungsten carbide: A high-performance, noble-metal-free microbial fuel cell. Angew. Chem. Int. Ed. 45, 6658-6661 (2006).
    • (2006) Angew. Chem. Int. Ed. , vol.45 , pp. 6658-6661
    • Rosenbaun, M.1    Zhao, F.2    Schröder, U.3    Scholz, F.4
  • 6
    • 84864831407 scopus 로고    scopus 로고
    • Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies
    • B. E. Logan, K. Rabaey, Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337, 686-690 (2012).
    • (2012) Science , vol.337 , pp. 686-690
    • Logan, B.E.1    Rabaey, K.2
  • 7
    • 77957019058 scopus 로고    scopus 로고
    • Sustainable wastewater treatment: How might microbial fuel cells contribute
    • T. O. Oh, J. R. Kim, G. C. Premier, T. H. Lee, C. Kim, W. T. Sloan, Sustainable wastewater treatment: How might microbial fuel cells contribute. Biotechnol. Adv. 28, 871-881 (2010).
    • (2010) Biotechnol. Adv. , vol.28 , pp. 871-881
    • Oh, T.O.1    Kim, J.R.2    Premier, G.C.3    Lee, T.H.4    Kim, C.5    Sloan, W.T.6
  • 8
    • 84947724411 scopus 로고    scopus 로고
    • John Wiley & Sons Inc., Hoboken, NJ
    • B. E. Logan, in Microbial Fuel Cells (John Wiley & Sons Inc., Hoboken, NJ, 2008).
    • (2008) Microbial Fuel Cells
    • Logan, B.E.1
  • 9
    • 33748564008 scopus 로고    scopus 로고
    • Microbial fuel cells-Challenges and applications
    • B. E. Logan, J. M. Regan, Microbial fuel cells-Challenges and applications. Environ. Sci. Technol. 40, 5172-5180 (2006).
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 5172-5180
    • Logan, B.E.1    Regan, J.M.2
  • 10
    • 63449140090 scopus 로고    scopus 로고
    • Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell
    • A. Aldrovandi, E. Marsili, L. Stante, P. Paganin, S. Tabacchioni, A. Giordano, Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell. Bioresour. Technol. 100, 3252-3260 (2009).
    • (2009) Bioresour. Technol. , vol.100 , pp. 3252-3260
    • Aldrovandi, A.1    Marsili, E.2    Stante, L.3    Paganin, P.4    Tabacchioni, S.5    Giordano, A.6
  • 11
    • 33846314249 scopus 로고    scopus 로고
    • Electrochemistry for a cleaner environment
    • D. Simonsson, Electrochemistry for a cleaner environment. Chem. Soc. Rev. 26, 181-189 (1997).
    • (1997) Chem. Soc. Rev. , vol.26 , pp. 181-189
    • Simonsson, D.1
  • 12
    • 78651107055 scopus 로고    scopus 로고
    • Microbial fuel cells for energy selfsufficient domestic wastewater treatment-A review and discussion from energetic consideration
    • O. Lefebvre, A. Uzabiaga, I. S. Chang, B.-H. Kim, H. Y. Ng, Microbial fuel cells for energy selfsufficient domestic wastewater treatment-A review and discussion from energetic consideration. Appl. Microbiol. Biotechnol. 89, 259-270 (2011).
    • (2011) Appl. Microbiol. Biotechnol. , vol.89 , pp. 259-270
    • Lefebvre, O.1    Uzabiaga, A.2    Chang, I.S.3    Kim, B.-H.4    Ng, H.Y.5
  • 13
    • 1842778990 scopus 로고    scopus 로고
    • Production of electricity during wastewater treatment using a single chamber microbial fuel cell
    • H. Liu, R. Ramnarayanan, B. E. Logan, Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281-2285 (2004).
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 2281-2285
    • Liu, H.1    Ramnarayanan, R.2    Logan, B.E.3
  • 14
    • 36749077086 scopus 로고    scopus 로고
    • Sustainable and efficient biohydrogen production via electrohydrogenesis
    • S. Cheng, B. E. Logan, Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc. Natl. Acad. Sci. U.S.A. 104, 18871-18873 (2007).
