메뉴 건너뛰기




Volumn 117, Issue , 2016, Pages 259-271

A new wind power prediction method based on chaotic theory and Bernstein Neural Network

Author keywords

Bernstein neural network; Chaotic theory; Primal dual; State transition algorithm; Wind power prediction

Indexed keywords

CHAOS THEORY; ELECTRIC POWER GENERATION; ELECTRIC POWER SYSTEM ECONOMICS; ERRORS; FORECASTING; LYAPUNOV METHODS; PHASE SPACE METHODS; WIND POWER;

EID: 84994037319     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2016.10.041     Document Type: Article
Times cited : (47)

References (46)
  • 1
    • 84877276006 scopus 로고    scopus 로고
    • Improving forecast accuracy of wind speed using wavelet transform and neural networks
    • [1] Ramesh, B.-N., Arulmozhivarman, P., Improving forecast accuracy of wind speed using wavelet transform and neural networks. Electr Eng Technol 8 (2013), 559–564.
    • (2013) Electr Eng Technol , vol.8 , pp. 559-564
    • Ramesh, B.-N.1    Arulmozhivarman, P.2
  • 2
    • 84873266254 scopus 로고    scopus 로고
    • Forecasting of wind speed using artificial neural networks
    • [2] Ramesh, B.-N., Arulmozhivarman, P., Forecasting of wind speed using artificial neural networks. Int Rev Mod Sim 5:5 (2012), 2276–2280.
    • (2012) Int Rev Mod Sim , vol.5 , Issue.5 , pp. 2276-2280
    • Ramesh, B.-N.1    Arulmozhivarman, P.2
  • 3
    • 84877267049 scopus 로고    scopus 로고
    • Impacts of wind power integration on generation dispatch in power systems
    • [3] Lyu, J.-K., Heo, J-Haeng, Kim, M.-K., Park, J.-K., Impacts of wind power integration on generation dispatch in power systems. Electr Eng Technol 8 (2013), 453–463.
    • (2013) Electr Eng Technol , vol.8 , pp. 453-463
    • Lyu, J.-K.1    Heo, J.-H.2    Kim, M.-K.3    Park, J.-K.4
  • 4
    • 84868353214 scopus 로고    scopus 로고
    • Evaluation of the wind power penetration limit and wind energy penetration in the Mongolian central power system
    • [4] Ch, U.-O., Lee, H.-W., Kang, Y.-C., Evaluation of the wind power penetration limit and wind energy penetration in the Mongolian central power system. Electr Eng Technol 7 (2012), 852–858.
    • (2012) Electr Eng Technol , vol.7 , pp. 852-858
    • Ch, U.-O.1    Lee, H.-W.2    Kang, Y.-C.3
  • 5
    • 84993972425 scopus 로고    scopus 로고
    • A novel wind power prediction method based on chaotic theory and numerical weather prediction technology
    • [5] Yang, G., Aoran, X., Yan, Z., A novel wind power prediction method based on chaotic theory and numerical weather prediction technology. Adv Sci Technol Lett 73 (2014), 123–130.
    • (2014) Adv Sci Technol Lett , vol.73 , pp. 123-130
    • Yang, G.1    Aoran, X.2    Yan, Z.3
  • 6
    • 84927737833 scopus 로고    scopus 로고
    • Wind power forecasting based on principle component phase space reconstruction
    • [6] Han, L., Romero, C.-E., Yao, Z., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
    • (2015) Renew Energy , vol.81 , pp. 737-744
    • Han, L.1    Romero, C.-E.2    Yao, Z.3
  • 7
    • 84946021085 scopus 로고    scopus 로고
    • A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China
    • [7] Wang, Y., Wang, J., Wei, X., A hybrid wind speed forecasting model based on phase space reconstruction theory and Markov model: a case study of wind farms in northwest China. Energy 91 (2015), 556–572.
