-
1
-
-
33751338530
-
Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report
-
Rush, A.J., Trivedi, M.H., Wisniewski, S.R., Nierenberg, A.A., Stewart, J.W., Warden, D., Niederehe, G., Thase, M.E., Lavori, P.W., Lebowitz, B.D., et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 163 (2006), 1905–1917.
-
(2006)
Am J Psychiatry
, vol.163
, pp. 1905-1917
-
-
Rush, A.J.1
Trivedi, M.H.2
Wisniewski, S.R.3
Nierenberg, A.A.4
Stewart, J.W.5
Warden, D.6
Niederehe, G.7
Thase, M.E.8
Lavori, P.W.9
Lebowitz, B.D.10
-
2
-
-
84940513037
-
Estimating the reproducibility of psychological science
-
Open Science Collaboration, Estimating the reproducibility of psychological science. Science, 349, 2015, aac4716.
-
(2015)
Science
, vol.349
, pp. aac4716
-
-
Open Science Collaboration1
-
3
-
-
33846563409
-
Why most published research findings are false
-
Ioannidis, J.P., Why most published research findings are false. PLoS Med, 2, 2005, e124.
-
(2005)
PLoS Med
, vol.2
, pp. e124
-
-
Ioannidis, J.P.1
-
4
-
-
84976291730
-
The ASA's statement on p-values: context, process, and purpose
-
Wasserstein, R., Lazar, N., The ASA's statement on p-values: context, process, and purpose. Am Stat 70 (2016), 129–131.
-
(2016)
Am Stat
, vol.70
, pp. 129-131
-
-
Wasserstein, R.1
Lazar, N.2
-
5
-
-
84894384066
-
Scientific method: statistical errors
-
Nuzzo, R., Scientific method: statistical errors. Nature 506 (2014), 150–152.
-
(2014)
Nature
, vol.506
, pp. 150-152
-
-
Nuzzo, R.1
-
6
-
-
84876665206
-
Power failure: why small sample size undermines the reliability of neuroscience
-
Button, K.S., Ioannidis, J.P., Mokrysz, C., Nosek, B.A., Flint, J., Robinson, E.S., Munafò, M.R., Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 14 (2013), 365–376.
-
(2013)
Nat Rev Neurosci
, vol.14
, pp. 365-376
-
-
Button, K.S.1
Ioannidis, J.P.2
Mokrysz, C.3
Nosek, B.A.4
Flint, J.5
Robinson, E.S.6
Munafò, M.R.7
-
7
-
-
84898857098
-
When optimism hurts: inflated predictions in psychiatric neuroimaging
-
Whelan, R., Garavan, H., When optimism hurts: inflated predictions in psychiatric neuroimaging. Biol Psychiatry 75 (2014), 746–748.
-
(2014)
Biol Psychiatry
, vol.75
, pp. 746-748
-
-
Whelan, R.1
Garavan, H.2
-
8
-
-
84995598543
-
The clinical added value of imaging: a perspective from outcome prediction
-
Jollans, L., Whelan, R., The clinical added value of imaging: a perspective from outcome prediction. Biol Psychiatry Cogn Neurosci Neuroimaging 1 (2016), 423–432.
-
(2016)
Biol Psychiatry Cogn Neurosci Neuroimaging
, vol.1
, pp. 423-432
-
-
Jollans, L.1
Whelan, R.2
-
9
-
-
84971224863
-
Building a science of individual differences from fMRI
-
Dubois, J., Adolphs, R., Building a science of individual differences from fMRI. Trends Cogn Sci 20 (2016), 425–443.
-
(2016)
Trends Cogn Sci
, vol.20
, pp. 425-443
-
-
Dubois, J.1
Adolphs, R.2
-
10
-
-
85030714859
-
Choosing prediction over explanation in psychology: lessons from machine learning
-
in press
-
Yarkoni, T., Westfall, J., Choosing prediction over explanation in psychology: lessons from machine learning. Perspect Psychol Sci, 2017 in press.
