메뉴 건너뛰기




Volumn 4, Issue 2, 2017, Pages

Gland segmentation in prostate histopathological images

Author keywords

AdaBoost; digital pathology; gland segmentation; prostate cancer; support vector machine

Indexed keywords

ALGORITHM; ARTICLE; AUTOMATION; CLASSIFIER; CLINICAL ARTICLE; CONTROLLED STUDY; HISTOPATHOLOGY; HUMAN; HUMAN TISSUE; IMAGE PROCESSING; IMAGE SEGMENTATION; MACHINE LEARNING; MALE; PATHOLOGIST; PROSTATE ADENOCARCINOMA; PROSTATE BIOPSY; PROSTATE EPITHELIUM CELL; PROSTATE TISSUE; STROMA CELL; TUMOR BIOPSY; VALIDATION STUDY; WORKFLOW;

EID: 85021763428     PISSN: 23294302     EISSN: 23294310     Source Type: Journal    
DOI: 10.1117/1.JMI.4.2.027501     Document Type: Article
Times cited : (30)

References (52)
  • 1
    • 7444271447 scopus 로고    scopus 로고
    • Gleason grading and prognostic factors in carcinoma of the prostate
    • P. A. Humphrey, "Gleason grading and prognostic factors in carcinoma of the prostate," Mod. Pathol. 17(3), 292-306 (2004).
    • (2004) Mod. Pathol. , vol.17 , Issue.3 , pp. 292-306
    • Humphrey, P.A.1
  • 2
    • 0001916430 scopus 로고
    • Histological grading and clinical staging of prostatic carcinoma
    • M. Tannenbaum, Ed,Lea & Feibiger, Philadelphia
    • D. Gleason, "Histological grading and clinical staging of prostatic carcinoma," in Urol. Pathol.: Prostate, M. Tannenbaum, Ed., pp. 171-198, Lea & Feibiger, Philadelphia (1977).
    • (1977) Urol. Pathol.: Prostate , pp. 171-198
    • Gleason, D.1
  • 4
    • 0030025610 scopus 로고    scopus 로고
    • Prediction of progression following radical prostatectomy: A multivariate analysis of 721 men with long-term follow-up
    • J. I. Epstein et al., "Prediction of progression following radical prostatectomy: a multivariate analysis of 721 men with long-term follow-up," Am. J. Surg. Pathol. 20(3), 286-292 (1996).
    • (1996) Am. J. Surg. Pathol , vol.20 , Issue.3 , pp. 286-292
    • Epstein, J.I.1
  • 5
    • 0032537993 scopus 로고    scopus 로고
    • Competing risk analysis of men aged 55 to 74 years at diagnosis managed conservatively for clinically localized prostate cancer
    • P. C. Albertsen et al., "Competing risk analysis of men aged 55 to 74 years at diagnosis managed conservatively for clinically localized prostate cancer," J. Am. Med. Assoc. 280(11), 975-980 (1998).
    • (1998) J. Am. Med. Assoc , vol.280 , Issue.11 , pp. 975-980
    • Albertsen, P.C.1
  • 6
    • 0035875899 scopus 로고    scopus 로고
    • Outcomes for men with clinically nonmetastatic prostate carcinoma managed with radical prostactectomy, external beam radiotherapy, or expectant management
    • M. J. Barry et al., "Outcomes for men with clinically nonmetastatic prostate carcinoma managed with radical prostactectomy, external beam radiotherapy, or expectant management," Cancer 91(12), 2302-2314 (2001).
    • (2001) Cancer , vol.91 , Issue.12 , pp. 2302-2314
    • Barry, M.J.1
  • 7
    • 0036343847 scopus 로고    scopus 로고
    • Prognostic value of the Gleason score in prostate cancer
    • L. Egevad et al., "Prognostic value of the Gleason score in prostate cancer," BJU Int. 89(6), 538-542 (2002).
    • (2002) BJU Int. , vol.89 , Issue.6 , pp. 538-542
    • Egevad, L.1
  • 8
    • 24144493035 scopus 로고    scopus 로고
    • The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma
