메뉴 건너뛰기




Volumn 97, Issue , 2017, Pages 112-129

Application of random forest and generalised linear model and their hybrid methods with geostatistical techniques to count data: Predicting sponge species richness

Author keywords

Feature selection; Machine learning; Model selection; Predictive accuracy; Spatial prediction; Spatial predictive model

Indexed keywords

DECISION TREES; ECOSYSTEMS; FEATURE EXTRACTION; FORECASTING; LEARNING SYSTEMS; RANDOM FORESTS; SPATIAL DISTRIBUTION;

EID: 85026776020     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2017.07.016     Document Type: Article
Times cited : (48)

References (74)
  • 2
    • 77955416931 scopus 로고    scopus 로고
    • Influence of woody vegetation on pollinator densities in oilseed Brassica fields in an Australian temperate landscape
    • Arthur, A.D., Li, J., Henry, S., Cunningham, S.A., Influence of woody vegetation on pollinator densities in oilseed Brassica fields in an Australian temperate landscape. Basic Appl. Ecol. 11 (2010), 406–414.
    • (2010) Basic Appl. Ecol. , vol.11 , pp. 406-414
    • Arthur, A.D.1    Li, J.2    Henry, S.3    Cunningham, S.A.4
  • 3
    • 0023469662 scopus 로고
    • Models for the analysis of species’ response to environmental gradients
    • Austin, M.P., Models for the analysis of species’ response to environmental gradients. Vegetatio 69 (1987), 35–45.
    • (1987) Vegetatio , vol.69 , pp. 35-45
    • Austin, M.P.1
  • 4
    • 33749998362 scopus 로고    scopus 로고
    • Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory
    • Austin, M.P., Belbin, L., Meyers, J.A., Doherty, M.D., Luoto, M., Evaluation of statistical models used for predicting plant species distributions: role of artificial data and theory. Ecol. Model. 199 (2006), 197–216.
    • (2006) Ecol. Model. , vol.199 , pp. 197-216
    • Austin, M.P.1    Belbin, L.2    Meyers, J.A.3    Doherty, M.D.4    Luoto, M.5
  • 5
    • 84925395474 scopus 로고    scopus 로고
    • Marine bioregional Plan for the North-west Marine Region
    • Department of Sustainability, Environment, Water, Population and Communities
    • Australia, C.o., Marine bioregional Plan for the North-west Marine Region. 2012, Department of Sustainability, Environment, Water, Population and Communities, 260.
    • (2012) , pp. 260
    • Australia, C.O.1
  • 6
    • 84925395474 scopus 로고    scopus 로고
    • Marine bioregional Plan for the North Marine Region
    • Department of Sustainability, Environment, Water, Population and Communities Canberra
    • Australia, C.o., Marine bioregional Plan for the North Marine Region. 2012, Department of Sustainability, Environment, Water, Population and Communities, Canberra, 191.
    • (2012) , pp. 191
    • Australia, C.O.1
  • 7
    • 32444450104 scopus 로고    scopus 로고
    • Geology-benthos relationships on a temperate rocky bank, eastern Bass Strait, Australia
    • Beaman, R.J., Daniell, J.J., Harris, P.T., Geology-benthos relationships on a temperate rocky bank, eastern Bass Strait, Australia. Mar. Freshw. Res. 56 (2005), 943–958.
    • (2005) Mar. Freshw. Res. , vol.56 , pp. 943-958
    • Beaman, R.J.1    Daniell, J.J.2    Harris, P.T.3
  • 8
    • 84860701629 scopus 로고    scopus 로고
    • Analysis of a random forest method
    • Biau, G., Analysis of a random forest method. J. Mach. Learn. Res. 13 (2012), 1063–1095.
    • (2012) J. Mach. Learn. Res. , vol.13 , pp. 1063-1095
    • Biau, G.1
  • 9
    • 80052800716 scopus 로고    scopus 로고
    • Beyond species: functional diversity and the maintenance of ecological processes and services
    • Cadotte, M.W., Carscadden, K., Mirotchnick, N., Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48:5 (2011), 1079–1087.
