-
1
-
-
79551494881
-
Semi-supervised novelty detection
-
Blanchard, G.; Lee, G.; and Scott, C. 2010. Semi-supervised novelty detection. J Mach Learn Res 11: 2973-3009.
-
(2010)
J Mach Learn Res
, vol.11
, pp. 2973-3009
-
-
Blanchard, G.1
Lee, G.2
Scott, C.3
-
2
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
Blum, A., and Mitchell, T. 1998. Combining labeled and unlabeled data with co-training. In Proceedings of the 11th Annual Conference on Computational Learning Theory, COLT 1998, 92-100.
-
(1998)
Proceedings of the 11th Annual Conference on Computational Learning Theory, COLT
, vol.1998
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
3
-
-
84867122322
-
Unachievable region in precision-recall space and its effect on empirical evaluation
-
Boyd, K.; Costa, V. S.; Davis, J.; and Page, C. D. 2012. Unachievable region in precision-recall space and its effect on empirical evaluation. In Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 639-646.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning, ICML
, vol.2012
, pp. 639-646
-
-
Boyd, K.1
Costa, V.S.2
Davis, J.3
Page, C.D.4
-
4
-
-
0030211964
-
Bagging predictors
-
Breiman, L. 1996. Bagging predictors. Mach Learn 24: 123-140.
-
(1996)
Mach Learn
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
84879904959
-
Information-theoretic evaluation of predicted ontological annotations
-
Clark, W. T., and Radivojac, P. 2013. Information-theoretic evaluation of predicted ontological annotations. Bioinformatics 29 (13): i53-i61.
-
(2013)
Bioinformatics
, vol.29
, Issue.13
, pp. i53-i61
-
-
Clark, W.T.1
Radivojac, P.2
-
7
-
-
56749103116
-
Sample selection bias correction theory
-
Cortes, C.; Mohri, M.; Riley, M.; and Rostamizadeh, A. 2008. Sample selection bias correction theory. In Proceedings of the 19th International Conference on Algorithmic Learning Theory, ALT 2008, 38-53.
-
(2008)
Proceedings of the 19th International Conference on Algorithmic Learning Theory, ALT
, vol.2008
, pp. 38-53
-
-
Cortes, C.1
Mohri, M.2
Riley, M.3
Rostamizadeh, A.4
-
8
-
-
34250727580
-
The relationship between precision-recall and ROC curves
-
Davis, J., and Goadrich, M. 2006. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning, ICML 2006, 233-240.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning, ICML
, vol.2006
, pp. 233-240
-
-
Davis, J.1
Goadrich, M.2
-
9
-
-
27744465529
-
Learning from positive and unlabeled examples
-
Denis, F.; Gilleron, R.; and Letouzey, F. 2005. Learning from positive and unlabeled examples. Theor Comput Sci 348 (16): 70-83.
-
(2005)
Theor Comput Sci
, vol.348
, Issue.16
, pp. 70-83
-
-
Denis, F.1
Gilleron, R.2
Letouzey, F.3
-
10
-
-
84900012174
-
Class prior estimation from positive and unlabeled data
-
du Plessis, M. C., and Sugiyama, M. 2014. Class prior estimation from positive and unlabeled data. IEICE Trans Inf & Syst E97-D (5): 1358-1362.
-
(2014)
IEICE Trans Inf & Syst
, vol.E97-D
, Issue.5
, pp. 1358-1362
-
-
Du Plessis, M.C.1
Sugiyama, M.2
-
11
-
-
85019205445
-
Class-prior estimation for learning from positive and unlabeled data
-
du Plessis, M. C.; Niu, G.; and Sugiyama, M. 2015. Class-prior estimation for learning from positive and unlabeled data. In Proceedings of the 7th Asian Conference on Machine Learning, volume 45 of ACML 2015, 221-236.
-
(2015)
Proceedings of the 7th Asian Conference on Machine Learning, Volume 45 of ACML
, vol.2015
, pp. 221-236
-
-
Du Plessis, M.C.1
Niu, G.2
Sugiyama, M.3
-
12
-
-
58149180961
-
Learning classifiers from only positive and unlabeled data
-
Elkan, C., and Noto, K. 2008. Learning classifiers from only positive and unlabeled data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2008, 213-220.
-
(2008)
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
, vol.2008
, pp. 213-220
-
-
Elkan, C.1
Noto, K.2
-
14
-
-
33646023117
-
An introduction to ROC analysis
-
Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recogn Lett 27: 861-874.
-
(2006)
Pattern Recogn Lett
, vol.27
, pp. 861-874
-
-
Fawcett, T.1
-
15
-
-
84965143832
-
Precision-recall-gain curves: PR analysis done right
-
Flach, P. A., and Kull, M. 2015. Precision-recall-gain curves: PR analysis done right. In Advances in Neural Information Processing Systems, NIPS 2015, 838-846.
-
(2015)
Advances in Neural Information Processing Systems, NIPS
, vol.2015
, pp. 838-846
-
-
Flach, P.A.1
Kull, M.2
-
17
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley, J., and McNeil, B. J. 1982. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143 (1): 29-36.
-
(1982)
Radiology
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.1
McNeil, B.J.2
-
18
-
-
0003684449
-
-
New York, NY: Springer Verlag
-
Hastie, T.; Tibshirani, R.; and Friedman, J. H. 2001. The elements of statistical learning: data mining, inference, and prediction. New York, NY: Springer Verlag.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
19
-
-
84869160181
-
A unified view of performance metrics: Translating threshold choice into expected classification loss
-
Hernández-Orallo, J.; Flach, P.; and Ferri, C. 2012. A unified view of performance metrics: translating threshold choice into expected classification loss. J Mach Learn Res 13 (1): 2813-2869.
