메뉴 건너뛰기




Volumn 18, Issue , 2017, Pages 34-42

What big data can do for treatment in psychiatry

Author keywords

[No Author keywords available]

Indexed keywords

ELECTROCONVULSIVE THERAPY; ELECTROENCEPHALOGRAM; HUMAN; MACHINE LEARNING; MEDICAL RESEARCH; MENTAL DISEASE; METHODOLOGY; NEUROIMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; PREDICTIVE VALUE; PRIORITY JOURNAL; PSYCHOTHERAPY; REVIEW; TREATMENT RESPONSE;

EID: 85025595859     PISSN: None     EISSN: 23521546     Source Type: Journal    
DOI: 10.1016/j.cobeha.2017.07.003     Document Type: Review
Times cited : (81)

References (50)
  • 2
    • 84940513037 scopus 로고    scopus 로고
    • Estimating the reproducibility of psychological science
    • Open Science Collaboration, Estimating the reproducibility of psychological science. Science, 349, 2015, aac4716.
    • (2015) Science , vol.349 , pp. aac4716
    • Open Science Collaboration1
  • 3
    • 33846563409 scopus 로고    scopus 로고
    • Why most published research findings are false
    • Ioannidis, J.P., Why most published research findings are false. PLoS Med, 2, 2005, e124.
    • (2005) PLoS Med , vol.2 , pp. e124
    • Ioannidis, J.P.1
  • 4
    • 84976291730 scopus 로고    scopus 로고
    • The ASA's statement on p-values: context, process, and purpose
    • Wasserstein, R., Lazar, N., The ASA's statement on p-values: context, process, and purpose. Am Stat 70 (2016), 129–131.
    • (2016) Am Stat , vol.70 , pp. 129-131
    • Wasserstein, R.1    Lazar, N.2
  • 5
    • 84894384066 scopus 로고    scopus 로고
    • Scientific method: statistical errors
    • Nuzzo, R., Scientific method: statistical errors. Nature 506 (2014), 150–152.
    • (2014) Nature , vol.506 , pp. 150-152
    • Nuzzo, R.1
  • 7
    • 84898857098 scopus 로고    scopus 로고
    • When optimism hurts: inflated predictions in psychiatric neuroimaging
    • Whelan, R., Garavan, H., When optimism hurts: inflated predictions in psychiatric neuroimaging. Biol Psychiatry 75 (2014), 746–748.
    • (2014) Biol Psychiatry , vol.75 , pp. 746-748
    • Whelan, R.1    Garavan, H.2
  • 8
    • 84995598543 scopus 로고    scopus 로고
    • The clinical added value of imaging: a perspective from outcome prediction
    • Jollans, L., Whelan, R., The clinical added value of imaging: a perspective from outcome prediction. Biol Psychiatry Cogn Neurosci Neuroimaging 1 (2016), 423–432.
    • (2016) Biol Psychiatry Cogn Neurosci Neuroimaging , vol.1 , pp. 423-432
    • Jollans, L.1    Whelan, R.2
  • 9
    • 84971224863 scopus 로고    scopus 로고
    • Building a science of individual differences from fMRI
    • Dubois, J., Adolphs, R., Building a science of individual differences from fMRI. Trends Cogn Sci 20 (2016), 425–443.
    • (2016) Trends Cogn Sci , vol.20 , pp. 425-443
    • Dubois, J.1    Adolphs, R.2
  • 10
    • 85030714859 scopus 로고    scopus 로고
    • Choosing prediction over explanation in psychology: lessons from machine learning
    • in press
    • Yarkoni, T., Westfall, J., Choosing prediction over explanation in psychology: lessons from machine learning. Perspect Psychol Sci, 2017 in press.
    • (2017) Perspect Psychol Sci
    • Yarkoni, T.1    Westfall, J.2
  • 11
    • 84893874008 scopus 로고    scopus 로고
    • An Introduction to Statistical Learning
    • Springer New York
    • James, G., Witten, D., Hastie, T., Tibshirani, R., An Introduction to Statistical Learning. 2013, Springer, New York.
    • (2013)
    • James, G.1    Witten, D.2    Hastie, T.3    Tibshirani, R.4
  • 12
    • 0003684449 scopus 로고    scopus 로고
    • The Elements of Statistical Learning
    • Springer New York
    • Hastie, R., Tibshirani, R., Friedman, J., The Elements of Statistical Learning. 2009, Springer, New York.
    • (2009)
    • Hastie, R.1    Tibshirani, R.2    Friedman, J.3
  • 13
    • 84975687657 scopus 로고    scopus 로고
    • Computational psychiatry as a bridge from neuroscience to clinical applications
    • Huys, Q.J., Maia, T.V., Frank, M.J., Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci 19 (2016), 404–413.