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 18871-18873
    • Cheng, S.1    Logan, B.E.2
  • 15
    • 27744521813 scopus 로고    scopus 로고
    • Remediation and recovery of uranium from contaminated subsurface environments with electrodes
    • K. B. Gregory, D. R. Lovley, Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39, 8943-8947 (2005).
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 8943-8947
    • Gregory, K.B.1    Lovley, D.R.2
  • 18
    • 78650259349 scopus 로고    scopus 로고
    • Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production
    • M. Mehanna, P. D. Kiely, D. F. Call, B. E. Logan, Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production. Environ. Sci. Technol. 44, 9578-9583 (2010).
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 9578-9583
    • Mehanna, M.1    Kiely, P.D.2    Call, D.F.3    Logan, B.E.4
  • 20
    • 78650700266 scopus 로고    scopus 로고
    • Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells
    • H. Luo, P. E. Jenkins, Z. Ren, Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ. Sci. Technol. 45, 340-344 (2011).
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 340-344
    • Luo, H.1    Jenkins, P.E.2    Ren, Z.3
  • 21
    • 33745195084 scopus 로고
    • Electrical energy from biological systems
    • J. J. Konikoff, L. W. Reynolds, E. S. Harris, Electrical energy from biological systems. Aerosp. Med. 34, 1129-1133 (1963).
    • (1963) Aerosp. Med. , vol.34 , pp. 1129-1133
    • Konikoff, J.J.1    Reynolds, L.W.2    Harris, E.S.3
  • 23
    • 79955465102 scopus 로고    scopus 로고
    • A graphene modified anode to improve the performance of microbial fuel cells
    • Y. Zhang, G. Mo, X. Li, W. Zhang, J. Zhang, J. Ye, X. Huang, C. Yu, A graphene modified anode to improve the performance of microbial fuel cells. J. Power Sources 196, 5402-5407 (2011).
    • (2011) J. Power Sources , vol.196 , pp. 5402-5407
    • Zhang, Y.1    Mo, G.2    Li, X.3    Zhang, W.4    Zhang, J.5    Ye, J.6    Huang, X.7    Yu, C.8
  • 24
    • 77955185967 scopus 로고    scopus 로고
    • Electrochemical evaluation of Ti/TiO2-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for syntheticwastewater treatment
    • X. D. Benetton, S. G. Navarro-Ávila, C. Carrera-Figueiras, Electrochemical evaluation of Ti/TiO2-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for syntheticwastewater treatment. J. New Mater. Electrochem. Sys. 13, 1-6 (2010).
    • (2010) J. New Mater. Electrochem. Sys. , vol.13 , pp. 1-6
    • Benetton, X.D.1    Navarro-Ávila, S.G.2    Carrera-Figueiras, C.3
  • 25
    • 43049095141 scopus 로고    scopus 로고
    • Performance of non-porous graphite and titanium-based anodes in microbial fuel cells
    • A. ter Heijne, H. V. M. Hamelers, M. Saakes, C. J. N. Buisman, Performance of non-porous graphite and titanium-based anodes in microbial fuel cells. Electrochim. Acta 53, 5697-5703 (2008).
    • (2008) Electrochim. Acta , vol.53 , pp. 5697-5703
    • Ter Heijne, A.1    Hamelers, H.V.M.2    Saakes, M.3    Buisman, C.J.N.4
  • 26
    • 84858953535 scopus 로고    scopus 로고
    • Energy and environmental nanotechnology in conductive paper and textiles
    • L. Hu, Y. Cui, Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ. Sci. 5, 6423-6435 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 6423-6435
    • Hu, L.1    Cui, Y.2
  • 27
    • 84919707347 scopus 로고    scopus 로고
    • Carbonized nanoscale metal-organic frameworks as high performance electrocatalysts for oxygen reduction reaction
    • S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, Z. Tang, Carbonized nanoscale metal-organic frameworks as high performance electrocatalysts for oxygen reduction reaction. ACS Nano 8, 12660-12668 (2014).
