메뉴 건너뛰기




Volumn 26, Issue 12, 2011, Pages 1647-1659

Application of machine learning methods to spatial interpolation of environmental variables

Author keywords

Geostatistics; Kriging; Random forest; Spatial prediction; Spatially continuous variable; Support vector machine

Indexed keywords

CONTINUOUS VARIABLES; GEO-STATISTICS; KRIGING; RANDOM FORESTS; SPATIAL PREDICTION; SUPPORT VECTOR;

EID: 84855493098     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2011.07.004     Document Type: Article
Times cited : (296)

References (54)
  • 1
    • 33845633261 scopus 로고    scopus 로고
    • Ensemble forecasting of species distribution
    • Araújo M.B., New M. Ensemble forecasting of species distribution. TREE 2007, 22(1):42-47.
    • (2007) TREE , vol.22 , Issue.1 , pp. 42-47
    • Araújo, M.B.1    New, M.2
  • 2
    • 77955416931 scopus 로고    scopus 로고
    • Influence of woody vegetation on pollinator densities in oilseed Brassica fields in an Australian temperate landscape
    • Arthur A.D., Li J., Henry S., Cunningham S.A. Influence of woody vegetation on pollinator densities in oilseed Brassica fields in an Australian temperate landscape. Basic Appl. Ecol. 2010, 11:406-414.
    • (2010) Basic Appl. Ecol. , vol.11 , pp. 406-414
    • Arthur, A.D.1    Li, J.2    Henry, S.3    Cunningham, S.A.4
  • 3
    • 0029506852 scopus 로고
    • Comparison of approaches to spatial estimation in a bivariate context
    • Asli M., Marcotte D. Comparison of approaches to spatial estimation in a bivariate context. Math. Geol. 1995, 27:641-658.
    • (1995) Math. Geol. , vol.27 , pp. 641-658
    • Asli, M.1    Marcotte, D.2
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Mach Learn. 1996, 24:123-140.
    • (1996) Mach Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001, 45:5-32.
    • (2001) Mach Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach Learn. 1995, 20:273-297.
    • (1995) Mach Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 75349097384 scopus 로고    scopus 로고
    • Logarithmic transformations in regression: do you transform back correctly?
    • Dambolena I.G., Eriksen S.E., Kopcso D.P. Logarithmic transformations in regression: do you transform back correctly?. Primus 2009, 19(3):280-290.
    • (2009) Primus , vol.19 , Issue.3 , pp. 280-290
    • Dambolena, I.G.1    Eriksen, S.E.2    Kopcso, D.P.3
  • 12
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte R., de Andres S.A. Gene selection and classification of microarray data using random forest. BMC Bioinform. 2006, 7(3):1-13.
    • (2006) BMC Bioinform. , vol.7 , Issue.3 , pp. 1-13
    • Diaz-Uriarte, R.1    de Andres, S.A.2
  • 13
    • 33646552697 scopus 로고    scopus 로고
    • Modelling ecological niches with support vector machines
    • Drake J.M., Randin C., Guisan A. Modelling ecological niches with support vector machines. J.Appl. Ecol. 2006, 43:424-432.
    • (2006) J.Appl. Ecol. , vol.43 , pp. 424-432
    • Drake, J.M.1    Randin, C.2    Guisan, A.3
  • 14
    • 2542636541 scopus 로고    scopus 로고
    • Bayesian inference in ecology
    • Ellison A.M. Bayesian inference in ecology. Ecol. Lett. 2004, 7:509-520.
    • (2004) Ecol. Lett. , vol.7 , pp. 509-520
    • Ellison, A.M.1
  • 16
    • 7544223962 scopus 로고    scopus 로고
    • Local machine learning models for spatial data analysis
    • Gilardi N., Bengio S. Local machine learning models for spatial data analysis. J.Geogr. Inf. Decis. Anal. 2000, 4(1):11-28.
    • (2000) J.Geogr. Inf. Decis. Anal. , vol.4 , Issue.1 , pp. 11-28
    • Gilardi, N.1    Bengio, S.2
  • 18
    • 0034696138 scopus 로고    scopus 로고
    • Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall
    • Goovaerts P. Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. J.Hydrol. 2000, 228:113-129.
    • (2000) J.Hydrol. , vol.228 , pp. 113-129
    • Goovaerts, P.1
  • 19
    • 33846452513 scopus 로고    scopus 로고
    • Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach
    • Goswami M., O'Connor K.M. Real-time flow forecasting in the absence of quantitative precipitation forecasts: a multi-model approach. J.Hydrol 2007, 334:125-140.