    • (2016) Nat Neurosci , vol.19 , pp. 404-413
    • Huys, Q.J.1    Maia, T.V.2    Frank, M.J.3
  • 16
    • 84912059989 scopus 로고    scopus 로고
    • Computational psychiatry
    • Wang, X.J., Krystal, J.H., Computational psychiatry. Neuron 84 (2014), 638–654.
    • (2014) Neuron , vol.84 , pp. 638-654
    • Wang, X.J.1    Krystal, J.H.2
  • 18
    • 84961875552 scopus 로고    scopus 로고
    • Characterizing a psychiatric symptom dimension related to deficits in goal-directed control
    • Gillan, C.M., Kosinski, M., Whelan, R., Phelps, E.A., Daw, N.D., Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. Elife, 5, 2016.
    • (2016) Elife , vol.5
    • Gillan, C.M.1    Kosinski, M.2    Whelan, R.3    Phelps, E.A.4    Daw, N.D.5
  • 19
    • 84860148937 scopus 로고    scopus 로고
    • Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD
    • Fair, D.A., Bathula, D., Nikolas, M.A., Nigg, J.T., Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. Proc Natl Acad Sci U S A 109 (2012), 6769–6774.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 6769-6774
    • Fair, D.A.1    Bathula, D.2    Nikolas, M.A.3    Nigg, J.T.4
  • 20
    • 84937422811 scopus 로고    scopus 로고
    • Biomarkers with a mechanistic focus
    • Pine, D.S., Leibenluft, E., Biomarkers with a mechanistic focus. JAMA Psychiatry 72 (2015), 633–634.
    • (2015) JAMA Psychiatry , vol.72 , pp. 633-634
    • Pine, D.S.1    Leibenluft, E.2
  • 21
    • 84937415858 scopus 로고    scopus 로고
    • Pragmatism instead of mechanism: a call for impactful biological psychiatry
    • Paulus, M.P., Pragmatism instead of mechanism: a call for impactful biological psychiatry. JAMA Psychiatry 72 (2015), 631–632.
    • (2015) JAMA Psychiatry , vol.72 , pp. 631-632
    • Paulus, M.P.1
  • 22
    • 84859262307 scopus 로고    scopus 로고
    • Depression symptom dimensions as predictors of antidepressant treatment outcome: replicable evidence for interest-activity symptoms
    • These authors showcase how as an alternative to machine learning techniques, one use discovery science methods to reveal robust predictors, so long as appropriate validation steps are carried out. Here they used factor analysis to reduce their feature space, employed stringent criteria for selecting viable predictors and validate one such predictor in an independent dataset.
    • Uher, R., Perlis, R.H., Henigsberg, N., Zobel, A., Rietschel, M., Mors, O., Hauser, J., Dernovsek, M.Z., Souery, D., Bajs, M., et al. Depression symptom dimensions as predictors of antidepressant treatment outcome: replicable evidence for interest-activity symptoms. Psychol Med 42 (2012), 967–980 These authors showcase how as an alternative to machine learning techniques, one use discovery science methods to reveal robust predictors, so long as appropriate validation steps are carried out. Here they used factor analysis to reduce their feature space, employed stringent criteria for selecting viable predictors and validate one such predictor in an independent dataset.
    • (2012) Psychol Med , vol.42 , pp. 967-980
    • Uher, R.1    Perlis, R.H.2    Henigsberg, N.3    Zobel, A.4    Rietschel, M.5    Mors, O.6    Hauser, J.7    Dernovsek, M.Z.8    Souery, D.9    Bajs, M.10
  • 27
    • 84959571586 scopus 로고    scopus 로고
    • Cross-trial prediction of treatment outcome in depression: a machine learning approach
    • This paper represents the gold standard for treatment prediction studies using machine learning. Chekroud and colleagues employ feature reduction, internal cross-validation and external validation to find predictors of antidepressant response from clinical data.
    • Chekroud, A.M., Zotti, R.J., Shehzad, Z., Gueorguieva, R., Johnson, M.K., Trivedi, M.H., Cannon, T.D., Krystal, J.H., Corlett, P.R., Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry 3 (2016), 243–250 This paper represents the gold standard for treatment prediction studies using machine learning. Chekroud and colleagues employ feature reduction, internal cross-validation and external validation to find predictors of antidepressant response from clinical data.
