메뉴 건너뛰기




Volumn 7, Issue 2, 2017, Pages

Designing nanostructures for phonon transport via Bayesian optimization

Author keywords

Condensed matter physics

Indexed keywords

CONDENSED MATTER PHYSICS; GERMANIUM; NANOSTRUCTURES; PHONONS; SI-GE ALLOYS; SILICON; SILICON ALLOYS; THERMAL CONDUCTIVITY;

EID: 85021361678     PISSN: None     EISSN: 21603308     Source Type: Journal    
DOI: 10.1103/PhysRevX.7.021024     Document Type: Article
Times cited : (308)

References (57)
  • 1
    • 33947286619 scopus 로고    scopus 로고
    • Thermal Interface Materials: Historical Perspective, Status, and Future Directions
    • R. Prasher, Thermal Interface Materials: Historical Perspective, Status, and Future Directions, Proc. IEEE 94, 1571 (2006).
    • (2006) Proc. IEEE , vol.94 , pp. 1571
    • Prasher, R.1
  • 2
    • 84867542531 scopus 로고    scopus 로고
    • Review and Advances in Heat Pipe Science and Technology
    • A. Faghri, Review and Advances in Heat Pipe Science and Technology, J. Heat Transfer 134, 123001 (2012).
    • (2012) J. Heat Transfer , vol.134 , pp. 123001
    • Faghri, A.1
  • 3
    • 84858169597 scopus 로고    scopus 로고
    • A Review of Heat Pipe Systems for Heat Recovery and Renewable Energy Applications
    • H. N. Chaudhry, B. R. Hughes, and S. A. Ghani, A Review of Heat Pipe Systems for Heat Recovery and Renewable Energy Applications, Renew. Sustain. Energ. Rev. 16, 2249 (2012).
    • (2012) Renew. Sustain. Energ. Rev. , vol.16 , pp. 2249
    • Chaudhry, H.N.1    Hughes, B.R.2    Ghani, S.A.3
  • 4
    • 84878274052 scopus 로고    scopus 로고
    • Heat Transfer in Thermoelectric Materials and Devices
    • Z. T. Tian, S. Lee, and G. Chen, Heat Transfer in Thermoelectric Materials and Devices, J. Heat Transfer 135, 061605 (2013).
    • (2013) J. Heat Transfer , vol.135 , pp. 061605
    • Tian, Z.T.1    Lee, S.2    Chen, G.3
  • 5
    • 82355173201 scopus 로고    scopus 로고
    • A Review of the Economical and Optimum Thermal Insulation Thickness for Building Applications
    • O. Kaynakli, A Review of the Economical and Optimum Thermal Insulation Thickness for Building Applications, Renew. Sustain. Energ. Rev. 16, 415 (2012).
    • (2012) Renew. Sustain. Energ. Rev. , vol.16 , pp. 415
    • Kaynakli, O.1
  • 7
    • 84878303722 scopus 로고    scopus 로고
    • Tuning Phonon Transport: From Interfaces to Nanostructures
    • P. M. Norris, N. Q. Le, and C. H. Baker, Tuning Phonon Transport: From Interfaces to Nanostructures, J. Heat Transfer 135, 061604 (2013).
    • (2013) J. Heat Transfer , vol.135 , pp. 061604
    • Norris, P.M.1    Le, N.Q.2    Baker, C.H.3
  • 8
    • 84871068654 scopus 로고    scopus 로고
    • Enhancing Phonon Transmission Across a Si=Ge Interface by Atomic Roughness: First-Principles Study with the Green's Function Method
    • Z. Tian, K. Esfarjani, and G. Chen, Enhancing Phonon Transmission Across a Si=Ge Interface by Atomic Roughness: First-Principles Study with the Green's Function Method, Phys. Rev. B 86, 235304 (2012).