    • (2007) J.Hydrol , vol.334 , pp. 125-140
    • Goswami, M.1    O'Connor, K.M.2
  • 22
    • 43049154018 scopus 로고    scopus 로고
    • Geomorphology of the Australian margin and adjacent seafloor
    • Heap A.D., Harris P.T. Geomorphology of the Australian margin and adjacent seafloor. Aust. J. Earth Sci. 2008, 55:555-585.
    • (2008) Aust. J. Earth Sci. , vol.55 , pp. 555-585
    • Heap, A.D.1    Harris, P.T.2
  • 24
    • 33745684907 scopus 로고    scopus 로고
    • The magnitude and frequency of combined flow bed shear stress as a measure of exposure on the Australian continental shelf
    • Hemer M.A. The magnitude and frequency of combined flow bed shear stress as a measure of exposure on the Australian continental shelf. Cont Shelf Res. 2006, 26:1258-1280.
    • (2006) Cont Shelf Res. , vol.26 , pp. 1258-1280
    • Hemer, M.A.1
  • 26
    • 34848884281 scopus 로고    scopus 로고
    • About regression-kriging: from equations to case studies
    • Hengl T., Heuvelink G.B.M., Rossiter D.G. About regression-kriging: from equations to case studies. Comput. Geosci. 2007, 33:1301-1315.
    • (2007) Comput. Geosci. , vol.33 , pp. 1301-1315
    • Hengl, T.1    Heuvelink, G.B.M.2    Rossiter, D.G.3
  • 30
    • 79955887596 scopus 로고    scopus 로고
    • Areview of comparative studies of spatial interpolation methods: performance and impact factors
    • Li J., Heap A. Areview of comparative studies of spatial interpolation methods: performance and impact factors. Ecol. Inform. 2011, 228-241.
    • (2011) Ecol. Inform. , pp. 228-241
    • Li, J.1    Heap, A.2
  • 32
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by radomForest
    • Liaw A., Wiener M. Classification and regression by radomForest. RNews 2002, 2(3):18-22.
    • (2002) RNews , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 35
    • 0029751935 scopus 로고    scopus 로고
    • Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain
    • Martínez-Cob A. Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. J.Hydrol. 1996, 174:19-35.
    • (1996) J.Hydrol. , vol.174 , pp. 19-35
    • Martínez-Cob, A.1
  • 36
    • 0034672544 scopus 로고    scopus 로고
    • Consensus prediction of membrane protein topology
    • Nilsson J., Persson B., von Heijne G. Consensus prediction of membrane protein topology. FEBS Lett. 2000, 486:267-269.
    • (2000) FEBS Lett. , vol.486 , pp. 267-269
    • Nilsson, J.1    Persson, B.2    von Heijne, G.3
  • 37
    • 0029542857 scopus 로고
    • Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging
    • Odeh I.O.A., McBratney A.B., Chittleborough D.J. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma 1995, 67:215-226.
    • (1995) Geoderma , vol.67 , pp. 215-226
    • Odeh, I.O.A.1    McBratney, A.B.2    Chittleborough, D.J.3
  • 38
    • 79960375563 scopus 로고    scopus 로고
    • Random forest for gene expression based cancer classification: overlooked issues
    • IbPRIA 2007 Lecture Notes in Computer Science, Girona, Spain, J. Martí, J.M. Benedí, A.M. Mendonça, J. Serrat (Eds.) 4478
    • Okun O., Priisalu H. Random forest for gene expression based cancer classification: overlooked issues. Pattern Recognition and Image Analysis: Third Iberian Conference 2007, IbPRIA 2007 Lecture Notes in Computer Science, Girona, Spain, pp. 4478, 4483-4490. J. Martí, J.M. Benedí, A.M. Mendonça, J. Serrat (Eds.).
    • (2007) Pattern Recognition and Image Analysis: Third Iberian Conference , pp. 4483-4490
    • Okun, O.1    Priisalu, H.2
  • 39
    • 3342878970 scopus 로고    scopus 로고
    • Multivariable geostatistics in S: the gstat package
    • Pebesma E.J. Multivariable geostatistics in S: the gstat package. Comput. Geosci. 2004, 30:683-691.
    • (2004) Comput. Geosci. , vol.30 , pp. 683-691
    • Pebesma, E.J.1
  • 41
    • 79960374248 scopus 로고    scopus 로고
    • Seabed environments, habitats and biological assemblages
    • CSIRO Publishing, Collingwood, P. Hutchings, M. Kingsford, O. Hoegh-Guldberg (Eds.)