-
(2017)
Perspect Psychol Sci
-
-
Yarkoni, T.1
Westfall, J.2
-
11
-
-
84893874008
-
An Introduction to Statistical Learning
-
Springer New York
-
James, G., Witten, D., Hastie, T., Tibshirani, R., An Introduction to Statistical Learning. 2013, Springer, New York.
-
(2013)
-
-
James, G.1
Witten, D.2
Hastie, T.3
Tibshirani, R.4
-
12
-
-
0003684449
-
The Elements of Statistical Learning
-
Springer New York
-
Hastie, R., Tibshirani, R., Friedman, J., The Elements of Statistical Learning. 2009, Springer, New York.
-
(2009)
-
-
Hastie, R.1
Tibshirani, R.2
Friedman, J.3
-
13
-
-
84975687657
-
Computational psychiatry as a bridge from neuroscience to clinical applications
-
Huys, Q.J., Maia, T.V., Frank, M.J., Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19 (2016), 404–413.
-
(2016)
Nat Neurosci
, vol.19
, pp. 404-413
-
-
Huys, Q.J.1
Maia, T.V.2
Frank, M.J.3
-
14
-
-
84860365309
-
Computational psychiatry
-
Montague, P.R., Dolan, R.J., Friston, K.J., Dayan, P., Computational psychiatry. Trends Cogn Sci, 16, 2012.
-
(2012)
Trends Cogn Sci
, vol.16
-
-
Montague, P.R.1
Dolan, R.J.2
Friston, K.J.3
Dayan, P.4
-
15
-
-
84977097785
-
Computational neuroimaging strategies for single patient predictions
-
Stephan, K.E., Schlagenhauf, F., Huys, Q.J., Raman, S., Aponte, E.A., Brodersen, K.H., Rigoux, L., Moran, R.J., Daunizeau, J., Dolan, R.J., et al. Computational neuroimaging strategies for single patient predictions. Neuroimage 145 (2017), 180–199.
-
(2017)
Neuroimage
, vol.145
, pp. 180-199
-
-
Stephan, K.E.1
Schlagenhauf, F.2
Huys, Q.J.3
Raman, S.4
Aponte, E.A.5
Brodersen, K.H.6
Rigoux, L.7
Moran, R.J.8
Daunizeau, J.9
Dolan, R.J.10
-
16
-
-
84912059989
-
Computational psychiatry
-
Wang, X.J., Krystal, J.H., Computational psychiatry. Neuron 84 (2014), 638–654.
-
(2014)
Neuron
, vol.84
, pp. 638-654
-
-
Wang, X.J.1
Krystal, J.H.2
-
17
-
-
84890522254
-
Dissecting psychiatric spectrum disorders by generative embedding
-
Brodersen, K.H., Deserno, L., Schlagenhauf, F., Lin, Z., Penny, W.D., Buhmann, J.M., Stephan, K.E., Dissecting psychiatric spectrum disorders by generative embedding. Neuroimage Clin 4 (2014), 98–111.
-
(2014)
Neuroimage Clin
, vol.4
, pp. 98-111
-
-
Brodersen, K.H.1
Deserno, L.2
Schlagenhauf, F.3
Lin, Z.4
Penny, W.D.5
Buhmann, J.M.6
Stephan, K.E.7
-
18
-
-
84961875552
-
Characterizing a psychiatric symptom dimension related to deficits in goal-directed control
-
Gillan, C.M., Kosinski, M., Whelan, R., Phelps, E.A., Daw, N.D., Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. Elife, 5, 2016.
-
(2016)
Elife
, vol.5
-
-
Gillan, C.M.1
Kosinski, M.2
Whelan, R.3
Phelps, E.A.4
Daw, N.D.5
-
19
-
-
84860148937
-
Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD
-
Fair, D.A., Bathula, D., Nikolas, M.A., Nigg, J.T., Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc Natl Acad Sci U S A 109 (2012), 6769–6774.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 6769-6774
-
-
Fair, D.A.1
Bathula, D.2
Nikolas, M.A.3
Nigg, J.T.4
-
20
-
-
84937422811
-
Biomarkers with a mechanistic focus
-
Pine, D.S., Leibenluft, E., Biomarkers with a mechanistic focus. JAMA Psychiatry 72 (2015), 633–634.
