-
1
-
-
84877276006
-
Improving forecast accuracy of wind speed using wavelet transform and neural networks
-
[1] Ramesh, B.-N., Arulmozhivarman, P., Improving forecast accuracy of wind speed using wavelet transform and neural networks. Electr Eng Technol 8 (2013), 559–564.
-
(2013)
Electr Eng Technol
, vol.8
, pp. 559-564
-
-
Ramesh, B.-N.1
Arulmozhivarman, P.2
-
2
-
-
84873266254
-
Forecasting of wind speed using artificial neural networks
-
[2] Ramesh, B.-N., Arulmozhivarman, P., Forecasting of wind speed using artificial neural networks. Int Rev Mod Sim 5:5 (2012), 2276–2280.
-
(2012)
Int Rev Mod Sim
, vol.5
, Issue.5
, pp. 2276-2280
-
-
Ramesh, B.-N.1
Arulmozhivarman, P.2
-
3
-
-
84877267049
-
Impacts of wind power integration on generation dispatch in power systems
-
[3] Lyu, J.-K., Heo, J-Haeng, Kim, M.-K., Park, J.-K., Impacts of wind power integration on generation dispatch in power systems. Electr Eng Technol 8 (2013), 453–463.
-
(2013)
Electr Eng Technol
, vol.8
, pp. 453-463
-
-
Lyu, J.-K.1
Heo, J.-H.2
Kim, M.-K.3
Park, J.-K.4
-
4
-
-
84868353214
-
Evaluation of the wind power penetration limit and wind energy penetration in the Mongolian central power system
-
[4] Ch, U.-O., Lee, H.-W., Kang, Y.-C., Evaluation of the wind power penetration limit and wind energy penetration in the Mongolian central power system. Electr Eng Technol 7 (2012), 852–858.
-
(2012)
Electr Eng Technol
, vol.7
, pp. 852-858
-
-
Ch, U.-O.1
Lee, H.-W.2
Kang, Y.-C.3
-
5
-
-
84993972425
-
A novel wind power prediction method based on chaotic theory and numerical weather prediction technology
-
[5] Yang, G., Aoran, X., Yan, Z., A novel wind power prediction method based on chaotic theory and numerical weather prediction technology. Adv Sci Technol Lett 73 (2014), 123–130.
-
(2014)
Adv Sci Technol Lett
, vol.73
, pp. 123-130
-
-
Yang, G.1
Aoran, X.2
Yan, Z.3
-
6
-
-
84927737833
-
Wind power forecasting based on principle component phase space reconstruction
-
[6] Han, L., Romero, C.-E., Yao, Z., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
-
(2015)
Renew Energy
, vol.81
, pp. 737-744
-
-
Han, L.1
Romero, C.-E.2
Yao, Z.3
-
7
-
-
84946021085
-
A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China
-
[7] Wang, Y., Wang, J., Wei, X., A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China. Energy 91 (2015), 556–572.
-
(2015)
Energy
, vol.91
, pp. 556-572
-
-
Wang, Y.1
Wang, J.2
Wei, X.3
-
8
-
-
84859036543
-
AWNN-assisted wind power forecasting using feed-forward neural network
-
[8] Bhaskar, K., Singh, S.-N., AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 3:2 (2012), 306–315.
-
(2012)
IEEE Trans Sustain Energy
, vol.3
, Issue.2
, pp. 306-315
-
-
Bhaskar, K.1
Singh, S.-N.2
-
9
-
-
84993950271
-
Wind power short term prediction based on back propagation neural network
-
[9] Liu, X.-N., Wang, S.-H., Jin, Y.-X., Wind power short term prediction based on back propagation neural network. J Shenyang Inst Eng Nat Sci 11:1 (2015), 10–15.
-
(2015)
J Shenyang Inst Eng Nat Sci
, vol.11
, Issue.1
, pp. 10-15
-
-
Liu, X.-N.1
Wang, S.-H.2
Jin, Y.-X.3
-
10
-
-
84946412405
-
Short-term wind power direct forecasting based on RBF neural network
-
[10] Ma, P., Zhang, L.-Y., Short-term wind power direct forecasting based on RBF neural network. Power System Prot Control 43:19 (2015), 78–82.