    • (2011) J. Appl. Ecol. , vol.48 , Issue.5 , pp. 1079-1087
    • Cadotte, M.W.1    Carscadden, K.2    Mirotchnick, N.3
  • 11
    • 84945965058 scopus 로고    scopus 로고
    • Spatial predictions at the community level: from current approaches to future frameworks
    • D'Amen, M., Rahbek, C., Zimmermann, N.E., Guisan, A., Spatial predictions at the community level: from current approaches to future frameworks. Biol. Rev. 92 (2015), 169–187.
    • (2015) Biol. Rev. , vol.92 , pp. 169-187
    • D'Amen, M.1    Rahbek, C.2    Zimmermann, N.E.3    Guisan, A.4
  • 12
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte, R., de Andres, S.A., Gene selection and classification of microarray data using random forest. BMC Bioinforma. 7:3 (2006), 1–13.
    • (2006) BMC Bioinforma. , vol.7 , Issue.3 , pp. 1-13
    • Diaz-Uriarte, R.1    de Andres, S.A.2
  • 13
    • 84859162830 scopus 로고    scopus 로고
    • Living on the edge: the sponge fauna of Australia's southwestern and northwestern deep continental margin
    • Fromont, J., Althaus, F., McEnnulty, F.R., Williams, A., Salotti, M., Gomez, O., Gowlett-Holmes, K., Living on the edge: the sponge fauna of Australia's southwestern and northwestern deep continental margin. Hydrobiologia 687:1 (2012), 127–142.
    • (2012) Hydrobiologia , vol.687 , Issue.1 , pp. 127-142
    • Fromont, J.1    Althaus, F.2    McEnnulty, F.R.3    Williams, A.4    Salotti, M.5    Gomez, O.6    Gowlett-Holmes, K.7
  • 14
    • 85018479759 scopus 로고    scopus 로고
    • VSURF: Variable Selection Using Random Forests
    • R package version 1.0.2 ed
    • Genuer, R., Poggi, J.M., Tuleau-Malot, C., VSURF: Variable Selection Using Random Forests. 2015 R package version 1.0.2 ed.
    • (2015)
    • Genuer, R.1    Poggi, J.M.2    Tuleau-Malot, C.3
  • 15
    • 33846452513 scopus 로고    scopus 로고
    • Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach
    • Goswami, M., O'Connor, K.M., Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach. J. Hydrology 334 (2007), 125–140.
    • (2007) J. Hydrology , vol.334 , pp. 125-140
    • Goswami, M.1    O'Connor, K.M.2
  • 16
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning: Data Mining, Inference, and Prediction
    • second ed. Springer New York
    • Hastie, T., Tibshirani, R., Friedman, J., The Elements of Statistical Learning: Data Mining, Inference, and Prediction. second ed., 2009, Springer, New York.
    • (2009)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3
  • 17
    • 80052007685 scopus 로고    scopus 로고
    • Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia
    • Sol4934-Post-survey Report. Geoscience Australia, Record 2010/09, 78pp
    • Heap, A.D., Przeslawski, R., Radke, L., Trafford, J., Battershill, C., Party, S., Seabed Environments of the Eastern Joseph Bonaparte Gulf, Northern Australia., 2010 Sol4934-Post-survey Report. Geoscience Australia, Record 2010/09, 78pp.
    • (2010)
    • Heap, A.D.1    Przeslawski, R.2    Radke, L.3    Trafford, J.4    Battershill, C.5    Party, S.6
  • 18
    • 41049089318 scopus 로고    scopus 로고
    • A Practical Guide to Geostatistical Mapping of Environmental Variables
    • Office for Official Publication of the European Communities Luxembourg
    • Hengl, T., A Practical Guide to Geostatistical Mapping of Environmental Variables. 2007, Office for Official Publication of the European Communities, Luxembourg, 143.
    • (2007) , pp. 143
    • Hengl, T.1
  • 19
    • 84880049507 scopus 로고    scopus 로고
    • Raster: Geographic Data Analysis and Modeling
    • Hijmans, R.J., Raster: Geographic Data Analysis and Modeling. 2014 http://CRAN.R-project.org/package=raster.