-
(2015)
JAMA Psychiatry
, vol.72
, pp. 633-634
-
-
Pine, D.S.1
Leibenluft, E.2
-
21
-
-
84937415858
-
Pragmatism instead of mechanism: a call for impactful biological psychiatry
-
Paulus, M.P., Pragmatism instead of mechanism: a call for impactful biological psychiatry. JAMA Psychiatry 72 (2015), 631–632.
-
(2015)
JAMA Psychiatry
, vol.72
, pp. 631-632
-
-
Paulus, M.P.1
-
22
-
-
84859262307
-
Depression symptom dimensions as predictors of antidepressant treatment outcome: replicable evidence for interest-activity symptoms
-
These authors showcase how as an alternative to machine learning techniques, one use discovery science methods to reveal robust predictors, so long as appropriate validation steps are carried out. Here they used factor analysis to reduce their feature space, employed stringent criteria for selecting viable predictors and validate one such predictor in an independent dataset.
-
Uher, R., Perlis, R.H., Henigsberg, N., Zobel, A., Rietschel, M., Mors, O., Hauser, J., Dernovsek, M.Z., Souery, D., Bajs, M., et al. Depression symptom dimensions as predictors of antidepressant treatment outcome: replicable evidence for interest-activity symptoms. Psychol Med 42 (2012), 967–980 These authors showcase how as an alternative to machine learning techniques, one use discovery science methods to reveal robust predictors, so long as appropriate validation steps are carried out. Here they used factor analysis to reduce their feature space, employed stringent criteria for selecting viable predictors and validate one such predictor in an independent dataset.
-
(2012)
Psychol Med
, vol.42
, pp. 967-980
-
-
Uher, R.1
Perlis, R.H.2
Henigsberg, N.3
Zobel, A.4
Rietschel, M.5
Mors, O.6
Hauser, J.7
Dernovsek, M.Z.8
Souery, D.9
Bajs, M.10
-
23
-
-
38549137805
-
Measuring depression: comparison and integration of three scales in the GENDEP study
-
Uher, R., Farmer, A., Maier, W., Rietschel, M., Hauser, J., Marusic, A., Mors, O., Elkin, A., Williamson, R.J., Schmael, C., et al. Measuring depression: comparison and integration of three scales in the GENDEP study. Psychol Med 38 (2008), 289–300.
-
(2008)
Psychol Med
, vol.38
, pp. 289-300
-
-
Uher, R.1
Farmer, A.2
Maier, W.3
Rietschel, M.4
Hauser, J.5
Marusic, A.6
Mors, O.7
Elkin, A.8
Williamson, R.J.9
Schmael, C.10
-
24
-
-
84908124385
-
Major depressive disorder subtypes to predict long-term course
-
van Loo, H.M., Cai, T., Gruber, M.J., Li, J., de Jonge, P., Petukhova, M., Rose, S., Sampson, N.A., Schoevers, R.A., Wardenaar, K.J., et al. Major depressive disorder subtypes to predict long-term course. Depress Anxiety 31 (2014), 765–777.
-
(2014)
Depress Anxiety
, vol.31
, pp. 765-777
-
-
van Loo, H.M.1
Cai, T.2
Gruber, M.J.3
Li, J.4
de Jonge, P.5
Petukhova, M.6
Rose, S.7
Sampson, N.A.8
Schoevers, R.A.9
Wardenaar, K.J.10
-
25
-
-
84927660254
-
The effects of co-morbidity in defining major depression subtypes associated with long-term course and severity
-
Wardenaar, K.J., van Loo, H.M., Cai, T., Fava, M., Gruber, M.J., Li, J., de Jonge, P., Nierenberg, A.A., Petukhova, M.V., Rose, S., et al. The effects of co-morbidity in defining major depression subtypes associated with long-term course and severity. Psychol Med 44 (2014), 3289–3302.