-
(2015)
Power System Prot Control
, vol.43
, Issue.19
, pp. 78-82
-
-
Ma, P.1
Zhang, L.-Y.2
-
11
-
-
78649450621
-
Short-term wind Power forecasting in Portugal by neural networks and wavelet transform
-
[11] Catalao, J.P.-S., Pousinho, H.-M., Mendes, V.-M., Short-term wind Power forecasting in Portugal by neural networks and wavelet transform. Renew Energy 36:4 (2011), 1245–1251.
-
(2011)
Renew Energy
, vol.36
, Issue.4
, pp. 1245-1251
-
-
Catalao, J.P.-S.1
Pousinho, H.-M.2
Mendes, V.-M.3
-
12
-
-
84922730875
-
A new fuzzy-based combined prediction interval for wind power forecasting
-
[12] Kavousi-Fard, A., Khosravi, A., Nahavandi, S., A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans Power Syst 31:1 (2016), 18–26.
-
(2016)
IEEE Trans Power Syst
, vol.31
, Issue.1
, pp. 18-26
-
-
Kavousi-Fard, A.1
Khosravi, A.2
Nahavandi, S.3
-
13
-
-
84859094795
-
Short-term wind power prediction using a wavelet support vector machine
-
[13] Zeng, J., Qiao, W., Short-term wind power prediction using a wavelet support vector machine. IEEE Trans Sustain Energy 3:2 (2012), 255–264.
-
(2012)
IEEE Trans Sustain Energy
, vol.3
, Issue.2
, pp. 255-264
-
-
Zeng, J.1
Qiao, W.2
-
14
-
-
84864143531
-
Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis
-
[14] Liu, Y., Shi, J., Yang, Y., Lee, W.-J., Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis. IEEE Trans Ind Appl 48:4 (2012), 1136–1141.
-
(2012)
IEEE Trans Ind Appl
, vol.48
, Issue.4
, pp. 1136-1141
-
-
Liu, Y.1
Shi, J.2
Yang, Y.3
Lee, W.-J.4
-
15
-
-
84884126948
-
Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
-
[15] Liu, D., Niu, D.-X., Wang, H., Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 62 (2014), 592–597.
-
(2014)
Renew Energy
, vol.62
, pp. 592-597
-
-
Liu, D.1
Niu, D.-X.2
Wang, H.3
-
16
-
-
84898966331
-
Wind forecasting using principal component analysis
-
[16] Skittides, C., Fruh, W.-G., Wind forecasting using principal component analysis. Renew Energy 69 (2014), 365–374.
-
(2014)
Renew Energy
, vol.69
, pp. 365-374
-
-
Skittides, C.1
Fruh, W.-G.2
-
17
-
-
84898724175
-
On the application of principal component analysis for accurate statistical-dynamical downscaling of wind fields
-
[17] Chavez-Arroyo, R., Lozano-Galiana, S., Sanz-Rodrigo, J., On the application of principal component analysis for accurate statistical-dynamical downscaling of wind fields. Energy Proc 40 (2013), 67–76.
-
(2013)
Energy Proc
, vol.40
, pp. 67-76
-
-
Chavez-Arroyo, R.1
Lozano-Galiana, S.2
Sanz-Rodrigo, J.3
-
18
-
-
84966580386
-
The state-of-the art in short-term prediction of wind power. A literature overview
-
second ed. ANEMOS Plus
-
[18] Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., Draxl, C., The state-of-the art in short-term prediction of wind power. A literature overview. second ed., 2011, ANEMOS Plus.
-
(2011)
-
-
Giebel, G.1
Brownsword, R.2
Kariniotakis, G.3
Denhard, M.4
Draxl, C.5
-
19
-
-
84867988966
-
Probabilistic wind power forecasting using radial basis function neural network
-
[19] Sideratos, G., Hatziargyriou, N.-D., Probabilistic wind power forecasting using radial basis function neural network. IEEE Trans Power Systems 27 (2012), 1788–1796.