    • (2012) Phys. Rev. B , vol.86 , pp. 235304
    • Tian, Z.1    Esfarjani, K.2    Chen, G.3
  • 9
    • 84897714799 scopus 로고    scopus 로고
    • Thermal Boundary Conductance Across Rough Interfaces Probed by Molecular Dynamics
    • S. Merabia and K. Termentzidis, Thermal Boundary Conductance Across Rough Interfaces Probed by Molecular Dynamics, Phys. Rev. B 89, 054309 (2014).
    • (2014) Phys. Rev. B , vol.89 , pp. 054309
    • Merabia, S.1    Termentzidis, K.2
  • 10
    • 84933074479 scopus 로고    scopus 로고
    • Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects
    • Y. Liu, C. Hu, J. Huang, B. G. Sumpter, and R. Qiao, Tuning Interfacial Thermal Conductance of Graphene Embedded in Soft Materials by Vacancy Defects, J. Chem. Phys. 142, 244703 (2015).
    • (2015) J. Chem. Phys. , vol.142 , pp. 244703
    • Liu, Y.1    Hu, C.2    Huang, J.3    Sumpter, B.G.4    Qiao, R.5
  • 11
    • 2942657507 scopus 로고    scopus 로고
    • Kapitza Conductance and Phonon Scattering at Grain Boundaries by Simulation
    • P. K. Schelling, S. R. Phillpot, and P. Keblinski, Kapitza Conductance and Phonon Scattering at Grain Boundaries by Simulation, J. Appl. Phys. 95, 6082 (2004).
    • (2004) J. Appl. Phys. , vol.95 , pp. 6082
    • Schelling, P.K.1    Phillpot, S.R.2    Keblinski, P.3
  • 12
    • 84873663625 scopus 로고    scopus 로고
    • Investigation on Interfacial Thermal Resistance and Phonon Scattering at Twist Boundary of Silicon
    • S.-H. Ju and X.-G. Liang, Investigation on Interfacial Thermal Resistance and Phonon Scattering at Twist Boundary of Silicon, J. Appl. Phys. 113, 053513 (2013).
    • (2013) J. Appl. Phys. , vol.113 , pp. 053513
    • Ju, S.-H.1    Liang, X.-G.2
  • 13
    • 84928156476 scopus 로고    scopus 로고
    • Tuning Thermal Conductance Across Sintered Silicon Interface by Local Nanostructures
    • M. Sakata, T. Hori, T. Oyake, J. Maire, M. Nomura, and J. Shiomi, Tuning Thermal Conductance Across Sintered Silicon Interface by Local Nanostructures, Nano Energy 13, 601 (2015).
    • (2015) Nano Energy , vol.13 , pp. 601
    • Sakata, M.1    Hori, T.2    Oyake, T.3    Maire, J.4    Nomura, M.5    Shiomi, J.6
  • 14
    • 84924036188 scopus 로고    scopus 로고
    • Thermal Conductance of Silicon Interfaces Directly Bonded by Room-Temperature Surface Activation
    • M. Sakata, T. Oyake, J. Maire, M. Nomura, E. Higurashi, and J. Shiomi, Thermal Conductance of Silicon Interfaces Directly Bonded by Room-Temperature Surface Activation, Appl. Phys. Lett. 106, 081603 (2015).
    • (2015) Appl. Phys. Lett. , vol.106 , pp. 081603
    • Sakata, M.1    Oyake, T.2    Maire, J.3    Nomura, M.4    Higurashi, E.5    Shiomi, J.6
  • 15
    • 84946027619 scopus 로고    scopus 로고
    • Tuning the Interfacial Thermal Conductance between Polystyrene and Sapphire by Controlling the Interfacial Adhesion
    • K. Zheng, F. Sun, X. Tian, J. Zhu, Y. Ma, D. Tang, and F. Wang, Tuning the Interfacial Thermal Conductance between Polystyrene and Sapphire by Controlling the Interfacial Adhesion, ACS Appl. Mater. Interfaces 7, 23644 (2015).