    • (2014)
    • Hijmans, R.J.1
  • 20
    • 0343840966 scopus 로고    scopus 로고
    • Revision of microcionidae (Porifera: poecilosclerida: Demospongiae), with description of Australian species
    • Hooper, J.N.A., Revision of microcionidae (Porifera: poecilosclerida: Demospongiae), with description of Australian species. Memoirs Qld. Mus. 40 (1996), 1–626.
    • (1996) Memoirs Qld. Mus. , vol.40 , pp. 1-626
    • Hooper, J.N.A.1
  • 21
    • 0011374741 scopus 로고    scopus 로고
    • Systema Porifera: a Guide to the Supraspecific Classification of the Phylum Porifera
    • Kluwer Academic/Plenum Publishers New York
    • Hooper, J.N.A., Van Soest, R.W.M., Systema Porifera: a Guide to the Supraspecific Classification of the Phylum Porifera. 2002, Kluwer Academic/Plenum Publishers, New York.
    • (2002)
    • Hooper, J.N.A.1    Van Soest, R.W.M.2
  • 22
    • 79955898633 scopus 로고    scopus 로고
    • Performance of predictive models in marine benthic environments based on predictions of sponge distribution on the Australian continental shelf
    • Huang, Z., Brooke, B., Li, J., Performance of predictive models in marine benthic environments based on predictions of sponge distribution on the Australian continental shelf. Ecol. Inf. 6 (2011), 205–216.
    • (2011) Ecol. Inf. , vol.6 , pp. 205-216
    • Huang, Z.1    Brooke, B.2    Li, J.3
  • 23
    • 0005605716 scopus 로고    scopus 로고
    • Introductory essay: critical issues for improving predictions
    • J.M. Scott P.J. Heglund M.L. Morrison J.B. Haufler M.G. Raphael W.A. Wall F.B. Samson Island Press Washington
    • Huston, M.A., Introductory essay: critical issues for improving predictions. Scott, J.M., Heglund, P.J., Morrison, M.L., Haufler, J.B., Raphael, M.G., Wall, W.A., Samson, F.B., (eds.) Predicting Species Occurrences: Issues of Accuracy and Scale, 2002, Island Press, Washington, 7–24.
    • (2002) Predicting Species Occurrences: Issues of Accuracy and Scale , pp. 7-24
    • Huston, M.A.1
  • 24
    • 85164392958 scopus 로고
    • A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection, International Joint Conference on Artificial Intelligence (IJCAI)
    • Morgan Kaufmann
    • Kohavi, R., A Study of Cross-validation and Bootstrap for Accuracy Estimation and Model Selection, International Joint Conference on Artificial Intelligence (IJCAI). 1995, Morgan Kaufmann, 1137–1143.
    • (1995) , pp. 1137-1143
    • Kohavi, R.1
  • 25
    • 59249094016 scopus 로고    scopus 로고
    • Caret: Classification and Regression Training
    • R package version 6.0-30
    • Kuhn, M., Caret: Classification and Regression Training. 2014 R package version 6.0-30 http://CRAN.R-project.org/package=caret.
    • (2014)
    • Kuhn, M.1
  • 26
    • 77958158373 scopus 로고    scopus 로고
    • Feature selection with the Boruta package
    • Kursa, M.B., Rudnicki, W.R., Feature selection with the Boruta package. J. Stat. Softw. 36:11 (2010), 1–13.
    • (2010) J. Stat. Softw. , vol.36 , Issue.11 , pp. 1-13
    • Kursa, M.B.1    Rudnicki, W.R.2
  • 27
    • 84925254670 scopus 로고    scopus 로고
    • What is the question?
    • Leek, J.T., Peng, R.D., What is the question?. Science 347 (2015), 1314–1315.
    • (2015) Science , vol.347 , pp. 1314-1315
    • Leek, J.T.1    Peng, R.D.2
  • 28
    • 85026733066 scopus 로고    scopus 로고
    • Novel spatial interpolation methods for environmental properties: using point samples of mud content as an example
    • Li, J., Novel spatial interpolation methods for environmental properties: using point samples of mud content as an example. Surv. Statistician Newsl. Int. Assoc. Surv. Statisticians No. 63 (2011), 15–16.