-
(2012)
IEEE Trans Power Systems
, vol.27
, pp. 1788-1796
-
-
Sideratos, G.1
Hatziargyriou, N.-D.2
-
20
-
-
79961126223
-
Current methods and advances in forecasting of wind power generation
-
[20] Foley, A.-M., Leahy, P.-G., Marvuglia, A., McKeogh, E.-J., Current methods and advances in forecasting of wind power generation. Renew Energy 37 (2012), 1–8.
-
(2012)
Renew Energy
, vol.37
, pp. 1-8
-
-
Foley, A.-M.1
Leahy, P.-G.2
Marvuglia, A.3
McKeogh, E.-J.4
-
21
-
-
84908376968
-
Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
-
[21] Osório, G.-J., Matias, J.-C.-O., Catalão, J.-P.-S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75 (2015), 301–307.
-
(2015)
Renew Energy
, vol.75
, pp. 301-307
-
-
Osório, G.-J.1
Matias, J.-C.-O.2
Catalão, J.-P.-S.3
-
22
-
-
84897656346
-
Wind power forecasts using Gaussian processes and numerical weather prediction
-
[22] Chen, N.-Y., Zheng, Q., Nabney, I.-T., Wind power forecasts using Gaussian processes and numerical weather prediction. IEEE Trans Power Systems 29:2 (2014), 656–665.
-
(2014)
IEEE Trans Power Systems
, vol.29
, Issue.2
, pp. 656-665
-
-
Chen, N.-Y.1
Zheng, Q.2
Nabney, I.-T.3
-
23
-
-
84958120157
-
Hybrid probabilistic wind power forecasting using temporally local Gaussian process
-
[23] Yan, J., Li, K., Bai, E.-W., Hybrid probabilistic wind power forecasting using temporally local Gaussian process. IEEE Trans Sustain Energy 7:1 (2016), 87–95.
-
(2016)
IEEE Trans Sustain Energy
, vol.7
, Issue.1
, pp. 87-95
-
-
Yan, J.1
Li, K.2
Bai, E.-W.3
-
24
-
-
84922730875
-
A new fuzzy-based combined prediction interval for wind power forecasting
-
[24] Kavousi-Fard, A., Khosravi, A., Nahavandi, S., A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans Power Systems 31:1 (2016), 18–26.
-
(2016)
IEEE Trans Power Systems
, vol.31
, Issue.1
, pp. 18-26
-
-
Kavousi-Fard, A.1
Khosravi, A.2
Nahavandi, S.3
-
25
-
-
84961654663
-
Wind power prediction method based on regime of switching kernel functions
-
[25] Ouyang, T., Zha, X., Qin, L., et al. Wind power prediction method based on regime of switching kernel functions. J Wind Eng Ind Aerodyn 153 (2016), 26–33.
-
(2016)
J Wind Eng Ind Aerodyn
, vol.153
, pp. 26-33
-
-
Ouyang, T.1
Zha, X.2
Qin, L.3
-
26
-
-
84929191655
-
Very-short-term probabilistic wind power forecasts by sparse vector autoregression
-
[26] Dowell, J., Pinson, P., Very-short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE Trans Smart Grid 7:2 (2016), 763–770.
-
(2016)
IEEE Trans Smart Grid
, vol.7
, Issue.2
, pp. 763-770
-
-
Dowell, J.1
Pinson, P.2
-
27
-
-
77956444173
-
Wind power forecasting: state-of-the-art
-
[27] Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., Conzelmann, G., Wind power forecasting: state-of-the-art. 2009 http://www.dis.anl.gov/pubs/65613.pdf.
-
(2009)
-
-
Monteiro, C.1
Bessa, R.2
Miranda, V.3
Botterud, A.4
Wang, J.5
Conzelmann, G.6
-
28
-
-
84908425965
-
Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
-
[28] Chitsaz, H., Amjady, N., Zareipour, H., Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers Manage 89 (2015), 588–598.