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 23644
    • Zheng, K.1    Sun, F.2    Tian, X.3    Zhu, J.4    Ma, Y.5    Tang, D.6    Wang, F.7
  • 17
    • 84877086130 scopus 로고    scopus 로고
    • Minimum Thermal Conductivity in Superlattices: A First-Principles Formalism
    • J. Garg and G. Chen, Minimum Thermal Conductivity in Superlattices: A First-Principles Formalism, Phys. Rev. B 87, 140302(R) (2013).
    • (2013) Phys. Rev. B , vol.87
    • Garg, J.1    Chen, G.2
  • 18
    • 29544445387 scopus 로고    scopus 로고
    • Minimum Superlattice Thermal Conductivity from Molecular Dynamics
    • Y. Chen, D. Li, J. R. Lukes, Z. Ni, and M. Chen, Minimum Superlattice Thermal Conductivity from Molecular Dynamics, Phys. Rev. B 72, 174302 (2005).
    • (2005) Phys. Rev. B , vol.72 , pp. 174302
    • Chen, Y.1    Li, D.2    Lukes, J.R.3    Ni, Z.4    Chen, M.5
  • 20
    • 29744470375 scopus 로고    scopus 로고
    • Temperature Dependence of Coherent Phonon Dephasing in CsPbCl3 Nanocrystals
    • P. Nemec and P. Malỳ, Temperature Dependence of Coherent Phonon Dephasing in CsPbCl3 Nanocrystals, Phys. Rev. B 72, 235324 (2005).
    • (2005) Phys. Rev. B , vol.72 , pp. 235324
    • Nemec, P.1    Malỳ, P.2
  • 21
    • 84875203021 scopus 로고    scopus 로고
    • Equilibrium Molecular Dynamics Simulations for the Thermal Conductivity of Si=Ge Nanocomposites
    • X. Li and R. Yang, Equilibrium Molecular Dynamics Simulations for the Thermal Conductivity of Si=Ge Nanocomposites, J. Appl. Phys. 113, 104306 (2013).
    • (2013) J. Appl. Phys. , vol.113 , pp. 104306
    • Li, X.1    Yang, R.2
  • 22
    • 84929991275 scopus 로고    scopus 로고
    • Detecting the Phonon Interference Effect in Si=Ge Nanocomposite by Wave Packets
    • S. Ju and X. Liang, Detecting the Phonon Interference Effect in Si=Ge Nanocomposite by Wave Packets, Appl. Phys. Lett. 106, 203107 (2015).
    • (2015) Appl. Phys. Lett. , vol.106 , pp. 203107
    • Ju, S.1    Liang, X.2
  • 23
    • 84947783068 scopus 로고    scopus 로고
    • Materials Informatics: The Materials "Gene" and Big Data
    • K. Rajan, Materials Informatics: The Materials "Gene" and Big Data, Annu. Rev. Mater. Res. 45, 153 (2015).
    • (2015) Annu. Rev. Mater. Res. , vol.45 , pp. 153
    • Rajan, K.1
  • 24
    • 84870874133 scopus 로고    scopus 로고
    • Materials Informatics
    • K. Rajan, Materials Informatics, Mater. Today 15, 470 (2012).
    • (2012) Mater. Today , vol.15 , pp. 470
    • Rajan, K.1
  • 25
    • 84966929698 scopus 로고    scopus 로고
    • Perspective: Materials Informatics and Big Data: Realization of the "Fourth Paradigm" of Science in Materials Science
    • A. Agrawal and A. Choudhary, Perspective: Materials Informatics and Big Data: Realization of the "Fourth Paradigm" of Science in Materials Science, APL Mater. 4, 053208 (2016).
    • (2016) APL Mater. , vol.4 , pp. 053208
    • Agrawal, A.1    Choudhary, A.2
  • 26
    • 18744377988 scopus 로고    scopus 로고
    • Bioinformatics in Drug Development and Assessment
    • D. S. Wishart, Bioinformatics in Drug Development and Assessment, Drug metabolism reviews 37, 279 (2005).