    • (2015) Energy , vol.91 , pp. 556-572
    • Wang, Y.1    Wang, J.2    Wei, X.3
  • 8
    • 84859036543 scopus 로고    scopus 로고
    • AWNN-assisted wind power forecasting using feed-forward neural network
    • [8] Bhaskar, K., Singh, S.-N., AWNN-assisted wind power forecasting using feed-forward neural network. IEEE Trans Sustain Energy 3:2 (2012), 306–315.
    • (2012) IEEE Trans Sustain Energy , vol.3 , Issue.2 , pp. 306-315
    • Bhaskar, K.1    Singh, S.-N.2
  • 9
    • 84993950271 scopus 로고    scopus 로고
    • Wind power short term prediction based on back propagation neural network
    • [9] Liu, X.-N., Wang, S.-H., Jin, Y.-X., Wind power short term prediction based on back propagation neural network. J Shenyang Inst Eng Nat Sci 11:1 (2015), 10–15.
    • (2015) J Shenyang Inst Eng Nat Sci , vol.11 , Issue.1 , pp. 10-15
    • Liu, X.-N.1    Wang, S.-H.2    Jin, Y.-X.3
  • 10
    • 84946412405 scopus 로고    scopus 로고
    • Short-term wind power direct forecasting based on RBF neural network
    • [10] Ma, P., Zhang, L.-Y., Short-term wind power direct forecasting based on RBF neural network. Power System Prot Control 43:19 (2015), 78–82.
    • (2015) Power System Prot Control , vol.43 , Issue.19 , pp. 78-82
    • Ma, P.1    Zhang, L.-Y.2
  • 11
    • 78649450621 scopus 로고    scopus 로고
    • Short-term wind Power forecasting in Portugal by neural networks and wavelet transform
    • [11] Catalao, J.P.-S., Pousinho, H.-M., Mendes, V.-M., Short-term wind Power forecasting in Portugal by neural networks and wavelet transform. Renew Energy 36:4 (2011), 1245–1251.
    • (2011) Renew Energy , vol.36 , Issue.4 , pp. 1245-1251
    • Catalao, J.P.-S.1    Pousinho, H.-M.2    Mendes, V.-M.3
  • 12
    • 84922730875 scopus 로고    scopus 로고
    • A new fuzzy-based combined prediction interval for wind power forecasting
    • [12] Kavousi-Fard, A., Khosravi, A., Nahavandi, S., A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans Power Syst 31:1 (2016), 18–26.
    • (2016) IEEE Trans Power Syst , vol.31 , Issue.1 , pp. 18-26
    • Kavousi-Fard, A.1    Khosravi, A.2    Nahavandi, S.3
  • 13
    • 84859094795 scopus 로고    scopus 로고
    • Short-term wind power prediction using a wavelet support vector machine
    • [13] Zeng, J., Qiao, W., Short-term wind power prediction using a wavelet support vector machine. IEEE Trans Sustain Energy 3:2 (2012), 255–264.
    • (2012) IEEE Trans Sustain Energy , vol.3 , Issue.2 , pp. 255-264
    • Zeng, J.1    Qiao, W.2
  • 14
    • 84864143531 scopus 로고    scopus 로고
    • Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis
    • [14] Liu, Y., Shi, J., Yang, Y., Lee, W.-J., Short-term wind-power prediction based on wavelet transform–support vector machine and statistic-characteristics analysis. IEEE Trans Ind Appl 48:4 (2012), 1136–1141.
    • (2012) IEEE Trans Ind Appl , vol.48 , Issue.4 , pp. 1136-1141
    • Liu, Y.1    Shi, J.2    Yang, Y.3    Lee, W.-J.4
  • 15
    • 84884126948 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
    • [15] Liu, D., Niu, D.-X., Wang, H., Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew Energy 62 (2014), 592–597.
    • (2014) Renew Energy , vol.62 , pp. 592-597
    • Liu, D.1    Niu, D.-X.2    Wang, H.3
  • 16
    • 84898966331 scopus 로고    scopus 로고
    • Wind forecasting using principal component analysis
    • [16] Skittides, C., Fruh, W.-G., Wind forecasting using principal component analysis. Renew Energy 69 (2014), 365–374.