-
(2015)
Energy Convers Manage
, vol.89
, pp. 588-598
-
-
Chitsaz, H.1
Amjady, N.2
Zareipour, H.3
-
29
-
-
84899646226
-
A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm
-
[29] Guo, Z., Chi, D., Wu, J., A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm. Energy Convers Manage 84 (2014), 140–151.
-
(2014)
Energy Convers Manage
, vol.84
, pp. 140-151
-
-
Guo, Z.1
Chi, D.2
Wu, J.3
-
30
-
-
0000241853
-
Deterministic nonperiodic flow
-
[30] Lorenz, E.-N., Deterministic nonperiodic flow. Atmos Sci 20 (1963), 130–141.
-
(1963)
Atmos Sci
, vol.20
, pp. 130-141
-
-
Lorenz, E.-N.1
-
31
-
-
0003630349
-
In the wake of chaos: unpredictable order in dynamical systems
-
University of Chicago Press
-
[31] Kellert, S.H., In the wake of chaos: unpredictable order in dynamical systems. 1993, University of Chicago Press.
-
(1993)
-
-
Kellert, S.H.1
-
32
-
-
84927737833
-
Wind power forecasting based on principle component phase space reconstruction
-
[32] Li, H., Romero, C.-E., Zheng, Y., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
-
(2015)
Renew Energy
, vol.81
, pp. 737-744
-
-
Li, H.1
Romero, C.-E.2
Zheng, Y.3
-
33
-
-
67349242303
-
Chaotic analysis of time series in the sediment transport
-
[33] Shang, P.-J., Xu, N., Kamae, S., Chaotic analysis of time series in the sediment transport. Chaos Solit Fractals 41 (2009), 368–379.
-
(2009)
Chaos Solit Fractals
, vol.41
, pp. 368-379
-
-
Shang, P.-J.1
Xu, N.2
Kamae, S.3
-
34
-
-
84993966007
-
Comparison of the calculating methods of delay time in the reconstructed phase space of manufacturing quality information system
-
[34] Gong, Z.-P., Comparison of the calculating methods of delay time in the reconstructed phase space of manufacturing quality information system. Syst Eng 29:3 (2011), 81–85.
-
(2011)
Syst Eng
, vol.29
, Issue.3
, pp. 81-85
-
-
Gong, Z.-P.1
-
35
-
-
43949166788
-
A practical method for calculating largest Lyapunov exponents from small data sets
-
[35] Rosenstein, M.-T., Collins, J.-J., De Luca, C.-J., A practical method for calculating largest Lyapunov exponents from small data sets. Phys D 65:1–2 (1993), 117–134.
-
(1993)
Phys D
, vol.65
, Issue.1-2
, pp. 117-134
-
-
Rosenstein, M.-T.1
Collins, J.-J.2
De Luca, C.-J.3
-
36
-
-
0001874436
-
Practical method for determining the minimum embedding dimension of a scalar time series
-
[36] Cao, L., Practical method for determining the minimum embedding dimension of a scalar time series. Phys D 110:1–2 (1997), 43–50.
-
(1997)
Phys D
, vol.110
, Issue.1-2
, pp. 43-50
-
-
Cao, L.1
-
37
-
-
84855192809
-
Investigating chaos in river stage and discharge time series
-
[37] Khatibi, R., Sivakumar, B., Ghorbani, M.-A., Kisi, O., Kocak, K., Farsadi Zadeh, D., Investigating chaos in river stage and discharge time series. J Hydrol 414–415 (2012), 108–117.
-
(2012)
J Hydrol
, vol.414-415
, pp. 108-117
-
-
Khatibi, R.1
Sivakumar, B.2
Ghorbani, M.-A.3
Kisi, O.4
Kocak, K.5
Farsadi Zadeh, D.6
-
38
-
-
84860383798
-
The Bernstein polynomial basis: a centennial retrospective
-
[38] Farouki, R.-T., The Bernstein polynomial basis: a centennial retrospective. Comput Aided Geom Des 29:6 (2012), 379–419.