    • (2005) Drug metabolism reviews , vol.37 , pp. 279
    • Wishart, D.S.1
  • 28
    • 55349103400 scopus 로고    scopus 로고
    • Engineering Polymer Informatics: Towards the Computer-Aided Design of Polymers
    • N. Adams and P. Murray-Rust, Engineering Polymer Informatics: Towards the Computer-Aided Design of Polymers, Macromol. Rapid Commun. 29, 615 (2008).
    • (2008) Macromol. Rapid Commun. , vol.29 , pp. 615
    • Adams, N.1    Murray-Rust, P.2
  • 29
    • 84963546130 scopus 로고    scopus 로고
    • Acceleration of Stable Interface Structure Searching Using a Kriging Approach
    • S. Kiyohara, H. Oda, K. Tsuda, and T. Mizoguchi, Acceleration of Stable Interface Structure Searching Using a Kriging Approach, Jpn. J. Appl. Phys. 55, 045502 (2016).
    • (2016) Jpn. J. Appl. Phys. , vol.55 , pp. 045502
    • Kiyohara, S.1    Oda, H.2    Tsuda, K.3    Mizoguchi, T.4
  • 31
    • 84948419960 scopus 로고    scopus 로고
    • Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization
    • A. Seko, A. Togo, H. Hayashi, K. Tsuda, L. Chaput, and I. Tanaka, Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization, Phys. Rev. Lett. 115, 205901 (2015).
    • (2015) Phys. Rev. Lett. , vol.115 , pp. 205901
    • Seko, A.1    Togo, A.2    Hayashi, H.3    Tsuda, K.4    Chaput, L.5    Tanaka, I.6
  • 32
    • 84900325125 scopus 로고    scopus 로고
    • Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling
    • J. Carrete, W. Li, N. Mingo, S. Wang, and S. Curtarolo, Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling, Phys. Rev. X 4, 011019 (2014).
    • (2014) Phys. Rev. X , vol.4 , pp. 011019
    • Carrete, J.1    Li, W.2    Mingo, N.3    Wang, S.4    Curtarolo, S.5
  • 33
    • 84924787599 scopus 로고    scopus 로고
    • The Best Nanoparticle Size Distribution for Minimum Thermal Conductivity
    • H. Zhang and A. J. Minnich, The Best Nanoparticle Size Distribution for Minimum Thermal Conductivity, Sci. Rep. 5, 8995 (2015).
    • (2015) Sci. Rep. , vol.5 , pp. 8995
    • Zhang, H.1    Minnich, A.J.2
  • 34
    • 84859380329 scopus 로고    scopus 로고
    • Size-Dependent Phonon Transmission Across Dissimilar Material Interfaces
    • X. Li and R. Yang, Size-Dependent Phonon Transmission Across Dissimilar Material Interfaces, J. Phys. Condens. Matter 24, 155302 (2012).
    • (2012) J. Phys. Condens. Matter , vol.24 , pp. 155302
    • Li, X.1    Yang, R.2
  • 35
    • 34547112858 scopus 로고    scopus 로고
    • Simulation of Interfacial Phonon Transport in Si-Ge Heterostructures Using an Atomistic Green's Function Method
    • W. Zhang, T. S. Fisher, and N. Mingo, Simulation of Interfacial Phonon Transport in Si-Ge Heterostructures Using an Atomistic Green's Function Method, J. Heat Transfer 129, 483 (2007).
    • (2007) J. Heat Transfer , vol.129 , pp. 483
    • Zhang, W.1    Fisher, T.S.2    Mingo, N.3
  • 36
    • 44449090563 scopus 로고    scopus 로고
    • Quantum Thermal Transport in Nanostructures
    • J. S. Wang, J. Wang, and J. T. Lü, Quantum Thermal Transport in Nanostructures, Eur. Phys. J. B 62, 381 (2008).