    • (2011) Surv. Statistician Newsl. Int. Assoc. Surv. Statisticians No. , vol.63 , pp. 15-16
    • Li, J.1
  • 29
    • 85080939486 scopus 로고    scopus 로고
    • Predicting the Spatial Distribution of Seabed Gravel Content Using Random Forest, Spatial Interpolation Methods and Their Hybrid Methods
    • The International Congress on Modelling and Simulation (MODSIM) 2013: Adelaide
    • Li, J., Predicting the Spatial Distribution of Seabed Gravel Content Using Random Forest, Spatial Interpolation Methods and Their Hybrid Methods. 2013, 394–400 The International Congress on Modelling and Simulation (MODSIM) 2013: Adelaide.
    • (2013) , pp. 394-400
    • Li, J.1
  • 30
    • 84891477258 scopus 로고    scopus 로고
    • Predictive modelling using random forest and its hybrid methods with geostatistical techniques in marine environmental geosciences
    • P. Christen P. Kennedy L. Liu K.-L. Ong A. Stranieri Y. Zhao Canberra, Australia, 13–15 November 2013. Conferences in Research and Practice in Information Technology, vol. 146
    • Li, J., Predictive modelling using random forest and its hybrid methods with geostatistical techniques in marine environmental geosciences. Christen, P., Kennedy, P., Liu, L., Ong, K.-L., Stranieri, A., Zhao, Y., (eds.) The Proceedings of the Eleventh Australasian Data Mining Conference (AusDM 2013), 2013 Canberra, Australia, 13–15 November 2013. Conferences in Research and Practice in Information Technology, vol. 146.
    • (2013) The Proceedings of the Eleventh Australasian Data Mining Conference (AusDM 2013)
    • Li, J.1
  • 31
    • 84958544630 scopus 로고    scopus 로고
    • Assessing spatial predictive models in the environmental sciences: accuracy measures, data variation and variance explained
    • Li, J., Assessing spatial predictive models in the environmental sciences: accuracy measures, data variation and variance explained. Environ. Model. Softw. 80 (2016), 1–8.
    • (2016) Environ. Model. Softw. , vol.80 , pp. 1-8
    • Li, J.1
  • 32
    • 79955921993 scopus 로고    scopus 로고
    • A Review of Spatial Interpolation Methods for Environmental Scientists
    • Geoscience Australia Record 2008/23, 137pp
    • Li, J., Heap, A., A Review of Spatial Interpolation Methods for Environmental Scientists. 2008, Geoscience Australia Record 2008/23, 137pp.
    • (2008)
    • Li, J.1    Heap, A.2
  • 33
    • 79955887596 scopus 로고    scopus 로고
    • A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors
    • Li, J., Heap, A., A review of comparative studies of spatial interpolation methods in environmental sciences: performance and impact factors. Ecol. Inf. 6 (2011), 228–241.
    • (2011) Ecol. Inf. , vol.6 , pp. 228-241
    • Li, J.1    Heap, A.2
  • 34
    • 85026771312 scopus 로고    scopus 로고
    • Can Machine Learning Methods Be Applied for Spatial Predictions of Environmental Properties?
    • (Australian Statistical Conference: Perth)
    • Li, J., Heap, A., Potter, A., Daniell, J., Can Machine Learning Methods Be Applied for Spatial Predictions of Environmental Properties?. 2010 (Australian Statistical Conference: Perth).
    • (2010)
    • Li, J.1    Heap, A.2    Potter, A.3    Daniell, J.4
  • 35
    • 84891442280 scopus 로고    scopus 로고
    • Predicting Seabed Mud Content across the Australian Margin II: Performance of Machine Learning Methods and Their Combination with Ordinary Kriging and Inverse Distance Squared
    • Geoscience Australia Record 2011/07, 69pp
    • Li, J., Heap, A., Potter, A., Daniell, J.J., Predicting Seabed Mud Content across the Australian Margin II: Performance of Machine Learning Methods and Their Combination with Ordinary Kriging and Inverse Distance Squared. 2011, Geoscience Australia Record 2011/07, 69pp.