    • (2014) ACS Nano , vol.8 , pp. 12660-12668
    • Zhao, S.1    Yin, H.2    Du, L.3    He, L.4    Zhao, K.5    Chang, L.6    Yin, G.7    Zhao, H.8    Liu, S.9    Tang, Z.10
  • 28
    • 84860368898 scopus 로고    scopus 로고
    • Graphene-sponges as high-performance low-cost anodes for microbial fuel cells
    • X. Xie, G. Yu, N. Liu, Z. Bao, C. S. Criddle, Y. Cui, Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci. 5, 6862-6866 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 6862-6866
    • Xie, X.1    Yu, G.2    Liu, N.3    Bao, Z.4    Criddle, C.S.5    Cui, Y.6
  • 29
    • 33846180377 scopus 로고    scopus 로고
    • Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering
    • Z. Y. Tang, Y. Wang, P. Podsiadlo, N. A. Kotov, Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater. 18, 3203-3224 (2006).
    • (2006) Adv. Mater. , vol.18 , pp. 3203-3224
    • Tang, Z.Y.1    Wang, Y.2    Podsiadlo, P.3    Kotov, N.A.4
  • 30
    • 84896955496 scopus 로고    scopus 로고
    • Uptake of selfsecreted flavins as bound cofactors for extracellular electron transfer in Geobacter species
    • A. Okamoto, K. Saito, K. Inoue, K. H. Nealson, K. Hashimoto, R. Nakamura, Uptake of selfsecreted flavins as bound cofactors for extracellular electron transfer in Geobacter species. Energy Environ. Sci. 7, 1357-1361 (2014).
    • (2014) Energy Environ. Sci. , vol.7 , pp. 1357-1361
    • Okamoto, A.1    Saito, K.2    Inoue, K.3    Nealson, K.H.4    Hashimoto, K.5    Nakamura, R.6
  • 31
    • 78449295718 scopus 로고    scopus 로고
    • Redox-responsive switching in bacterial respiratory pathways involving extracellular electron transfer
    • H. Liu, S. Matsuda, S. Kato, K. Hashimoto, S. Nakanishi, Redox-responsive switching in bacterial respiratory pathways involving extracellular electron transfer. Chem Sus Chem 3, 1253-1256 (2010).
    • (2010) Chem Sus Chem , vol.3 , pp. 1253-1256
    • Liu, H.1    Matsuda, S.2    Kato, S.3    Hashimoto, K.4    Nakanishi, S.5
  • 32
    • 84865217839 scopus 로고    scopus 로고
    • Control of bacterial extracellular electron transfer by a solid-state mediator of polyaniline nanowire arrays
    • C. Ding, H. Liu, Y. Zhu, M. Wan, L. Jiang, Control of bacterial extracellular electron transfer by a solid-state mediator of polyaniline nanowire arrays. Energy Environ. Sci. 5, 8517-8522 (2012).
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8517-8522
    • Ding, C.1    Liu, H.2    Zhu, Y.3    Wan, M.4    Jiang, L.5
  • 33
    • 33846842443 scopus 로고    scopus 로고
    • Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells
    • J. R. Kim, S. Cheng, S.-E. Oh, B. E. Logan, Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Environ. Sci. Technol. 41, 1004-1009 (2007).
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 1004-1009
    • Kim, J.R.1    Cheng, S.2    Oh, S.-E.3    Logan, B.E.4
  • 34
    • 70350772359 scopus 로고    scopus 로고
    • Separator characteristics for increasing performance of microbial fuel cells
    • X. Zhang, S. Cheng, X. Wang, X. Huang, B. E. Logan, Separator characteristics for increasing performance of microbial fuel cells. Environ. Sci. Technol. 43, 8456-8461 (2009).
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 8456-8461
    • Zhang, X.1    Cheng, S.2    Wang, X.3    Huang, X.4    Logan, B.E.5
  • 35
    • 73649124257 scopus 로고    scopus 로고
    • Microbial fuel cells: The effects of configurations, electrolyte solutions, and electrode materials on power generation
    • F. Li, Y. Sharma, Y. Lei, B. Li, Q. Zhou, Microbial fuel cells: The effects of configurations, electrolyte solutions, and electrode materials on power generation. Appl. Biochem. Biotechnol. 160, 168-181 (2010).
    • (2010) Appl. Biochem. Biotechnol. , vol.160 , pp. 168-181
    • Li, F.1    Sharma, Y.2    Lei, Y.3    Li, B.4    Zhou, Q.5
  • 37
    • 0141542682 scopus 로고    scopus 로고
    • Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
    • S. K. Chaudhuri, D. R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21, 1229-1232 (2003).