-
(2014)
Psychol Med
, vol.44
, pp. 3289-3302
-
-
Wardenaar, K.J.1
van Loo, H.M.2
Cai, T.3
Fava, M.4
Gruber, M.J.5
Li, J.6
de Jonge, P.7
Nierenberg, A.A.8
Petukhova, M.V.9
Rose, S.10
-
26
-
-
85032070787
-
Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports
-
Kessler, R.C., van Loo, H.M., Wardenaar, K.J., Bossarte, R.M., Brenner, L.A., Cai, T., Ebert, D.D., Hwang, I., Li, J., de Jonge, P., et al. Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports. Mol Psychiatry, 2016.
-
(2016)
Mol Psychiatry
-
-
Kessler, R.C.1
van Loo, H.M.2
Wardenaar, K.J.3
Bossarte, R.M.4
Brenner, L.A.5
Cai, T.6
Ebert, D.D.7
Hwang, I.8
Li, J.9
de Jonge, P.10
-
27
-
-
84959571586
-
Cross-trial prediction of treatment outcome in depression: a machine learning approach
-
This paper represents the gold standard for treatment prediction studies using machine learning. Chekroud and colleagues employ feature reduction, internal cross-validation and external validation to find predictors of antidepressant response from clinical data.
-
Chekroud, A.M., Zotti, R.J., Shehzad, Z., Gueorguieva, R., Johnson, M.K., Trivedi, M.H., Cannon, T.D., Krystal, J.H., Corlett, P.R., Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 3 (2016), 243–250 This paper represents the gold standard for treatment prediction studies using machine learning. Chekroud and colleagues employ feature reduction, internal cross-validation and external validation to find predictors of antidepressant response from clinical data.
-
(2016)
Lancet Psychiatry
, vol.3
, pp. 243-250
-
-
Chekroud, A.M.1
Zotti, R.J.2
Shehzad, Z.3
Gueorguieva, R.4
Johnson, M.K.5
Trivedi, M.H.6
Cannon, T.D.7
Krystal, J.H.8
Corlett, P.R.9
-
28
-
-
85012272868
-
Pharmacogenetics of antidepressant response: a polygenic approach
-
García-González, J., Tansey, K.E., Hauser, J., Henigsberg, N., Maier, W., Mors, O., Placentino, A., Rietschel, M., Souery, D., Žagar, T., et al. Pharmacogenetics of antidepressant response: a polygenic approach. Prog Neuropsychopharmacol Biol Psychiatry 75 (2017), 128–134.
-
(2017)
Prog Neuropsychopharmacol Biol Psychiatry
, vol.75
, pp. 128-134
-
-
García-González, J.1
Tansey, K.E.2
Hauser, J.3
Henigsberg, N.4
Maier, W.5
Mors, O.6
Placentino, A.7
Rietschel, M.8
Souery, D.9
Žagar, T.10
-
29
-
-
84906266049
-
Neuropsychosocial profiles of current and future adolescent alcohol misusers
-
Whelan and colleagues showed the importance of multimodal data in making the best predictions — here they predict binge-drinking status at age 16, using baseline data collected at age 14.
-
Whelan, R., Watts, R., Orr, C.A., Althoff, R.R., Artiges, E., Banaschewski, T., Barker, G.J., Bokde, A.L., Büchel, C., Carvalho, F.M., et al. Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature 512 (2014), 185–189 Whelan and colleagues showed the importance of multimodal data in making the best predictions — here they predict binge-drinking status at age 16, using baseline data collected at age 14.
-
(2014)
Nature
, vol.512
, pp. 185-189
-
-
Whelan, R.1
Watts, R.2
Orr, C.A.3
Althoff, R.R.4
Artiges, E.5
Banaschewski, T.6
Barker, G.J.7
Bokde, A.L.8
Büchel, C.9
Carvalho, F.M.10
-
30
-
-
84954139071
-
Predicting optimal outcomes in cognitive therapy or interpersonal psychotherapy for depressed individuals using the personalized advantage index approach
-
Huibers, M.J., Cohen, Z.D., Lemmens, L.H., Arntz, A., Peeters, F.P., Cuijpers, P., DeRubeis, R.J., Predicting optimal outcomes in cognitive therapy or interpersonal psychotherapy for depressed individuals using the personalized advantage index approach. PLOS ONE, 10, 2015, e0140771.