    • (2011)
    • Li, J.1    Heap, A.2    Potter, A.3    Daniell, J.J.4
  • 36
    • 84891409684 scopus 로고    scopus 로고
    • Spatial interpolation methods applied in the environmental sciences: a review
    • Li, J., Heap, A.D., Spatial interpolation methods applied in the environmental sciences: a review. Environ. Model. Softw. 53 (2014), 173–189.
    • (2014) Environ. Model. Softw. , vol.53 , pp. 173-189
    • Li, J.1    Heap, A.D.2
  • 37
    • 84855493098 scopus 로고    scopus 로고
    • Application of machine learning methods to spatial interpolation of environmental variables
    • Li, J., Heap, A.D., Potter, A., Daniell, J., Application of machine learning methods to spatial interpolation of environmental variables. Environ. Model. Softw. 26 (2011), 1647–1659.
    • (2011) Environ. Model. Softw. , vol.26 , pp. 1647-1659
    • Li, J.1    Heap, A.D.2    Potter, A.3    Daniell, J.4
  • 38
    • 79960366104 scopus 로고    scopus 로고
    • Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin
    • Li, J., Heap, A.D., Potter, A., Huang, Z., Daniell, J., Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin. Cont. Shelf Res. 31 (2011), 1365–1376.
    • (2011) Cont. Shelf Res. , vol.31 , pp. 1365-1376
    • Li, J.1    Heap, A.D.2    Potter, A.3    Huang, Z.4    Daniell, J.5
  • 39
    • 58149510943 scopus 로고    scopus 로고
    • How do species respond to climate change along an elevation gradient? A case study of the Grey-headed Robin (Heteromyias albispecularis)
    • Li, J., Hilbert, D.W., Parker, T., Williams, S., How do species respond to climate change along an elevation gradient? A case study of the Grey-headed Robin (Heteromyias albispecularis). Glob. Change Biol. 15 (2009), 255–267.
    • (2009) Glob. Change Biol. , vol.15 , pp. 255-267
    • Li, J.1    Hilbert, D.W.2    Parker, T.3    Williams, S.4
  • 40
    • 79960367270 scopus 로고    scopus 로고
    • Predicting Seabed Mud Content across the Australian Margin: Comparison of Statistical and Mathematical Techniques Using a Simulation Experiment
    • Geoscience Australia 2010/11, 146pp
    • Li, J., Potter, A., Huang, Z., Daniell, J.J., Heap, A., Predicting Seabed Mud Content across the Australian Margin: Comparison of Statistical and Mathematical Techniques Using a Simulation Experiment. 2010, Geoscience Australia 2010/11, 146pp.
    • (2010)
    • Li, J.1    Potter, A.2    Huang, Z.3    Daniell, J.J.4    Heap, A.5
  • 41
    • 84884715274 scopus 로고    scopus 로고
    • Predicting Seabed Sand Content across the Australian Margin Using Machine Learning and Geostatistical Methods
    • Geoscience Australia Record 2012/48, 115pp
    • Li, J., Potter, A., Huang, Z., Heap, A., Predicting Seabed Sand Content across the Australian Margin Using Machine Learning and Geostatistical Methods. 2012, Geoscience Australia Record 2012/48, 115pp.
    • (2012)
    • Li, J.1    Potter, A.2    Huang, Z.3    Heap, A.4
  • 42
    • 84884715274 scopus 로고    scopus 로고
    • Predicting Seabed Sand Content across the Australian Margin Using Machine Learning and Geostatistical Methods
    • Geoscience Australia Record 2012/48, 115pp
    • Li, J., Potter, A., Huang, Z., Heap, A., Predicting Seabed Sand Content across the Australian Margin Using Machine Learning and Geostatistical Methods. 2012, Geoscience Australia Record 2012/48, 115pp.
    • (2012)
    • Li, J.1    Potter, A.2    Huang, Z.3    Heap, A.4
  • 43
    • 84902755877 scopus 로고    scopus 로고
    • Predicting seabed hardness using random forest in R
    • Y. Zhao Y. Cen Elsevier
    • Li, J., Siwabessy, J., Tran, M., Huang, Z., Heap, A., Predicting seabed hardness using random forest in R. Zhao, Y., Cen, Y., (eds.) Data Mining Applications with R, 2013, Elsevier, 299–329.