    • (2008) Eur. Phys. J. B , vol.62 , pp. 381
    • Wang, J.S.1    Wang, J.2    Lü, J.T.3
  • 37
    • 85027940899 scopus 로고    scopus 로고
    • COMBO: An Efficient Bayesian Optimization Library for Materials Science
    • T. Ueno, T. D. Rhone, Z. Hou, T. Mizoguchi, and K. Tsuda, COMBO: An Efficient Bayesian Optimization Library for Materials Science, Mater. Discovery 4, 18 (2016).
    • (2016) Mater. Discovery , vol.4 , pp. 18
    • Ueno, T.1    Rhone, T.D.2    Hou, Z.3    Mizoguchi, T.4    Tsuda, K.5
  • 38
    • 84996237073 scopus 로고
    • Electrical Resistance of Disordered One-Dimensional Lattices
    • R. Landauer, Electrical Resistance of Disordered One-Dimensional Lattices, Philos. Mag. 21, 863 (1970).
    • (1970) Philos. Mag. , vol.21 , pp. 863
    • Landauer, R.1
  • 39
    • 21544475343 scopus 로고
    • Theory of the Kapitza Temperature Discontinuity at a Solid Body-Liquid Helium Boundary
    • I. M. Khalatnikdrov and I. N. Adamenko, Theory of the Kapitza Temperature Discontinuity at a Solid Body-Liquid Helium Boundary, J. Exp. Theor. Phys. 36, 391 (1973).
    • (1973) J. Exp. Theor. Phys. , vol.36 , pp. 391
    • Khalatnikdrov, I.M.1    Adamenko, I.N.2
  • 40
    • 27744577658 scopus 로고
    • Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems
    • J. Tersoff, Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems, Phys. Rev. B 39, 5566 (1989).
    • (1989) Phys. Rev. B , vol.39 , pp. 5566
    • Tersoff, J.1
  • 41
    • 0001158668 scopus 로고
    • Erratum: Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems
    • 3248(E)
    • J. Tersoff, Erratum: Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems, Phys. Rev. B 41, 3248(E) (1990).
    • (1990) Phys. Rev. B , vol.41
    • Tersoff, J.1
  • 42
    • 85021332847 scopus 로고    scopus 로고
    • See Supplemental Material at for detailed discussion about (A) Dependence of phonon transmission and conductance on the k-mesh size in atomistic Green's function calculation. (B) Dependence of the optimization performance on the number of candidates added at each round. (C) Fabry-Pérot oscillations of phonon transmission in one dimensional chain. (D) Generation of structure candidates for large cross section area system.
    • See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevX.7.021024 for detailed discussion about (A) Dependence of phonon transmission and conductance on the k-mesh size in atomistic Green's function calculation. (B) Dependence of the optimization performance on the number of candidates added at each round. (C) Fabry-Pérot oscillations of phonon transmission in one dimensional chain. (D) Generation of structure candidates for large cross section area system.
  • 43
    • 0035577808 scopus 로고    scopus 로고
    • A Taxonomy of Global Optimization Methods Based on Response Surfaces
    • D. R. Jones, A Taxonomy of Global Optimization Methods Based on Response Surfaces, J. GlobalOptim. 21, 345 (2001).
    • (2001) J. GlobalOptim. , vol.21 , pp. 345
    • Jones, D.R.1
  • 47
    • 84950321914 scopus 로고    scopus 로고
    • Effects of Aperiodicity and Roughness on Coherent Heat Conduction in Superlattices
    • B. Qiu, G. Chen, and Z. Tian, Effects of Aperiodicity and Roughness on Coherent Heat Conduction in Superlattices, Nanoscale Micro. Thermophys. Eng. 19, 272 (2015).
    • (2015) Nanoscale Micro. Thermophys. Eng. , vol.19 , pp. 272
    • Qiu, B.1    Chen, G.2    Tian, Z.3
  • 48
    • 13444282077 scopus 로고    scopus 로고
    • Strong Polarization Enhancement in Asymmetric Three-Component Ferroelectric Superlattices
    • H. N. Lee, H. M. Christen, M. F. Chisholm, C.M. Rouleau, and D. H. Lowndes, Strong Polarization Enhancement in Asymmetric Three-Component Ferroelectric Superlattices, Nature (London) 433, 395 (2005).