-
(2015)
PLOS ONE
, vol.10
, pp. e0140771
-
-
Huibers, M.J.1
Cohen, Z.D.2
Lemmens, L.H.3
Arntz, A.4
Peeters, F.P.5
Cuijpers, P.6
DeRubeis, R.J.7
-
31
-
-
84879321551
-
A clinical risk stratification tool for predicting treatment resistance in major depressive disorder
-
Perlis, R.H., A clinical risk stratification tool for predicting treatment resistance in major depressive disorder. Biol Psychiatry 74 (2013), 7–14.
-
(2013)
Biol Psychiatry
, vol.74
, pp. 7-14
-
-
Perlis, R.H.1
-
32
-
-
84994065541
-
Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach
-
Koutsouleris, N., Kahn, R.S., Chekroud, A.M., Leucht, S., Falkai, P., Wobrock, T., Derks, E.M., Fleischhacker, W.W., Hasan, A., Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: a machine learning approach. Lancet Psychiatry 3 (2016), 935–946.
-
(2016)
Lancet Psychiatry
, vol.3
, pp. 935-946
-
-
Koutsouleris, N.1
Kahn, R.S.2
Chekroud, A.M.3
Leucht, S.4
Falkai, P.5
Wobrock, T.6
Derks, E.M.7
Fleischhacker, W.W.8
Hasan, A.9
-
33
-
-
85017596150
-
Reevaluating the efficacy and predictability of antidepressant treatments: a symptom clustering approach
-
Chekroud, A.M., Gueorguieva, R., Krumholz, H.M., Trivedi, M.H., Krystal, J.H., McCarthy, G., Reevaluating the efficacy and predictability of antidepressant treatments: a symptom clustering approach. JAMA Psychiatry, 2017.
-
(2017)
JAMA Psychiatry
-
-
Chekroud, A.M.1
Gueorguieva, R.2
Krumholz, H.M.3
Trivedi, M.H.4
Krystal, J.H.5
McCarthy, G.6
-
34
-
-
84973304687
-
Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data
-
Redlich, R., Opel, N., Grotegerd, D., Dohm, K., Zaremba, D., Bürger, C., Münker, S., Mühlmann, L., Wahl, P., Heindel, W., et al. Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry 73 (2016), 557–564.
-
(2016)
JAMA Psychiatry
, vol.73
, pp. 557-564
-
-
Redlich, R.1
Opel, N.2
Grotegerd, D.3
Dohm, K.4
Zaremba, D.5
Bürger, C.6
Münker, S.7
Mühlmann, L.8
Wahl, P.9
Heindel, W.10
-
35
-
-
84929129683
-
A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression
-
van Waarde, J.A., Scholte, H.S., van Oudheusden, L.J., Verwey, B., Denys, D., van Wingen, G.A., A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression. Mol Psychiatry 20 (2015), 609–614.
-
(2015)
Mol Psychiatry
, vol.20
, pp. 609-614
-
-
van Waarde, J.A.1
Scholte, H.S.2
van Oudheusden, L.J.3
Verwey, B.4
Denys, D.5
van Wingen, G.A.6
-
36
-
-
84938820272
-
Brain connectomics predict response to treatment in social anxiety disorder
-
Whitfield-Gabrieli, S., Ghosh, S.S., Nieto-Castanon, A., Saygin, Z., Doehrmann, O., Chai, X.J., Reynolds, G.O., Hofmann, S.G., Pollack, M.H., Gabrieli, J.D., Brain connectomics predict response to treatment in social anxiety disorder. Mol Psychiatry 21 (2016), 680–685.
-
(2016)
Mol Psychiatry
, vol.21
, pp. 680-685
-
-
Whitfield-Gabrieli, S.1
Ghosh, S.S.2
Nieto-Castanon, A.3
Saygin, Z.4
Doehrmann, O.5
Chai, X.J.6
Reynolds, G.O.7
Hofmann, S.G.8
Pollack, M.H.9
Gabrieli, J.D.10
-
37
-
-
84927726000
-
Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder
-
Korgaonkar, M.S., Rekshan, W., Gordon, E., Rush, A.J., Williams, L.M., Blasey, C., Grieve, S.M., Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder. EBioMedicine 2 (2015), 37–45.