-
(2012)
J Mach Learn Res
, vol.13
, Issue.1
, pp. 2813-2869
-
-
Hernández-Orallo, J.1
Flach, P.2
Ferri, C.3
-
20
-
-
2342473198
-
The importance of intrinsic disorder for protein phosphorylation
-
Iakoucheva, L. M.; Radivojac, P.; Brown, C. J.; O'Connor, T. R.; Sikes, J. G.; Obradovic, Z.; and Dunker, A. K. 2004. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32 (3): 1037-1049.
-
(2004)
Nucleic Acids Res
, vol.32
, Issue.3
, pp. 1037-1049
-
-
Iakoucheva, L.M.1
Radivojac, P.2
Brown, C.J.3
O'Connor, T.R.4
Sikes, J.G.5
Obradovic, Z.6
Dunker, A.K.7
-
22
-
-
85018867328
-
Estimating the class prior and posterior from noisy positives and unlabeled data
-
Jain, S.; White, M.; and Radivojac, P. 2016. Estimating the class prior and posterior from noisy positives and unlabeled data. In Advances in Neural Information Processing Systems, NIPS 2016, 2685-2693.
-
(2016)
Advances in Neural Information Processing Systems, NIPS
, vol.2016
, pp. 2685-2693
-
-
Jain, S.1
White, M.2
Radivojac, P.3
-
23
-
-
84907024436
-
The impact of incomplete knowledge on the evaluation of protein function prediction: A structured-output learning perspective
-
Jiang, Y.; Clark, W. T.; Friedberg, I.; and Radivojac, P. 2014. The impact of incomplete knowledge on the evaluation of protein function prediction: a structured-output learning perspective. Bioinformatics 30 (17): i609-i616.
-
(2014)
Bioinformatics
, vol.30
, Issue.17
, pp. i609-i616
-
-
Jiang, Y.1
Clark, W.T.2
Friedberg, I.3
Radivojac, P.4
-
25
-
-
84969506930
-
Learning from corrupted binary labels via class-probability estimation
-
Menon, A. K.; van Rooyen, B.; Ong, C. S.; and Williamson, R. C. 2015. Learning from corrupted binary labels via class-probability estimation. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, 125-134.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning, ICML
, vol.2015
, pp. 125-134
-
-
Menon, A.K.1
Van Rooyen, B.2
Ong, C.S.3
Williamson, R.C.4
-
26
-
-
78149327484
-
Exploiting unlabeled data for improving accuracy of predictive data mining
-
Peng, K.; Vucetic, S.; Han, B.; Xie, H.; and Obradovic, Z. 2003. Exploiting unlabeled data for improving accuracy of predictive data mining. In Proceedings of the 3rd IEEE International Conference on Data Mining, ICDM 2003, 267-274.
-
(2003)
Proceedings of the 3rd IEEE International Conference on Data Mining, ICDM
, vol.2003
, pp. 267-274
-
-
Peng, K.1
Vucetic, S.2
Han, B.3
Xie, H.4
Obradovic, Z.5
-
28
-
-
84943274699
-
A direct adaptive method for faster backpropagation learning: The RPROP algorithm
-
Riedmiller, M., and Braun, H. 1993. A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In Proceedings of the IEEE International Conference on Neural Networks, ICNN 1993, 586-591.
-
(1993)
Proceedings of the IEEE International Conference on Neural Networks, ICNN
, vol.1993
, pp. 586-591
-
-
Riedmiller, M.1
Braun, H.2
-
29
-
-
0036134369
-
Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
-
Saerens, M.; Latinne, P.; and Decaestecker, C. 2002. Adjusting the outputs of a classifier to new a priori probabilities: a simple procedure. Neural Comput 14: 21-41.
-
(2002)
Neural Comput
, vol.14
, pp. 21-41
-
-
Saerens, M.1
Latinne, P.2
Decaestecker, C.3
-
30
-
-
84955479515
-
Class proportion estimation with application to multiclass anomaly rejection
-
Sanderson, T., and Scott, C. 2014. Class proportion estimation with application to multiclass anomaly rejection. In Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, AISTATS 2014, 850-858.
-
(2014)
Proceedings of the 17th International Conference on Artificial Intelligence and Statistics, AISTATS
, vol.2014
, pp. 850-858
-
-
Sanderson, T.1
Scott, C.2
-
31
-
-
84898040500
-
Classification with asymmetric label noise: Consistency and maximal denoising
-
Scott, C.; Blanchard, G.; and Handy, G. 2013. Classification with asymmetric label noise: consistency and maximal denoising. J Mach Learn Res W&CP 30: 489-511.
-
(2013)
J Mach Learn Res W&CP
, vol.30
, pp. 489-511
-
-
Scott, C.1
Blanchard, G.2
Handy, G.3
-
32
-
-
66949112586
-
Presence-only data and the em algorithm
-
Ward, G.; Hastie, T.; Barry, S.; Elith, J.; and Leathwick, J. 2009. Presence-only data and the EM algorithm. Biometrics 65 (2): 554-563.
-
(2009)
Biometrics
, vol.65
, Issue.2
, pp. 554-563
-
-
Ward, G.1
Hastie, T.2
Barry, S.3
Elith, J.4
Leathwick, J.5
|