    • (2016) Lancet Psychiatry , vol.3 , pp. 243-250
    • Chekroud, A.M.1    Zotti, R.J.2    Shehzad, Z.3    Gueorguieva, R.4    Johnson, M.K.5    Trivedi, M.H.6    Cannon, T.D.7    Krystal, J.H.8    Corlett, P.R.9
  • 29
    • 84906266049 scopus 로고    scopus 로고
    • Neuropsychosocial profiles of current and future adolescent alcohol misusers
    • Whelan and colleagues showed the importance of multimodal data in making the best predictions — here they predict binge-drinking status at age 16, using baseline data collected at age 14.
    • Whelan, R., Watts, R., Orr, C.A., Althoff, R.R., Artiges, E., Banaschewski, T., Barker, G.J., Bokde, A.L., Büchel, C., Carvalho, F.M., et al. Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature 512 (2014), 185–189 Whelan and colleagues showed the importance of multimodal data in making the best predictions — here they predict binge-drinking status at age 16, using baseline data collected at age 14.
    • (2014) Nature , vol.512 , pp. 185-189
    • Whelan, R.1    Watts, R.2    Orr, C.A.3    Althoff, R.R.4    Artiges, E.5    Banaschewski, T.6    Barker, G.J.7    Bokde, A.L.8    Büchel, C.9    Carvalho, F.M.10
  • 30
    • 84954139071 scopus 로고    scopus 로고
    • Predicting optimal outcomes in cognitive therapy or interpersonal psychotherapy for depressed individuals using the personalized advantage index approach
    • Huibers, M.J., Cohen, Z.D., Lemmens, L.H., Arntz, A., Peeters, F.P., Cuijpers, P., DeRubeis, R.J., Predicting optimal outcomes in cognitive therapy or interpersonal psychotherapy for depressed individuals using the personalized advantage index approach. PLOS ONE, 10, 2015, e0140771.
    • (2015) PLOS ONE , vol.10 , pp. e0140771
    • Huibers, M.J.1    Cohen, Z.D.2    Lemmens, L.H.3    Arntz, A.4    Peeters, F.P.5    Cuijpers, P.6    DeRubeis, R.J.7
  • 31
    • 84879321551 scopus 로고    scopus 로고
    • A clinical risk stratification tool for predicting treatment resistance in major depressive disorder
    • Perlis, R.H., A clinical risk stratification tool for predicting treatment resistance in major depressive disorder. Biol Psychiatry 74 (2013), 7–14.
    • (2013) Biol Psychiatry , vol.74 , pp. 7-14
    • Perlis, R.H.1
  • 34
    • 84973304687 scopus 로고    scopus 로고
    • Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data
    • Redlich, R., Opel, N., Grotegerd, D., Dohm, K., Zaremba, D., Bürger, C., Münker, S., Mühlmann, L., Wahl, P., Heindel, W., et al. Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry 73 (2016), 557–564.
    • (2016) JAMA Psychiatry , vol.73 , pp. 557-564
    • Redlich, R.1    Opel, N.2    Grotegerd, D.3    Dohm, K.4    Zaremba, D.5    Bürger, C.6    Münker, S.7    Mühlmann, L.8    Wahl, P.9    Heindel, W.10
  • 35
    • 84929129683 scopus 로고    scopus 로고
    • A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression
    • van Waarde, J.A., Scholte, H.S., van Oudheusden, L.J., Verwey, B., Denys, D., van Wingen, G.A., A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression. Mol Psychiatry 20 (2015), 609–614.
    • (2015) Mol Psychiatry , vol.20 , pp. 609-614
    • van Waarde, J.A.1    Scholte, H.S.2    van Oudheusden, L.J.3    Verwey, B.4    Denys, D.5    van Wingen, G.A.6
  • 37
    • 84927726000 scopus 로고    scopus 로고
    • Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder
    • Korgaonkar, M.S., Rekshan, W., Gordon, E., Rush, A.J., Williams, L.M., Blasey, C., Grieve, S.M., Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder. EBioMedicine 2 (2015), 37–45.
    • (2015) EBioMedicine , vol.2 , pp. 37-45
    • Korgaonkar, M.S.1    Rekshan, W.2    Gordon, E.3    Rush, A.J.4    Williams, L.M.5    Blasey, C.6    Grieve, S.M.7
  • 38
    • 85002131245 scopus 로고    scopus 로고
    • Resting-state connectivity biomarkers define neurophysiological subtypes of depression