    • (2014) Renew Energy , vol.69 , pp. 365-374
    • Skittides, C.1    Fruh, W.-G.2
  • 17
    • 84898724175 scopus 로고    scopus 로고
    • On the application of principal component analysis for accurate statistical-dynamical downscaling of wind fields
    • [17] Chavez-Arroyo, R., Lozano-Galiana, S., Sanz-Rodrigo, J., On the application of principal component analysis for accurate statistical-dynamical downscaling of wind fields. Energy Proc 40 (2013), 67–76.
    • (2013) Energy Proc , vol.40 , pp. 67-76
    • Chavez-Arroyo, R.1    Lozano-Galiana, S.2    Sanz-Rodrigo, J.3
  • 18
    • 84966580386 scopus 로고    scopus 로고
    • The state-of-the art in short-term prediction of wind power. A literature overview
    • second ed. ANEMOS Plus
    • [18] Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., Draxl, C., The state-of-the art in short-term prediction of wind power. A literature overview. second ed., 2011, ANEMOS Plus.
    • (2011)
    • Giebel, G.1    Brownsword, R.2    Kariniotakis, G.3    Denhard, M.4    Draxl, C.5
  • 19
    • 84867988966 scopus 로고    scopus 로고
    • Probabilistic wind power forecasting using radial basis function neural network
    • [19] Sideratos, G., Hatziargyriou, N.-D., Probabilistic wind power forecasting using radial basis function neural network. IEEE Trans Power Systems 27 (2012), 1788–1796.
    • (2012) IEEE Trans Power Systems , vol.27 , pp. 1788-1796
    • Sideratos, G.1    Hatziargyriou, N.-D.2
  • 20
    • 79961126223 scopus 로고    scopus 로고
    • Current methods and advances in forecasting of wind power generation
    • [20] Foley, A.-M., Leahy, P.-G., Marvuglia, A., McKeogh, E.-J., Current methods and advances in forecasting of wind power generation. Renew Energy 37 (2012), 1–8.
    • (2012) Renew Energy , vol.37 , pp. 1-8
    • Foley, A.-M.1    Leahy, P.-G.2    Marvuglia, A.3    McKeogh, E.-J.4
  • 21
    • 84908376968 scopus 로고    scopus 로고
    • Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
    • [21] Osório, G.-J., Matias, J.-C.-O., Catalão, J.-P.-S., Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew Energy 75 (2015), 301–307.
    • (2015) Renew Energy , vol.75 , pp. 301-307
    • Osório, G.-J.1    Matias, J.-C.-O.2    Catalão, J.-P.-S.3
  • 22
    • 84897656346 scopus 로고    scopus 로고
    • Wind power forecasts using Gaussian processes and numerical weather prediction
    • [22] Chen, N.-Y., Zheng, Q., Nabney, I.-T., Wind power forecasts using Gaussian processes and numerical weather prediction. IEEE Trans Power Systems 29:2 (2014), 656–665.
    • (2014) IEEE Trans Power Systems , vol.29 , Issue.2 , pp. 656-665
    • Chen, N.-Y.1    Zheng, Q.2    Nabney, I.-T.3
  • 23
    • 84958120157 scopus 로고    scopus 로고
    • Hybrid probabilistic wind power forecasting using temporally local Gaussian process
    • [23] Yan, J., Li, K., Bai, E.-W., Hybrid probabilistic wind power forecasting using temporally local Gaussian process. IEEE Trans Sustain Energy 7:1 (2016), 87–95.
    • (2016) IEEE Trans Sustain Energy , vol.7 , Issue.1 , pp. 87-95
    • Yan, J.1    Li, K.2    Bai, E.-W.3
  • 24
    • 84922730875 scopus 로고    scopus 로고
    • A new fuzzy-based combined prediction interval for wind power forecasting
    • [24] Kavousi-Fard, A., Khosravi, A., Nahavandi, S., A new fuzzy-based combined prediction interval for wind power forecasting. IEEE Trans Power Systems 31:1 (2016), 18–26.