    • (2003) Nat. Biotechnol. , vol.21 , pp. 1229-1232
    • Chaudhuri, S.K.1    Lovley, D.R.2
  • 38
    • 33645761181 scopus 로고    scopus 로고
    • Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing
    • S. Cheng, H. Liu, B. E. Logan, Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ. Sci. Technol. 40, 2426-2432 (2006).
    • (2006) Environ. Sci. Technol. , vol.40 , pp. 2426-2432
    • Cheng, S.1    Liu, H.2    Logan, B.E.3
  • 39
    • 62849104654 scopus 로고    scopus 로고
    • Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs)
    • D. Jiang, B. Li, Novel electrode materials to enhance the bacterial adhesion and increase the power generation in microbial fuel cells (MFCs). Water Sci. Technol. 59, 557-563 (2009).
    • (2009) Water Sci. Technol. , vol.59 , pp. 557-563
    • Jiang, D.1    Li, B.2
  • 41
    • 84859141906 scopus 로고    scopus 로고
    • Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells
    • Y.-C. Yong, X.-C. Dong, M. B. Chan-Park, H. Song, P. Chen, Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6, 2394-2400 (2012).
    • (2012) ACS Nano , vol.6 , pp. 2394-2400
    • Yong, Y.-C.1    Dong, X.-C.2    Chan-Park, M.B.3    Song, H.4    Chen, P.5
  • 43
    • 17744405443 scopus 로고    scopus 로고
    • A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude
    • U. Schröder, J. Nieben, F. Scholz, A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. 42, 2880-2883 (2003).
    • (2003) Angew. Chem. Int. Ed. , vol.42 , pp. 2880-2883
    • Schröder, U.1    Nieben, J.2    Scholz, F.3
  • 44
    • 80052373256 scopus 로고    scopus 로고
    • Power production enhancement with a polyaniline modified anode in microbial fuel cells
    • B. Lai, X. Tang, H. Li, Z. Du, X. W. Liu, Q. Zhang, Power production enhancement with a polyaniline modified anode in microbial fuel cells. Biosens. Bioelectron. 28, 373-377 (2011).
    • (2011) Biosens. Bioelectron. , vol.28 , pp. 373-377
    • Lai, B.1    Tang, X.2    Li, H.3    Du, Z.4    Liu, X.W.5    Zhang, Q.6
  • 45
    • 79951539607 scopus 로고    scopus 로고
    • Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells
    • X. Xie, L. Hu, M. Pasta, G. F. Wells, D. Kong, C. S. Criddle, Y. Cui, Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett. 11, 291-296 (2011).
    • (2011) Nano Lett. , vol.11 , pp. 291-296
    • Xie, X.1    Hu, L.2    Pasta, M.3    Wells, G.F.4    Kong, D.5    Criddle, C.S.6    Cui, Y.7
  • 48
    • 84856953893 scopus 로고    scopus 로고
    • Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 mL) microbial fuel cell
    • J. E. Mink, J. P. Rojas, B. E. Logan, M. M. Hussain, Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 mL) microbial fuel cell. Nano Lett. 12, 791-795 (2012).
    • (2012) Nano Lett. , vol.12 , pp. 791-795
    • Mink, J.E.1    Rojas, J.P.2    Logan, B.E.3    Hussain, M.M.4
  • 49
    • 84860461429 scopus 로고    scopus 로고
    • Graphene/carbon cloth anode for highperformance mediatorless microbial fuel cells
    • J. Liu, Y. Qiao, C. X. Guo, S. Lim, H. Song, C. M. Li, Graphene/carbon cloth anode for highperformance mediatorless microbial fuel cells. Bioresour. Technol. 114, 275-280 (2012).
    • (2012) Bioresour. Technol. , vol.114 , pp. 275-280
    • Liu, J.1    Qiao, Y.2    Guo, C.X.3    Lim, S.4    Song, H.5    Li, C.M.6
  • 50
    • 84857750356 scopus 로고    scopus 로고
    • Crumpled graphene particles for microbial fuel cell electrodes
    • L. Xiao, J. Damien, J. Luo, H. D. Dong, J. Huang, Z. He, Crumpled graphene particles for microbial fuel cell electrodes. J. Power Sources 208, 187-192 (2012).