    • J. I. Epstein et al., "The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma," Am. J. Surg. Pathol. 29(9), 1228-1242 (2005).
    • (2005) Am. J. Surg. Pathol , vol.29 , Issue.9 , pp. 1228-1242
    • Epstein, J.I.1
  • 9
    • 73749085949 scopus 로고    scopus 로고
    • An update of the Gleason grading system
    • J. I. Epstein, "An update of the Gleason grading system," J. Urol. 183(2), 433-440 (2010).
    • (2010) J. Urol. , vol.183 , Issue.2 , pp. 433-440
    • Epstein, J.I.1
  • 11
    • 0035126050 scopus 로고    scopus 로고
    • Interobserver reproducibility of Gleason grading of prostatic carcinoma: Urologic pathologists
    • W. C. Allsbrook, Jr. et al., "Interobserver reproducibility of Gleason grading of prostatic carcinoma: urologic pathologists," Hum. Pathol. 32(1), 74-80 (2001).
    • (2001) Hum. Pathol. , vol.32 , Issue.1 , pp. 74-80
    • Allsbrook, W.C.1
  • 12
    • 0035122453 scopus 로고    scopus 로고
    • Interobserver reproducibility of Gleason grading of prostatic carcinoma: General pathologist
    • W. C. Allsbrook, Jr. et al., "Interobserver reproducibility of Gleason grading of prostatic carcinoma: general pathologist," Hum. Pathol. 32(1), 81-88 (2001).
    • (2001) Hum. Pathol. , vol.32 , Issue.1 , pp. 81-88
    • Allsbrook, W.C.1
  • 13
    • 84879952269 scopus 로고    scopus 로고
    • Phase 3 study of adjuvant radiotherapy versus wait and see in pt3 prostate cancer: Impact of pathology review on analysis
    • D. Bottke et al., "Phase 3 study of adjuvant radiotherapy versus wait and see in pt3 prostate cancer: impact of pathology review on analysis," Eur. Urol. 64(2), 193-198 (2013).
    • (2013) Eur. Urol , vol.64 , Issue.2 , pp. 193-198
    • Bottke, D.1
  • 14
    • 84858439207 scopus 로고    scopus 로고
    • Prostate cancer grading: Gland segmentation and structural features
    • K. Nguyen, B. Sabata, and A. K. Jain, "Prostate cancer grading: gland segmentation and structural features," Pattern Recognit. Lett. 33(7), 951-961 (2012).
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.7 , pp. 951-961
    • Nguyen, K.1    Sabata, B.2    Jain, A.K.3
  • 15
    • 84979852956 scopus 로고    scopus 로고
    • Automated image based prominent nucleoli detection
    • C. K. Yap et al., "Automated image based prominent nucleoli detection," J. Pathol. Inf. 6, 39 (2015).
    • (2015) J. Pathol. Inf. , vol.6 , pp. 39
    • Yap, C.K.1
  • 16
    • 34250856799 scopus 로고    scopus 로고
    • An image analysis approach for automatic malignancy determination of prostate pathological images
    • R. Farjam et al., "An image analysis approach for automatic malignancy determination of prostate pathological images," Cytom. Part B: Clin. Cytom. 72(4), 227-240 (2007).
    • (2007) Cytom. Part B: Clin. Cytom. , vol.72 , Issue.4 , pp. 227-240
    • Farjam, R.1
  • 17
    • 84896258183 scopus 로고    scopus 로고
    • Gland segmentation and computerized Gleason grading of prostate histology by integrating low-, high-level and domain specific information
    • S. Naik et al., "Gland segmentation and computerized Gleason grading of prostate histology by integrating low-, high-level and domain specific information," in MIAAB Workshop, pp. 1-8 (2007).
    • (2007) MIAAB Workshop , pp. 1-8
    • Naik, S.1
  • 18
    • 78149392546 scopus 로고    scopus 로고
    • High-throughput prostate cancer gland detection, segmentation, and classification from digitized needle core biopsies