    • (2005) Nature (London) , vol.433 , pp. 395
    • Lee, H.N.1    Christen, H.M.2    Chisholm, M.F.3    Rouleau, C.M.4    Lowndes, D.H.5
  • 49
    • 19944431314 scopus 로고    scopus 로고
    • Lattice-Dynamical Calculation of Phonon Scattering at Ideal Si-Ge Interfaces
    • H. Zhao and J. B. Freund, Lattice-Dynamical Calculation of Phonon Scattering at Ideal Si-Ge Interfaces, J. Appl. Phys. 97, 024903 (2005).
    • (2005) J. Appl. Phys. , vol.97 , pp. 024903
    • Zhao, H.1    Freund, J.B.2
  • 50
    • 42749107504 scopus 로고    scopus 로고
    • Resonant Thermal Transport in Semiconductor Barrier Structures
    • P. Hyldgaard, Resonant Thermal Transport in Semiconductor Barrier Structures, Phys. Rev. B 69, 193305 (2004).
    • (2004) Phys. Rev. B , vol.69 , pp. 193305
    • Hyldgaard, P.1
  • 51
    • 70349634925 scopus 로고    scopus 로고
    • Extracting Phonon Thermal Conductance Across Atomic Junctions: Nonequilibrium Green's Function Approach Compared to Semiclassical Methods
    • P. E. Hopkins, P. M. Norris, M. S. Tsegaye, and A.W. Ghosh, Extracting Phonon Thermal Conductance Across Atomic Junctions: Nonequilibrium Green's Function Approach Compared to Semiclassical Methods, J. Appl. Phys. 106, 063503 (2009).
    • (2009) J. Appl. Phys. , vol.106 , pp. 063503
    • Hopkins, P.E.1    Norris, P.M.2    Tsegaye, M.S.3    Ghosh, A.W.4
  • 52
    • 80052545812 scopus 로고    scopus 로고
    • Tuning Thermal Transport in Nanotubes with Topological Defects
    • J. Wang, L. Li, and J.-S. Wang, Tuning Thermal Transport in Nanotubes with Topological Defects, Appl. Phys. Lett. 99, 091905 (2011).
    • (2011) Appl. Phys. Lett. , vol.99 , pp. 091905
    • Wang, J.1    Li, L.2    Wang, J.-S.3
  • 55
    • 84902603161 scopus 로고    scopus 로고
    • Green's Function Studies of Phonon Transport Across Si=Ge Superlattices
    • Z. T. Tian, K. Esfarjani, and G. Chen, Green's Function Studies of Phonon Transport Across Si=Ge Superlattices, Phys. Rev. B 89, 235307 (2014).
    • (2014) Phys. Rev. B , vol.89 , pp. 235307
    • Tian, Z.T.1    Esfarjani, K.2    Chen, G.3
  • 56
    • 84874887070 scopus 로고    scopus 로고
    • Thermal Transport in SiGe Superlattice Thin Films and Nanowires: Effects of Specimen and Periodic Lengths
    • K.-H. Lin and A. Strachan, Thermal Transport in SiGe Superlattice Thin Films and Nanowires: Effects of Specimen and Periodic Lengths, Phys. Rev. B 87, 115302 (2013).
    • (2013) Phys. Rev. B , vol.87 , pp. 115302
    • Lin, K.-H.1    Strachan, A.2
  • 57
    • 0000502071 scopus 로고    scopus 로고
    • Nonuniform Segregation of Ga at AlAs=GaAs Heterointerfaces
    • W. Braun, A. Trampert, L. Daweritz, and K. H. Ploog, Nonuniform Segregation of Ga at AlAs=GaAs Heterointerfaces, Phys. Rev. B 55, 1689 (1997).
    • (1997) Phys. Rev. B , vol.55 , pp. 1689
    • Braun, W.1    Trampert, A.2    Daweritz, L.3    Ploog, K.H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.