    • (2012) J. Power Sources , vol.208 , pp. 187-192
    • Xiao, L.1    Damien, J.2    Luo, J.3    Dong, H.D.4    Huang, J.5    He, Z.6
  • 51
    • 35348947475 scopus 로고    scopus 로고
    • Effective and low-cost platinum electrodes for microbial fuel cells deposited by electron beam evaporation
    • H. I. Park, U. Mushtaq, D. Perello, I. Lee, S. K. Cho, A. Star, M. Yun, Effective and low-cost platinum electrodes for microbial fuel cells deposited by electron beam evaporation. Energy Fuels 21, 2984-2990 (2007).
    • (2007) Energy Fuels , vol.21 , pp. 2984-2990
    • Park, H.I.1    Mushtaq, U.2    Perello, D.3    Lee, I.4    Cho, S.K.5    Star, A.6    Yun, M.7
  • 52
    • 78650586403 scopus 로고    scopus 로고
    • Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells
    • Y. Fan, S. Xu, R. Schaller, J. Jiao, F. Chaplen, H. Liu, Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens. Bioelectron. 26, 1908-1912 (2011).
    • (2011) Biosens. Bioelectron. , vol.26 , pp. 1908-1912
    • Fan, Y.1    Xu, S.2    Schaller, R.3    Jiao, J.4    Chaplen, F.5    Liu, H.6
  • 53
    • 41749102338 scopus 로고    scopus 로고
    • Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells
    • Y. Qiao, S.-J. Bao, C. M. Li, X.-Q. Cui, Z.-S. Lu, J. Guo, Nanostructured polyaniline/titanium dioxide composite anode for microbial fuel cells. ACS Nano 2, 113-119 (2008).
    • (2008) ACS Nano , vol.2 , pp. 113-119
    • Qiao, Y.1    Bao, S.-J.2    Li, C.M.3    Cui, X.-Q.4    Lu, Z.-S.5    Guo, J.6
  • 54
    • 34249326597 scopus 로고    scopus 로고
    • Carbon nanotube/polyaniline composite as anode material for microbial fuel cells
    • Y. Qiao, C. M. Li, S.-J. Bao, Q.-L. Bao, Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. J. Power Sources 170, 79-84 (2007).
    • (2007) J. Power Sources , vol.170 , pp. 79-84
    • Qiao, Y.1    Li, C.M.2    Bao, S.-J.3    Bao, Q.-L.4
  • 55
    • 77955529587 scopus 로고    scopus 로고
    • Self-assembled graphene hydrogel via a one-step hydrothermal process
    • Y. Xu, K. Sheng, C. Li, G. Shi, Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 4, 4324-4330 (2010).
    • (2010) ACS Nano , vol.4 , pp. 4324-4330
    • Xu, Y.1    Sheng, K.2    Li, C.3    Shi, G.4
  • 56
    • 84887918905 scopus 로고    scopus 로고
    • Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water
    • H. Yin, S. Zhao, J. Wang, H. Tang, L. Chang, L. He, H. Zhao, Y. Gao, Z. Tang, Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv. Mater. 25, 6270-6276 (2013).
    • (2013) Adv. Mater. , vol.25 , pp. 6270-6276
    • Yin, H.1    Zhao, S.2    Wang, J.3    Tang, H.4    Chang, L.5    He, L.6    Zhao, H.7    Gao, Y.8    Tang, Z.9
  • 57
    • 0034307014 scopus 로고    scopus 로고
    • Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys
    • M. Grivet, J. J. Morrier, G. Benay, O. Barsotti, Effect of hydrophobicity on in vitro streptococcal adhesion to dental alloys. J. Mater. Sci. Mater. Med. 11, 637-642 (2000).
    • (2000) J. Mater. Sci. Mater. Med. , vol.11 , pp. 637-642
    • Grivet, M.1    Morrier, J.J.2    Benay, G.3    Barsotti, O.4
  • 58
    • 85009704370 scopus 로고    scopus 로고
    • Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4
    • C.-m. Ding, M.-l. Lv, Y. Zhu, L. Jiang, H. Liu, Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4. Angew. Chem. Int. Ed. 127, 1466-1471 (2015).