    • (2016) IEEE Trans Power Systems , vol.31 , Issue.1 , pp. 18-26
    • Kavousi-Fard, A.1    Khosravi, A.2    Nahavandi, S.3
  • 25
    • 84961654663 scopus 로고    scopus 로고
    • Wind power prediction method based on regime of switching kernel functions
    • [25] Ouyang, T., Zha, X., Qin, L., et al. Wind power prediction method based on regime of switching kernel functions. J Wind Eng Ind Aerodyn 153 (2016), 26–33.
    • (2016) J Wind Eng Ind Aerodyn , vol.153 , pp. 26-33
    • Ouyang, T.1    Zha, X.2    Qin, L.3
  • 26
    • 84929191655 scopus 로고    scopus 로고
    • Very-short-term probabilistic wind power forecasts by sparse vector autoregression
    • [26] Dowell, J., Pinson, P., Very-short-term probabilistic wind power forecasts by sparse vector autoregression. IEEE Trans Smart Grid 7:2 (2016), 763–770.
    • (2016) IEEE Trans Smart Grid , vol.7 , Issue.2 , pp. 763-770
    • Dowell, J.1    Pinson, P.2
  • 28
    • 84908425965 scopus 로고    scopus 로고
    • Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm
    • [28] Chitsaz, H., Amjady, N., Zareipour, H., Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers Manage 89 (2015), 588–598.
    • (2015) Energy Convers Manage , vol.89 , pp. 588-598
    • Chitsaz, H.1    Amjady, N.2    Zareipour, H.3
  • 29
    • 84899646226 scopus 로고    scopus 로고
    • A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm
    • [29] Guo, Z., Chi, D., Wu, J., A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm. Energy Convers Manage 84 (2014), 140–151.
    • (2014) Energy Convers Manage , vol.84 , pp. 140-151
    • Guo, Z.1    Chi, D.2    Wu, J.3
  • 30
    • 0000241853 scopus 로고
    • Deterministic nonperiodic flow
    • [30] Lorenz, E.-N., Deterministic nonperiodic flow. Atmos Sci 20 (1963), 130–141.
    • (1963) Atmos Sci , vol.20 , pp. 130-141
    • Lorenz, E.-N.1
  • 31
    • 0003630349 scopus 로고
    • In the wake of chaos: unpredictable order in dynamical systems
    • University of Chicago Press
    • [31] Kellert, S.H., In the wake of chaos: unpredictable order in dynamical systems. 1993, University of Chicago Press.
    • (1993)
    • Kellert, S.H.1
  • 32
    • 84927737833 scopus 로고    scopus 로고
    • Wind power forecasting based on principle component phase space reconstruction
    • [32] Li, H., Romero, C.-E., Zheng, Y., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
    • (2015) Renew Energy , vol.81 , pp. 737-744
    • Li, H.1    Romero, C.-E.2    Zheng, Y.3
  • 33
    • 67349242303 scopus 로고    scopus 로고
    • Chaotic analysis of time series in the sediment transport
    • [33] Shang, P.-J., Xu, N., Kamae, S., Chaotic analysis of time series in the sediment transport. Chaos Solit Fractals 41 (2009), 368–379.
    • (2009) Chaos Solit Fractals , vol.41 , pp. 368-379
    • Shang, P.-J.1    Xu, N.2    Kamae, S.3
  • 34
    • 84993966007 scopus 로고    scopus 로고
    • Comparison of the calculating methods of delay time in the reconstructed phase space of manufacturing quality information system
    • [34] Gong, Z.-P., Comparison of the calculating methods of delay time in the reconstructed phase space of manufacturing quality information system. Syst Eng 29:3 (2011), 81–85.
    • (2011) Syst Eng , vol.29 , Issue.3 , pp. 81-85
    • Gong, Z.-P.1
  • 35
    • 43949166788 scopus 로고
    • A practical method for calculating largest Lyapunov exponents from small data sets
    • [35] Rosenstein, M.-T., Collins, J.-J., De Luca, C.-J., A practical method for calculating largest Lyapunov exponents from small data sets. Phys D 65:1–2 (1993), 117–134.