-
(2015)
EBioMedicine
, vol.2
, pp. 37-45
-
-
Korgaonkar, M.S.1
Rekshan, W.2
Gordon, E.3
Rush, A.J.4
Williams, L.M.5
Blasey, C.6
Grieve, S.M.7
-
38
-
-
85002131245
-
Resting-state connectivity biomarkers define neurophysiological subtypes of depression
-
The authors use unsupervised clustering based on resting state fMRI data from 1188 patients with depression to reveal 4 subgroups that were reproducible in an out-of-sample test. These subgroups could be used to predict treatment response to transcranial magnetic stimulation in 154 patients, achieving accuracy >87.5% in an independent replication set.
-
Drysdale, A.T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., Fetcho, R.N., Zebley, B., Oathes, D.J., Etkin, A., et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23 (2017), 28–38 The authors use unsupervised clustering based on resting state fMRI data from 1188 patients with depression to reveal 4 subgroups that were reproducible in an out-of-sample test. These subgroups could be used to predict treatment response to transcranial magnetic stimulation in 154 patients, achieving accuracy >87.5% in an independent replication set.
-
(2017)
Nat Med
, vol.23
, pp. 28-38
-
-
Drysdale, A.T.1
Grosenick, L.2
Downar, J.3
Dunlop, K.4
Mansouri, F.5
Meng, Y.6
Fetcho, R.N.7
Zebley, B.8
Oathes, D.J.9
Etkin, A.10
-
39
-
-
78650948927
-
The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression
-
DeBattista, C., Kinrys, G., Hoffman, D., Goldstein, C., Zajecka, J., Kocsis, J., Teicher, M., Potkin, S., Preda, A., Multani, G., et al. The use of referenced-EEG (rEEG) in assisting medication selection for the treatment of depression. J Psychiatr Res 45 (2011), 64–75.
-
(2011)
J Psychiatr Res
, vol.45
, pp. 64-75
-
-
DeBattista, C.1
Kinrys, G.2
Hoffman, D.3
Goldstein, C.4
Zajecka, J.5
Kocsis, J.6
Teicher, M.7
Potkin, S.8
Preda, A.9
Multani, G.10
-
40
-
-
69649101602
-
Comparative effectiveness of biomarkers and clinical indicators for predicting outcomes of SSRI treatment in Major Depressive Disorder: results of the BRITE-MD study
-
Leuchter, A.F., Cook, I.A., Marangell, L.B., Gilmer, W.S., Burgoyne, K.S., Howland, R.H., Trivedi, M.H., Zisook, S., Jain, R., McCracken, J.T., et al. Comparative effectiveness of biomarkers and clinical indicators for predicting outcomes of SSRI treatment in Major Depressive Disorder: results of the BRITE-MD study. Psychiatry Res 169 (2009), 124–131.
-
(2009)
Psychiatry Res
, vol.169
, pp. 124-131
-
-
Leuchter, A.F.1
Cook, I.A.2
Marangell, L.B.3
Gilmer, W.S.4
Burgoyne, K.S.5
Howland, R.H.6
Trivedi, M.H.7
Zisook, S.8
Jain, R.9
McCracken, J.T.10
-
41
-
-
84939989691
-
A cognitive-emotional biomarker for predicting remission with antidepressant medications: a report from the iSPOT-D trial
-
Etkin, A., Patenaude, B., Song, Y.J., Usherwood, T., Rekshan, W., Schatzberg, A.F., Rush, A.J., Williams, L.M., A cognitive-emotional biomarker for predicting remission with antidepressant medications: a report from the iSPOT-D trial. Neuropsychopharmacology 40 (2015), 1332–1342.
-
(2015)
Neuropsychopharmacology
, vol.40
, pp. 1332-1342
-
-
Etkin, A.1
Patenaude, B.2
Song, Y.J.3
Usherwood, T.4
Rekshan, W.5
Schatzberg, A.F.6
Rush, A.J.7
Williams, L.M.8
-
42
-
-
84991278774
-
Taking psychiatry research online
-
Gillan, C.M., Daw, N.D., Taking psychiatry research online. Neuron 91 (2016), 19–23.