    • (2015) Angew. Chem. Int. Ed. , vol.127 , pp. 1466-1471
    • Ding, C.-M.1    Lv, M.-L.2    Zhu, Y.3    Jiang, L.4    Liu, H.5
  • 59
    • 84875122181 scopus 로고    scopus 로고
    • Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells
    • G. G. Kumar, V. G. S. Sarathi, K. S. Nahm, Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosens. Bioelectron. 43, 461-475 (2013).
    • (2013) Biosens. Bioelectron. , vol.43 , pp. 461-475
    • Kumar, G.G.1    Sarathi, V.G.S.2    Nahm, K.S.3
  • 61
    • 84867317699 scopus 로고    scopus 로고
    • The accurate use of impedance analysis for the study of microbial electrochemical systems
    • X. Dominguez-Benetton, S. Sevda, K. Vanbroekhoven, D. Pant, The accurate use of impedance analysis for the study of microbial electrochemical systems. Chem. Soc. Rev. 41, 7228-7246 (2012).
    • (2012) Chem. Soc. Rev. , vol.41 , pp. 7228-7246
    • Dominguez-Benetton, X.1    Sevda, S.2    Vanbroekhoven, K.3    Pant, D.4
  • 62
    • 69249104648 scopus 로고    scopus 로고
    • Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies
    • Z. He, F. Mansfeld, Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci. 2, 215-219 (2009).
    • (2009) Energy Environ. Sci. , vol.2 , pp. 215-219
    • He, Z.1    Mansfeld, F.2
  • 63
    • 36849008648 scopus 로고    scopus 로고
    • Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms
    • Y. Fan, H. Hu, H. Liu, Sustainable power generation in microbial fuel cells using bicarbonate buffer and proton transfer mechanisms. Environ. Sci. Technol. 41, 8154-8158 (2007).
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 8154-8158
    • Fan, Y.1    Hu, H.2    Liu, H.3
  • 64
    • 79551568355 scopus 로고    scopus 로고
    • Vertically aligned graphene electrode for lithium ion battery with high rate capability
    • X. Xiao, P. Liu, J. S. Wang, M. W. Verbrugge, M. P. Balogh, Vertically aligned graphene electrode for lithium ion battery with high rate capability. Electrochem. Commun. 13, 209-212 (2011).
    • (2011) Electrochem. Commun. , vol.13 , pp. 209-212
    • Xiao, X.1    Liu, P.2    Wang, J.S.3    Verbrugge, M.W.4    Balogh, M.P.5
  • 65
    • 84902243006 scopus 로고    scopus 로고
    • Li4Ti5O12-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: A synergistic effect of doping, incorporating a conductive phase and reducing the particle size
    • C. Lin, X. Fan, Y. Xin, F. Cheng, M. O. Lai, H. Zhou, L. Lu, Li4Ti5O12-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: A synergistic effect of doping, incorporating a conductive phase and reducing the particle size. J. Mater. Chem. A 2, 9982-9993 (2014).
    • (2014) J. Mater. Chem. A , vol.2 , pp. 9982-9993
    • Lin, C.1    Fan, X.2    Xin, Y.3    Cheng, F.4    Lai, M.O.5    Zhou, H.6    Lu, L.7
  • 70
    • 78650844252 scopus 로고    scopus 로고
    • Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell
    • H. Li, J. Ni, Treatment of wastewater from Dioscorea zingiberensis tubers used for producing steroid hormones in a microbial fuel cell. Bioresour. Technol. 102, 2731-2735 (2011).
    • (2011) Bioresour. Technol. , vol.102 , pp. 2731-2735
    • Li, H.1    Ni, J.2
  • 71
    • 84856284205 scopus 로고    scopus 로고
    • Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes
    • S. Xu, H. Liu, Y. Fan, R. Schaller, J. Jun, F. Chaplen, Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl. Microbiol. Biotechnol. 93, 871-880 (2011).
    • (2011) Appl. Microbiol. Biotechnol. , vol.93 , pp. 871-880
    • Xu, S.1    Liu, H.2    Fan, Y.3    Schaller, R.4    Jun, J.5    Chaplen, F.6
  • 72
    • 74849126212 scopus 로고    scopus 로고
    • Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures
    • V. J. Watson, B. E. Logan, Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnol. Bioeng. 105, 489-498 (2010).
