메뉴 건너뛰기




Volumn , Issue , 2017, Pages 2066-2072

Recovering true classifier performance in positive-unlabeled learning

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION MODELS; CLASSIFIER PERFORMANCE; CORRECTION APPROACHES; LABELED AND UNLABELED DATA; OPTIMAL CLASSIFIERS; PERFORMANCE MEASURE; RECEIVER OPERATING CHARACTERISTIC CURVES; STATE-OF-THE-ART ALGORITHMS;

EID: 85024505461     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (43)

References (33)
  • 1
    • 79551494881 scopus 로고    scopus 로고
    • Semi-supervised novelty detection
    • Blanchard, G.; Lee, G.; and Scott, C. 2010. Semi-supervised novelty detection. J Mach Learn Res 11: 2973-3009.
    • (2010) J Mach Learn Res , vol.11 , pp. 2973-3009
    • Blanchard, G.1    Lee, G.2    Scott, C.3
  • 4
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Mach Learn 24: 123-140.
    • (1996) Mach Learn , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 84879904959 scopus 로고    scopus 로고
    • Information-theoretic evaluation of predicted ontological annotations
    • Clark, W. T., and Radivojac, P. 2013. Information-theoretic evaluation of predicted ontological annotations. Bioinformatics 29 (13): i53-i61.
    • (2013) Bioinformatics , vol.29 , Issue.13 , pp. i53-i61
    • Clark, W.T.1    Radivojac, P.2
  • 9
    • 27744465529 scopus 로고    scopus 로고
    • Learning from positive and unlabeled examples
    • Denis, F.; Gilleron, R.; and Letouzey, F. 2005. Learning from positive and unlabeled examples. Theor Comput Sci 348 (16): 70-83.
    • (2005) Theor Comput Sci , vol.348 , Issue.16 , pp. 70-83
    • Denis, F.1    Gilleron, R.2    Letouzey, F.3
  • 10
    • 84900012174 scopus 로고    scopus 로고
    • Class prior estimation from positive and unlabeled data
    • du Plessis, M. C., and Sugiyama, M. 2014. Class prior estimation from positive and unlabeled data. IEICE Trans Inf & Syst E97-D (5): 1358-1362.
    • (2014) IEICE Trans Inf & Syst , vol.E97-D , Issue.5 , pp. 1358-1362
    • Du Plessis, M.C.1    Sugiyama, M.2
  • 14
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27: 861-874.
    • (2006) Pattern Recogn Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 17
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J., and McNeil, B. J. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1): 29-36.
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.1    McNeil, B.J.2
  • 19
    • 84869160181 scopus 로고    scopus 로고
    • A unified view of performance metrics: Translating threshold choice into expected classification loss
    • Hernández-Orallo, J.; Flach, P.; and Ferri, C. 2012. A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res 13 (1): 2813-2869.
    • (2012) J Mach Learn Res , vol.13 , Issue.1 , pp. 2813-2869
    • Hernández-Orallo, J.1    Flach, P.2    Ferri, C.3
  • 23
    • 84907024436 scopus 로고    scopus 로고
    • The impact of incomplete knowledge on the evaluation of protein function prediction: A structured-output learning perspective
    • Jiang, Y.; Clark, W. T.; Friedberg, I.; and Radivojac, P. 2014. The impact of incomplete knowledge on the evaluation of protein function prediction: a structured-output learning perspective. Bioinformatics 30 (17): i609-i616.
    • (2014) Bioinformatics , vol.30 , Issue.17 , pp. i609-i616
    • Jiang, Y.1    Clark, W.T.2    Friedberg, I.3    Radivojac, P.4
  • 29
    • 0036134369 scopus 로고    scopus 로고
    • Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
    • Saerens, M.; Latinne, P.; and Decaestecker, C. 2002. Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure. Neural Comput 14: 21-41.
    • (2002) Neural Comput , vol.14 , pp. 21-41
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 31
    • 84898040500 scopus 로고    scopus 로고
    • Classification with asymmetric label noise: Consistency and maximal denoising
    • Scott, C.; Blanchard, G.; and Handy, G. 2013. Classification with asymmetric label noise: consistency and maximal denoising. J Mach Learn Res W&CP 30: 489-511.
    • (2013) J Mach Learn Res W&CP , vol.30 , pp. 489-511
    • Scott, C.1    Blanchard, G.2    Handy, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.