    • (2013) Data Mining Applications with R , pp. 299-329
    • Li, J.1    Siwabessy, J.2    Tran, M.3    Huang, Z.4    Heap, A.5
  • 44
    • 84960510002 scopus 로고    scopus 로고
    • Selecting optimal random forest predictive models: a case study on predicting the spatial distribution of seabed hardness
    • Li, J., Tran, M., Siwabessy, J., Selecting optimal random forest predictive models: a case study on predicting the spatial distribution of seabed hardness. PLoS One, 11(2), 2016, e0149089.
    • (2016) PLoS One , vol.11 , Issue.2 , pp. e0149089
    • Li, J.1    Tran, M.2    Siwabessy, J.3
  • 45
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A., Wiener, M., Classification and regression by randomForest. R. News 2:3 (2002), 18–22.
    • (2002) R. News , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 48
  • 49
    • 3342878970 scopus 로고    scopus 로고
    • Multivariable geostatistics in S: the gstat package
    • Pebesma, E.J., Multivariable geostatistics in S: the gstat package. Comput. Geosciences 30 (2004), 683–691.
    • (2004) Comput. Geosciences , vol.30 , pp. 683-691
    • Pebesma, E.J.1
  • 51
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: bagging and random forests for ecological prediction
    • Prasad, A.M., Iverson, L.R., Liaw, A., Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9 (2006), 181–199.
    • (2006) Ecosystems , vol.9 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 52
    • 84898546391 scopus 로고    scopus 로고
    • Sponge biodiversity and ecology of the van diemen Rise and eastern Joseph Bonaparte gulf, northern Australia
    • Przeslawski, R., Alvarez, B., Battershill, C., Smith, T., Sponge biodiversity and ecology of the van diemen Rise and eastern Joseph Bonaparte gulf, northern Australia. Hydrobiologia 730:1 (2014), 1–16.
    • (2014) Hydrobiologia , vol.730 , Issue.1 , pp. 1-16
    • Przeslawski, R.1    Alvarez, B.2    Battershill, C.3    Smith, T.4
  • 53
    • 84959386967 scopus 로고    scopus 로고
    • Implications of sponge biodiversity patterns for the management of a marine reserve in northern Australia
    • Przeslawski, R., Alvarez, B., Kool, J., Bridge, T., Caley, J., Nichol, S., Implications of sponge biodiversity patterns for the management of a marine reserve in northern Australia. PLoS One, 10(11), 2015, e0141813.
    • (2015) PLoS One , vol.10 , Issue.11 , pp. e0141813
    • Przeslawski, R.1    Alvarez, B.2    Kool, J.3    Bridge, T.4    Caley, J.5    Nichol, S.6
  • 55
    • 5344244656 scopus 로고    scopus 로고
    • R: a Language and Environment for Statistical Computing
    • R Foundation for Statistical Computing Vienna
    • R Development Core Team, R: a Language and Environment for Statistical Computing. 2013, R Foundation for Statistical Computing, Vienna.
    • (2013)
    • R Development Core Team1
  • 58
  • 61
    • 84884713683 scopus 로고    scopus 로고
    • Spatial interpolation of McArthur's forest fire danger index across Australia: observational study
    • Sanabria, L.A., Qin, X., Li, J., Cechet, R.P., Lucas, C., Spatial interpolation of McArthur's forest fire danger index across Australia: observational study. Environ. Model. Softw. 50 (2013), 37–50.
    • (2013) Environ. Model. Softw. , vol.50 , pp. 37-50
    • Sanabria, L.A.1    Qin, X.2    Li, J.3    Cechet, R.P.4    Lucas, C.5
  • 63
    • 84859155914 scopus 로고    scopus 로고
    • Sponge gardens of ningaloo reef (carnarvon shelf, western Australia) are biodiversity hotspots
    • Schönberg, C.H.L., Fromont, J., Sponge gardens of ningaloo reef (carnarvon shelf, western Australia) are biodiversity hotspots. Hydrobiologia 687 (2011), 143–161.