    • Pitcher C.R., Doherty P.J., Anderson T.J. Seabed environments, habitats and biological assemblages. The Great Barrier Reef: Biology, Environment and Management 2008, 377. CSIRO Publishing, Collingwood. P. Hutchings, M. Kingsford, O. Hoegh-Guldberg (Eds.).
    • (2008) The Great Barrier Reef: Biology, Environment and Management , pp. 377
    • Pitcher, C.R.1    Doherty, P.J.2    Anderson, T.J.3
  • 42
    • 33645330972 scopus 로고    scopus 로고
    • Newer classification and regression tree techniques: bagging and random forests for ecological prediction
    • Prasad A.M., Iverson L.R., Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosyst 2006, 9:181-199.
    • (2006) Ecosyst , vol.9 , pp. 181-199
    • Prasad, A.M.1    Iverson, L.R.2    Liaw, A.3
  • 43
    • 5344244656 scopus 로고    scopus 로고
    • R Development Core Team, R Foundation for Statistical Computing, Vienna
    • R: A Language and Environment for Statistical Computing 2008, R Development Core Team, R Foundation for Statistical Computing, Vienna.
    • (2008) R: A Language and Environment for Statistical Computing
  • 45
    • 33846337668 scopus 로고    scopus 로고
    • Automatic prediction of high-resolution daily rainfall fields for multiple extents: the potential of operational radar
    • Schuurmans J.M., Bierkens M.F.P., Pebesma E.J. Automatic prediction of high-resolution daily rainfall fields for multiple extents: the potential of operational radar. J.Hydrometeorol 2007, 8:1204-1224.
    • (2007) J.Hydrometeorol , vol.8 , pp. 1204-1224
    • Schuurmans, J.M.1    Bierkens, M.F.P.2    Pebesma, E.J.3
  • 46
    • 33646162643 scopus 로고    scopus 로고
    • Machine learning of poorly predictable ecological data
    • Shan Y., Paull D., McKay R.I. Machine learning of poorly predictable ecological data. Ecol. Modell. 2006, 195:129-138.
    • (2006) Ecol. Modell. , vol.195 , pp. 129-138
    • Shan, Y.1    Paull, D.2    McKay, R.I.3
  • 47
    • 48549094895 scopus 로고    scopus 로고
    • Acomprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A., Wang L., Aliferis C.F. Acomprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinform. 2008, 9:319.
    • (2008) BMC Bioinform. , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 48
    • 0024197971 scopus 로고
    • Use of soil map delineations to improve (co-)kriging of point data on moisture deficits
    • Stein A., Hoogerwerf M., Bouma J. Use of soil map delineations to improve (co-)kriging of point data on moisture deficits. Geoderma 1988, 43:163-177.
    • (1988) Geoderma , vol.43 , pp. 163-177
    • Stein, A.1    Hoogerwerf, M.2    Bouma, J.3
  • 49
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: illustrations, sources and a solution
    • Strobl C., Boulesteix A., Zeileis A., Hothorn T. Bias in random forest variable importance measures: illustrations, sources and a solution. BMC Bioinform. 2007, 8(25):25.
    • (2007) BMC Bioinform. , vol.8 , Issue.25 , pp. 25
    • Strobl, C.1    Boulesteix, A.2    Zeileis, A.3    Hothorn, T.4
  • 51
    • 33750486833 scopus 로고    scopus 로고
    • Multivariate geostatistics for the predictive modelling of the surficial sand distribution in shelf seas
    • Verfaillie E., van Lancker V., van Meirvenne M. Multivariate geostatistics for the predictive modelling of the surficial sand distribution in shelf seas. Cont Shelf Res. 2006, 26:2454-2468.
    • (2006) Cont Shelf Res. , vol.26 , pp. 2454-2468
    • Verfaillie, E.1    van Lancker, V.2    van Meirvenne, M.3
  • 52
    • 0025586634 scopus 로고
    • Acomparison of kriging, cubic splines and classification for predicting soil properties from sample information
    • Voltz M., Webster R. Acomparison of kriging, cubic splines and classification for predicting soil properties from sample information. J.Soil Sci. 1990, 41:473-490.
    • (1990) J.Soil Sci. , vol.41 , pp. 473-490
    • Voltz, M.1    Webster, R.2
  • 54
    • 56449098682 scopus 로고    scopus 로고
    • On unbiased backtransform of lognormal kriging estimates
    • Yamamoto J.K. On unbiased backtransform of lognormal kriging estimates. Comput. Geosci. 2007, 11:219-234.
    • (2007) Comput. Geosci. , vol.11 , pp. 219-234
    • Yamamoto, J.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.