    • The authors use unsupervised clustering based on resting state fMRI data from 1188 patients with depression to reveal 4 subgroups that were reproducible in an out-of-sample test. These subgroups could be used to predict treatment response to transcranial magnetic stimulation in 154 patients, achieving accuracy >87.5% in an independent replication set.
    • Drysdale, A.T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., Fetcho, R.N., Zebley, B., Oathes, D.J., Etkin, A., et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23 (2017), 28–38 The authors use unsupervised clustering based on resting state fMRI data from 1188 patients with depression to reveal 4 subgroups that were reproducible in an out-of-sample test. These subgroups could be used to predict treatment response to transcranial magnetic stimulation in 154 patients, achieving accuracy >87.5% in an independent replication set.
    • (2017) Nat Med , vol.23 , pp. 28-38
    • Drysdale, A.T.1    Grosenick, L.2    Downar, J.3    Dunlop, K.4    Mansouri, F.5    Meng, Y.6    Fetcho, R.N.7    Zebley, B.8    Oathes, D.J.9    Etkin, A.10
  • 40
    • 69649101602 scopus 로고    scopus 로고
    • Comparative effectiveness of biomarkers and clinical indicators for predicting outcomes of SSRI treatment in Major Depressive Disorder: results of the BRITE-MD study
    • Leuchter, A.F., Cook, I.A., Marangell, L.B., Gilmer, W.S., Burgoyne, K.S., Howland, R.H., Trivedi, M.H., Zisook, S., Jain, R., McCracken, J.T., et al. Comparative effectiveness of biomarkers and clinical indicators for predicting outcomes of SSRI treatment in Major Depressive Disorder: results of the BRITE-MD study. Psychiatry Res 169 (2009), 124–131.
    • (2009) Psychiatry Res , vol.169 , pp. 124-131
    • Leuchter, A.F.1    Cook, I.A.2    Marangell, L.B.3    Gilmer, W.S.4    Burgoyne, K.S.5    Howland, R.H.6    Trivedi, M.H.7    Zisook, S.8    Jain, R.9    McCracken, J.T.10
  • 42
    • 84991278774 scopus 로고    scopus 로고
    • Taking psychiatry research online
    • Gillan, C.M., Daw, N.D., Taking psychiatry research online. Neuron 91 (2016), 19–23.
    • (2016) Neuron , vol.91 , pp. 19-23
    • Gillan, C.M.1    Daw, N.D.2
  • 45
    • 85025628958 scopus 로고    scopus 로고
    • ABCD Study Protocol. Edited by.
    • ABCD Study Protocol. Edited by. https://abcdstudy.org/images/Protocol_Brochure_Assessment.pdf.
  • 46
    • 0001930708 scopus 로고
    • On the ability to inhibit thought and action: a user's guide to the stop signal paradigm
    • D. Dagenbach T.H. Carr Academic
    • Logan, G., On the ability to inhibit thought and action: a user's guide to the stop signal paradigm. Dagenbach, D., Carr, T.H., (eds.) Inhibitory Processes in Attention, Memory and Language, 1994, Academic.
    • (1994) Inhibitory Processes in Attention, Memory and Language
    • Logan, G.1
  • 47
    • 0035882897 scopus 로고    scopus 로고
    • Anticipation of increasing monetary reward selectively recruits nucleus accumbens
    • Knutson, B., Adams, C.M., Fong, G.W., Hommer, D., Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J Neurosci, 21, 2001, RC159.
    • (2001) J Neurosci , vol.21 , pp. RC159
    • Knutson, B.1    Adams, C.M.2    Fong, G.W.3    Hommer, D.4
  • 49
    • 85013789441 scopus 로고    scopus 로고
    • Building better biomarkers: brain models in translational neuroimaging
    • Woo, C.W., Chang, L.J., Lindquist, M.A., Wager, T.D., Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 20 (2017), 365–377.
    • (2017) Nat Neurosci , vol.20 , pp. 365-377
    • Woo, C.W.1    Chang, L.J.2    Lindquist, M.A.3    Wager, T.D.4
  • 50
    • 84893492564 scopus 로고    scopus 로고
    • Consensus Report of the APA Work Group on Neuroimaging Markers of Psychiatric Disorders
    • Edited by Association AP (Series Editor). Arlington, VA
    • APA, Consensus Report of the APA Work Group on Neuroimaging Markers of Psychiatric Disorders., 2012 Edited by Association AP (Series Editor). Arlington, VA.
    • (2012)
    • APA1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.