-
(2012)
Comput Aided Geom Des
, vol.29
, Issue.6
, pp. 379-419
-
-
Farouki, R.-T.1
-
39
-
-
84963706098
-
Parameter identification for fractional-order multi-scroll chaotic systems based on original dual-state transition algorithm
-
060503-1-8
-
[39] Wang, C., Zhang, H.-L., Fan, W., Parameter identification for fractional-order multi-scroll chaotic systems based on original dual-state transition algorithm. Acta Phys Sin, 65(6), 2016 060503-1-8.
-
(2016)
Acta Phys Sin
, vol.65
, Issue.6
-
-
Wang, C.1
Zhang, H.-L.2
Fan, W.3
-
40
-
-
80855164692
-
Initial version of state transition algorithm
-
ICDMA
-
[40] Zhou, X.-J., Yang, C.-H., Gui, W.-H., Initial version of state transition algorithm. International conference on digital manufacturing & automation, 2012 third international conference on digital manufacturing &automation Zhang 2011, 2011, ICDMA, 644–647, 10.1109/ICDMA.2011.160.
-
(2011)
International conference on digital manufacturing & automation, 2012 third international conference on digital manufacturing &automation Zhang 2011
, pp. 644-647
-
-
Zhou, X.-J.1
Yang, C.-H.2
Gui, W.-H.3
-
41
-
-
0029535737
-
Particle swarm optimization
-
[41] Kennedy, Ebenhart R., Particle swarm optimization. Proceeding IEEE inter conference on neural networks, Perth, Australia, Piscat-away, vol. 4, 1995, 1942–1948.
-
(1995)
Proceeding IEEE inter conference on neural networks, Perth, Australia, Piscat-away
, vol.4
, pp. 1942-1948
-
-
Kennedy, E.R.1
-
42
-
-
84931262272
-
Short-term wind power prediction based on LSSVM–GSA model
-
[42] Yuan, X., Chen, C., Yuan, Y., Short-term wind power prediction based on LSSVM–GSA model. Energy Convers Manage 101 (2015), 393–401.
-
(2015)
Energy Convers Manage
, vol.101
, pp. 393-401
-
-
Yuan, X.1
Chen, C.2
Yuan, Y.3
-
43
-
-
84962665294
-
Prediction of wind power generation through combining particle swarm optimization and elman neural network (El-PSO)
-
[43] Heydari, A., Keynia, F., Prediction of wind power generation through combining particle swarm optimization and elman neural network (El-PSO). Int Energy J 15:2 (2015), 93–103.
-
(2015)
Int Energy J
, vol.15
, Issue.2
, pp. 93-103
-
-
Heydari, A.1
Keynia, F.2
-
44
-
-
84946606984
-
Wavelet recurrent neural network with semi-parametric input data preprocessing for micro-wind power forecasting in integrated generation systems
-
IEEE
-
[44] Bonanno, F., Capizzi, G., Sciuto, G.-L., Wavelet recurrent neural network with semi-parametric input data preprocessing for micro-wind power forecasting in integrated generation systems. Clean electrical power (ICCEP), 2015 international conference, 2015, IEEE, 602–609.
-
(2015)
Clean electrical power (ICCEP), 2015 international conference
, pp. 602-609
-
-
Bonanno, F.1
Capizzi, G.2
Sciuto, G.-L.3
-
45
-
-
84994015950
-
Short-term wind power prediction based on extreme learning machine with error correction
-
[45] Li, Z., Ye, L., Zhao, Y., Short-term wind power prediction based on extreme learning machine with error correction. Prot Control Mod Power System 1:1 (2016), 1–8.
-
(2016)
Prot Control Mod Power System
, vol.1
, Issue.1
, pp. 1-8
-
-
Li, Z.1
Ye, L.2
Zhao, Y.3
-
46
-
-
84927737833
-
Wind power forecasting based on principle component phase space reconstruction
-
[46] Han, L., Romero, C.-E., Yao, Z., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
-
(2015)
Renew Energy
, vol.81
, pp. 737-744
-
-
Han, L.1
Romero, C.-E.2
Yao, Z.3
|