    • (2011) Hydrobiologia , vol.687 , pp. 143-161
    • Schönberg, C.H.L.1    Fromont, J.2
  • 64
    • 33646162643 scopus 로고    scopus 로고
    • Machine learning of poorly predictable ecological data
    • Shan, Y., Paull, D., McKay, R.I., Machine learning of poorly predictable ecological data. Ecol. Model. 195 (2006), 129–138.
    • (2006) Ecol. Model. , vol.195 , pp. 129-138
    • Shan, Y.1    Paull, D.2    McKay, R.I.3
  • 65
    • 84902734901 scopus 로고    scopus 로고
    • Methodologies for Seabed Substrate Characterisation Using Multibeam Bathymetry, Backscatter and Video Data: a Case Study from the Carbonate Banks of the Timor Sea
    • Northern Australia: Geoscience Australia, Record 2013/11, 82pp
    • Siwabessy, P.J.W., Daniell, J., Li, J., Huang, Z., Heap, A.D., Nichol, S., Anderson, T.J., Tran, M., Methodologies for Seabed Substrate Characterisation Using Multibeam Bathymetry, Backscatter and Video Data: a Case Study from the Carbonate Banks of the Timor Sea. 2013 Northern Australia: Geoscience Australia, Record 2013/11, 82pp.
    • (2013)
    • Siwabessy, P.J.W.1    Daniell, J.2    Li, J.3    Huang, Z.4    Heap, A.D.5    Nichol, S.6    Anderson, T.J.7    Tran, M.8
  • 67
    • 84867502131 scopus 로고    scopus 로고
    • Conditional Variable Importance in R Package ExtendedForest
    • R vignette
    • Smith, S.J., Ellis, N., Pitcher, C.R., Conditional Variable Importance in R Package ExtendedForest. 2011, R vignette http://gradientforest.r-forge.r-project.org/Conditional-importance.pdf.
    • (2011)
    • Smith, S.J.1    Ellis, N.2    Pitcher, C.R.3
  • 68
    • 38049134755 scopus 로고    scopus 로고
    • Demosponge biodiversity in the benthic protection zone of the Great Australian Bight
    • Sorokin, S.J., Fromont, J., Currie, D., Demosponge biodiversity in the benthic protection zone of the Great Australian Bight. Trans. R. Soc. S. Aust. 132 (2007), 192–204.
    • (2007) Trans. R. Soc. S. Aust. , vol.132 , pp. 192-204
    • Sorokin, S.J.1    Fromont, J.2    Currie, D.3
  • 70
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: illustrations, sources and a solution
    • Strobl, C., Boulesteix, A., Zeileis, A., Hothorn, T., Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinforma., 8(25), 2007, 25.
    • (2007) BMC Bioinforma. , vol.8 , Issue.25 , pp. 25
    • Strobl, C.1    Boulesteix, A.2    Zeileis, A.3    Hothorn, T.4
  • 71
    • 84926291930 scopus 로고    scopus 로고
    • Examination of geostatistical and machine-learning techniques as interpolaters in anisotropic atmospheric environments
    • Tadić, J.M., Ilić, V., Biraud, S., Examination of geostatistical and machine-learning techniques as interpolaters in anisotropic atmospheric environments. Atmos. Environ. 111 (2015), 28–38.
    • (2015) Atmos. Environ. , vol.111 , pp. 28-38
    • Tadić, J.M.1    Ilić, V.2    Biraud, S.3
  • 73
    • 0003895851 scopus 로고    scopus 로고
    • Modern Applied Statistics with S-plus
    • fourth ed. Springer-Verlag New York
    • Venables, W.N., Ripley, B.D., Modern Applied Statistics with S-plus. fourth ed., 2002, Springer-Verlag, New York.
    • (2002)
    • Venables, W.N.1    Ripley, B.D.2
  • 74
    • 0000074591 scopus 로고
    • Patterns in the distribution of sponge populations across the central great barrier reef
    • Wilkinson, C.R., Cheshire, A.C., Patterns in the distribution of sponge populations across the central great barrier reef. Coral Reefs 8 (1989), 127–134.
    • (1989) Coral Reefs , vol.8 , pp. 127-134
    • Wilkinson, C.R.1    Cheshire, A.C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.