    • (1993) Phys D , vol.65 , Issue.1-2 , pp. 117-134
    • Rosenstein, M.-T.1    Collins, J.-J.2    De Luca, C.-J.3
  • 36
    • 0001874436 scopus 로고    scopus 로고
    • Practical method for determining the minimum embedding dimension of a scalar time series
    • [36] Cao, L., Practical method for determining the minimum embedding dimension of a scalar time series. Phys D 110:1–2 (1997), 43–50.
    • (1997) Phys D , vol.110 , Issue.1-2 , pp. 43-50
    • Cao, L.1
  • 38
    • 84860383798 scopus 로고    scopus 로고
    • The Bernstein polynomial basis: a centennial retrospective
    • [38] Farouki, R.-T., The Bernstein polynomial basis: a centennial retrospective. Comput Aided Geom Des 29:6 (2012), 379–419.
    • (2012) Comput Aided Geom Des , vol.29 , Issue.6 , pp. 379-419
    • Farouki, R.-T.1
  • 39
    • 84963706098 scopus 로고    scopus 로고
    • Parameter identification for fractional-order multi-scroll chaotic systems based on original dual-state transition algorithm
    • 060503-1-8
    • [39] Wang, C., Zhang, H.-L., Fan, W., Parameter identification for fractional-order multi-scroll chaotic systems based on original dual-state transition algorithm. Acta Phys Sin, 65(6), 2016 060503-1-8.
    • (2016) Acta Phys Sin , vol.65 , Issue.6
    • Wang, C.1    Zhang, H.-L.2    Fan, W.3
  • 42
    • 84931262272 scopus 로고    scopus 로고
    • Short-term wind power prediction based on LSSVM–GSA model
    • [42] Yuan, X., Chen, C., Yuan, Y., Short-term wind power prediction based on LSSVM–GSA model. Energy Convers Manage 101 (2015), 393–401.
    • (2015) Energy Convers Manage , vol.101 , pp. 393-401
    • Yuan, X.1    Chen, C.2    Yuan, Y.3
  • 43
    • 84962665294 scopus 로고    scopus 로고
    • Prediction of wind power generation through combining particle swarm optimization and elman neural network (El-PSO)
    • [43] Heydari, A., Keynia, F., Prediction of wind power generation through combining particle swarm optimization and elman neural network (El-PSO). Int Energy J 15:2 (2015), 93–103.
    • (2015) Int Energy J , vol.15 , Issue.2 , pp. 93-103
    • Heydari, A.1    Keynia, F.2
  • 44
    • 84946606984 scopus 로고    scopus 로고
    • Wavelet recurrent neural network with semi-parametric input data preprocessing for micro-wind power forecasting in integrated generation systems
    • IEEE
    • [44] Bonanno, F., Capizzi, G., Sciuto, G.-L., Wavelet recurrent neural network with semi-parametric input data preprocessing for micro-wind power forecasting in integrated generation systems. Clean electrical power (ICCEP), 2015 international conference, 2015, IEEE, 602–609.
    • (2015) Clean electrical power (ICCEP), 2015 international conference , pp. 602-609
    • Bonanno, F.1    Capizzi, G.2    Sciuto, G.-L.3
  • 45
    • 84994015950 scopus 로고    scopus 로고
    • Short-term wind power prediction based on extreme learning machine with error correction
    • [45] Li, Z., Ye, L., Zhao, Y., Short-term wind power prediction based on extreme learning machine with error correction. Prot Control Mod Power System 1:1 (2016), 1–8.
    • (2016) Prot Control Mod Power System , vol.1 , Issue.1 , pp. 1-8
    • Li, Z.1    Ye, L.2    Zhao, Y.3
  • 46
    • 84927737833 scopus 로고    scopus 로고
    • Wind power forecasting based on principle component phase space reconstruction
    • [46] Han, L., Romero, C.-E., Yao, Z., Wind power forecasting based on principle component phase space reconstruction. Renew Energy 81 (2015), 737–744.
    • (2015) Renew Energy , vol.81 , pp. 737-744
    • Han, L.1    Romero, C.-E.2    Yao, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.