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 489-498
    • Watson, V.J.1    Logan, B.E.2
  • 73
    • 77954307691 scopus 로고    scopus 로고
    • Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells
    • A. Kouzuma, X.-Y. Meng, N. Kimura, K. Hashimoto, K. Watanabe, Disruption of the putative cell surface polysaccharide biosynthesis gene SO3177 in Shewanella oneidensis MR-1 enhances adhesion to electrodes and current generation in microbial fuel cells. Appl. Environ. Microbiol. 76, 4151-4157 (2010).
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 4151-4157
    • Kouzuma, A.1    Meng, X.-Y.2    Kimura, N.3    Hashimoto, K.4    Watanabe, K.5
  • 74
    • 84883235524 scopus 로고    scopus 로고
    • Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode
    • J. E. Mink, M. M. Hussain, Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode. ACS Nano 7, 6921-6927 (2013).
    • (2013) ACS Nano , vol.7 , pp. 6921-6927
    • Mink, J.E.1    Hussain, M.M.2
  • 75
    • 78650827567 scopus 로고    scopus 로고
    • Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor
    • M. A. Rosenbaum, H. Y. Bar, Q. K. Beg, D. Segre, J. Booth, M. A. Cotta, L. T. Angenent, Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor. Bioresour. Technol. 102, 2623-2628 (2011).
    • (2011) Bioresour. Technol. , vol.102 , pp. 2623-2628
    • Rosenbaum, M.A.1    Bar, H.Y.2    Beg, Q.K.3    Segre, D.4    Booth, J.5    Cotta, M.A.6    Angenent, L.T.7
  • 77
    • 84884637623 scopus 로고    scopus 로고
    • Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells
    • C. Zhao, P. Gai, C. Liu, X. Wang, H. Xu, J. Zhang, J.-J. Zhu, Polyaniline networks grown on graphene nanoribbons-coated carbon paper with a synergistic effect for high-performance microbial fuel cells. J. Mater. Chem. A 1, 12587-12594 (2013).
    • (2013) J. Mater. Chem. A , vol.1 , pp. 12587-12594
    • Zhao, C.1    Gai, P.2    Liu, C.3    Wang, X.4    Xu, H.5    Zhang, J.6    Zhu, J.-J.7
  • 78
    • 84879763677 scopus 로고    scopus 로고
    • High biocurrent generation in Shewanellainoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode
    • C. Zhao, Y. Wang, F. Shi, J. Zhang, J.-J. Zhu, High biocurrent generation in Shewanellainoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode. Chem. Commun. 49, 6668-6670 (2013).
    • (2013) Chem. Commun. , vol.49 , pp. 6668-6670
    • Zhao, C.1    Wang, Y.2    Shi, F.3    Zhang, J.4    Zhu, J.-J.5
  • 80
    • 79955628225 scopus 로고    scopus 로고
    • Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bioelectrochemical systems
    • Y.-X. Huang, X.-W. Liu, J.-F. Xie, G.-P. Sheng, G.-Y. Wang, Y.-Y. Zhang, A.-W. Xu, H.-Q. Yu, Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bioelectrochemical systems. Chem. Commun. 47, 5795-5797 (2011).
    • (2011) Chem. Commun. , vol.47 , pp. 5795-5797
    • Huang, Y.-X.1    Liu, X.-W.2    Xie, J.-F.3    Sheng, G.-P.4    Wang, G.-Y.5    Zhang, Y.-Y.6    Xu, A.-W.7    Yu, H.-Q.8
  • 81
    • 82255169399 scopus 로고    scopus 로고
    • Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells
    • Y.-Y. Yu, H.-I. Chen, Y.-C. Yong, D.-H. Kim, H. Song, Conductive artificial biofilm dramatically enhances bioelectricity production in Shewanella-inoculated microbial fuel cells. Chem. Commun. 47, 12825-12827 (2011).
    • (2011) Chem. Commun. , vol.47 , pp. 12825-12827
    • Yu, Y.-Y.1    Chen, H.-I.2    Yong, Y.-C.3    Kim, D.-H.4    Song, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.