메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages 498-503

MDTS: automatic complex materials design using Monte Carlo tree search

Author keywords

Materials design; Materials informatics; Monte Carlo tree search; Python library; Si Ge alloy interfacial structure

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMBINATORIAL OPTIMIZATION; COMPUTER GAMES; GERMANIUM; HIGH LEVEL LANGUAGES; MONTE CARLO METHODS; OPTIMIZATION; SILICON ALLOYS; STRUCTURAL OPTIMIZATION; TREES (MATHEMATICS);

EID: 85025091960     PISSN: 14686996     EISSN: 18785514     Source Type: Journal    
DOI: 10.1080/14686996.2017.1344083     Document Type: Article
Times cited : (62)

References (20)
  • 1
    • 84948419960 scopus 로고    scopus 로고
    • Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization
    • Seko A, Togo A, Hayashi H, et al. Prediction of low-thermal-conductivity compounds with first-principles anharmonic lattice-dynamics calculations and bayesian optimization. Phys Rev Lett. 2015;115:205901.
    • (2015) Phys Rev Lett , vol.115 , pp. 205901
    • Seko, A.1    Togo, A.2    Hayashi, H.3
  • 2
    • 84955620121 scopus 로고    scopus 로고
    • Adaptive strategies for materials design using uncertainties
    • Balachandran PV, Xue D, Theiler J, et al. Adaptive strategies for materials design using uncertainties. Sci Rep. 2016;6:19660.
    • (2016) Sci Rep , vol.6 , pp. 19660
    • Balachandran, P.V.1    Xue, D.2    Theiler, J.3
  • 3
    • 84991817989 scopus 로고    scopus 로고
    • Supercell program: a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals
    • Okhotnikov K, Charpentier T, Cadars S. Supercell program:a combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J Cheminf. 2016;8(1):17. DOI:10.1186/s13321-016-0129-3
    • (2016) J Cheminf , vol.8 , Issue.1 , pp. 17
    • Okhotnikov, K.1    Charpentier, T.2    Cadars, S.3
  • 4
    • 85021361678 scopus 로고    scopus 로고
    • Designing nanostructures for phonon transport via Bayesian optimization
    • Ju S, Shiga T, Feng L, et al. Designing nanostructures for phonon transport via Bayesian optimization. Phys Rev X. 2017;7:021024.
    • (2017) Phys Rev X , vol.7 , pp. 021024
    • Ju, S.1    Shiga, T.2    Feng, L.3
  • 5
    • 33645389717 scopus 로고    scopus 로고
    • Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling
    • Coulinga D, Bernotb R, Dochertyb KM, et al. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modeling. Green Chem. 2006;8:82–90.
    • (2006) Green Chem , vol.8 , pp. 82-90
    • Coulinga, D.1    Bernotb, R.2    Dochertyb, K.M.3
  • 6
    • 84869201485 scopus 로고    scopus 로고
    • Practical Bayesian optimization of machine learning algorithms
    • Snoek J, Larochelle H, Adams R. Practical Bayesian optimization of machine learning algorithms. Adv Neural Inf Process Syst. 2012;2951–2959.
    • (2012) Adv Neural Inf Process Syst , pp. 2951-2959
    • Snoek, J.1    Larochelle, H.2    Adams, R.3
  • 7
    • 85027940899 scopus 로고    scopus 로고
    • COMBO: an efficient Bayesian optimization library for materials science
    • Ueno T, Rhone T, Hou Z, et al. COMBO:an efficient Bayesian optimization library for materials science. Mater Discov. 2016;4:18–21.
    • (2016) Mater Discov , vol.4 , pp. 18-21
    • Ueno, T.1    Rhone, T.2    Hou, Z.3
  • 8
    • 84897608202 scopus 로고    scopus 로고
    • Machine learning with systematic density-functional theory calculations: application to melting temperatures of single-and binary-component solids
    • Seko A, Maekawa T, Tsuda K, et al. Machine learning with systematic density-functional theory calculations:application to melting temperatures of single-and binary-component solids. Phys Rev B. 2014;89:054303.
    • (2014) Phys Rev B , vol.89 , pp. 054303
    • Seko, A.1    Maekawa, T.2    Tsuda, K.3
  • 9
    • 84963546130 scopus 로고    scopus 로고
    • Acceleration of stable interfacestructure searching using a kriging approach
    • Kiyohara S, Oda H, Tsuda K, et al. Acceleration of stable interfacestructure searching using a kriging approach. Jpn J Appl Phys. 2016;55:045502.
    • (2016) Jpn J Appl Phys , vol.55 , pp. 045502
    • Kiyohara, S.1    Oda, H.2    Tsuda, K.3
  • 10
    • 85012244020 scopus 로고    scopus 로고
    • Neural-network-biased genetic algorithms for materials design: Evolutionary algorithms that learn
    • Patra TK, Meenakshisundaram V, Hung J, et al. Neural-network-biased genetic algorithms for materials design:Evolutionary algorithms that learn. ACS Comb Sci. 2017;19(2):96–107.
    • (2017) ACS Comb Sci , vol.19 , Issue.2 , pp. 96-107
    • Patra, T.K.1    Meenakshisundaram, V.2    Hung, J.3
  • 11
    • 59749106406 scopus 로고    scopus 로고
    • Genetic algorithms: a universal tool for solving computational tasks in materials science
    • Paszkowicz W, Harris KD, Johnston RL. Genetic algorithms:a universal tool for solving computational tasks in materials science. Comput Mater Sci. 2009;45(1):ix–x.
    • (2009) Comput Mater Sci , vol.45 , Issue.1 , pp. ix-x
    • Paszkowicz, W.1    Harris, K.D.2    Johnston, R.L.3
  • 13
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • Silver D, Huang A, Maddison C, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529:484–489.
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1    Huang, A.2    Maddison, C.3
  • 14
    • 84916631579 scopus 로고    scopus 로고
    • Probing and tuning inelastic phonon conductance across finite-thickness interface
    • Murakami T, Hori T, Shiga T, et al. Probing and tuning inelastic phonon conductance across finite-thickness interface. Appl Phys Express. 2014;7:121801.
    • (2014) Appl Phys Express , vol.7 , pp. 121801
    • Murakami, T.1    Hori, T.2    Shiga, T.3
  • 17
    • 1842787286 scopus 로고    scopus 로고
    • Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites
    • Griebel M, Hamaekers J. Molecular dynamics simulations of the elastic moduli of polymer-carbon nanotube composites. Comput Meth Appl Mech Eng. 2004;193:1773–1788.
    • (2004) Comput Meth Appl Mech Eng , vol.193 , pp. 1773-1788
    • Griebel, M.1    Hamaekers, J.2
  • 19
    • 27744577658 scopus 로고
    • Modeling solid-state chemistry: interatomic potentials for multicomponent systems
    • Tersoff J. Modeling solid-state chemistry:interatomic potentials for multicomponent systems. Phys Rev B. 1989;39:5566(R).
    • (1989) Phys Rev B , vol.39 , pp. 5566(R)
    • Tersoff, J.1
  • 20
    • 0001158668 scopus 로고
    • Erratum: Modeling solid-state chemistry: interatomic potentials for multicomponent systems
    • Tersoff J. Erratum:Modeling solid-state chemistry:interatomic potentials for multicomponent systems. Phys Rev B. 1990;41:3248.
    • (1990) Phys Rev B , vol.41 , pp. 3248
    • Tersoff, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.