-
(2016)
Neuron
, vol.91
, pp. 19-23
-
-
Gillan, C.M.1
Daw, N.D.2
-
43
-
-
84898763017
-
Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder
-
de Wit, S.J., Alonso, P., Schweren, L., Mataix-Cols, D., Lochner, C., Menchón, J.M., Stein, D.J., Fouche, J.P., Soriano-Mas, C., Sato, J.R., et al. Multicenter voxel-based morphometry mega-analysis of structural brain scans in obsessive-compulsive disorder. Am J Psychiatry, 2014.
-
(2014)
Am J Psychiatry
-
-
de Wit, S.J.1
Alonso, P.2
Schweren, L.3
Mataix-Cols, D.4
Lochner, C.5
Menchón, J.M.6
Stein, D.J.7
Fouche, J.P.8
Soriano-Mas, C.9
Sato, J.R.10
-
44
-
-
78649336132
-
The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology
-
Schumann, G., Loth, E., Banaschewski, T., Barbot, A., Barker, G., Büchel, C., Conrod, P.J., Dalley, J.W., Flor, H., Gallinat, J., et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry 15 (2010), 1128–1139.
-
(2010)
Mol Psychiatry
, vol.15
, pp. 1128-1139
-
-
Schumann, G.1
Loth, E.2
Banaschewski, T.3
Barbot, A.4
Barker, G.5
Büchel, C.6
Conrod, P.J.7
Dalley, J.W.8
Flor, H.9
Gallinat, J.10
-
45
-
-
85025628958
-
-
ABCD Study Protocol. Edited by.
-
ABCD Study Protocol. Edited by. https://abcdstudy.org/images/Protocol_Brochure_Assessment.pdf.
-
-
-
-
46
-
-
0001930708
-
On the ability to inhibit thought and action: a user's guide to the stop signal paradigm
-
D. Dagenbach T.H. Carr Academic
-
Logan, G., On the ability to inhibit thought and action: a user's guide to the stop signal paradigm. Dagenbach, D., Carr, T.H., (eds.) Inhibitory Processes in Attention, Memory and Language, 1994, Academic.
-
(1994)
Inhibitory Processes in Attention, Memory and Language
-
-
Logan, G.1
-
47
-
-
0035882897
-
Anticipation of increasing monetary reward selectively recruits nucleus accumbens
-
Knutson, B., Adams, C.M., Fong, G.W., Hommer, D., Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci, 21, 2001, RC159.
-
(2001)
J Neurosci
, vol.21
, pp. RC159
-
-
Knutson, B.1
Adams, C.M.2
Fong, G.W.3
Hommer, D.4
-
48
-
-
85016992939
-
Exploration of machine learning techniques in predicting multiple sclerosis disease course
-
Zhao, Y., Healy, B.C., Rotstein, D., Guttmann, C.R., Bakshi, R., Weiner, H.L., Brodley, C.E., Chitnis, T., Exploration of machine learning techniques in predicting multiple sclerosis disease course. PLOS ONE, 12, 2017, e0174866.
-
(2017)
PLOS ONE
, vol.12
, pp. e0174866
-
-
Zhao, Y.1
Healy, B.C.2
Rotstein, D.3
Guttmann, C.R.4
Bakshi, R.5
Weiner, H.L.6
Brodley, C.E.7
Chitnis, T.8
-
49
-
-
85013789441
-
Building better biomarkers: brain models in translational neuroimaging
-
Woo, C.W., Chang, L.J., Lindquist, M.A., Wager, T.D., Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 20 (2017), 365–377.
-
(2017)
Nat Neurosci
, vol.20
, pp. 365-377
-
-
Woo, C.W.1
Chang, L.J.2
Lindquist, M.A.3
Wager, T.D.4
-
50
-
-
84893492564
-
Consensus Report of the APA Work Group on Neuroimaging Markers of Psychiatric Disorders
-
Edited by Association AP (Series Editor). Arlington, VA
-
APA, Consensus Report of the APA Work Group on Neuroimaging Markers of Psychiatric Disorders., 2012 Edited by Association AP (Series Editor). Arlington, VA.
-
(2012)
-
-
APA1
|