    • Springer
    • J. Xu et al., "High-throughput prostate cancer gland detection, segmentation, and classification from digitized needle core biopsies," in Int. Workshop on Prostate Cancer Imaging, pp. 77-88, Springer (2010).
    • (2010) Int. Workshop on Prostate Cancer Imaging , pp. 77-88
    • Xu, J.1
  • 19
    • 70450285290 scopus 로고    scopus 로고
    • Automatic segmentation of colon glands using object-graphs
    • C. Gunduz-Demir et al., "Automatic segmentation of colon glands using object-graphs," Med. Image Anal. 14(1), 1-12 (2010).
    • (2010) Med. Image Anal. , vol.14 , Issue.1 , pp. 1-12
    • Gunduz-Demir, C.1
  • 20
    • 78149477488 scopus 로고    scopus 로고
    • Automated gland segmentation and classification for Gleason grading of prostate tissue images
    • IEEE
    • K. Nguyen, A. K. Jain, and R. L. Allen, "Automated gland segmentation and classification for Gleason grading of prostate tissue images," in 20th Int. Conf. on Pattern Recognition (ICPR'10), pp. 1497-1500, IEEE (2010).
    • (2010) 20th Int. Conf. on Pattern Recognition (ICPR'10) , pp. 1497-1500
    • Nguyen, K.1    Jain, A.K.2    Allen, R.L.3
  • 21
    • 77955569128 scopus 로고    scopus 로고
    • High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models
    • J. P. Monaco et al., "High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models," Med. Image Anal. 14(4), 617-629 (2010).
    • (2010) Med. Image Anal. , vol.14 , Issue.4 , pp. 617-629
    • Monaco, J.P.1
  • 24
    • 84914166858 scopus 로고    scopus 로고
    • Prostate cancer grading: Use of graph cut and spatial arrangement of nuclei
    • K. Nguyen, A. Sarkar, and A. K. Jain, "Prostate cancer grading: use of graph cut and spatial arrangement of nuclei," IEEE Trans. Med. Imaging 33(12), 2254-2270 (2014).
    • (2014) IEEE Trans. Med. Imaging , vol.33 , Issue.12 , pp. 2254-2270
    • Nguyen, K.1    Sarkar, A.2    Jain, A.K.3
  • 25
  • 26
    • 84953317908 scopus 로고    scopus 로고
    • Computer aided analysis of prostate histopathology images Gleason grading especially for Gleason score 7
    • IEEE
    • J. Ren et al., "Computer aided analysis of prostate histopathology images Gleason grading especially for Gleason score 7," in 37th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC'15), pp. 3013-3016, IEEE (2015).
    • (2015) 37th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC'15) , pp. 3013-3016
    • Ren, J.1
  • 27
    • 80055035217 scopus 로고    scopus 로고
    • Automatic batch-invariant color segmentation of histological cancer images
    • IEEE
    • S. Kothari et al., "Automatic batch-invariant color segmentation of histological cancer images," in IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro, 2011, pp. 657-660, IEEE (2011).
    • (2011) IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro , vol.2011 , pp. 657-660
    • Kothari, S.1
  • 29
    • 84955289509 scopus 로고    scopus 로고
    • A stochastic polygons model for glandular structures in colon histology images
    • K. Sirinukunwattana, D. R. Snead, and N. M. Rajpoot, "A stochastic polygons model for glandular structures in colon histology images," IEEE Trans. Med. Imaging 34(11), 2366-2378 (2015).
    • (2015) IEEE Trans. Med. Imaging , vol.34 , Issue.11 , pp. 2366-2378
    • Sirinukunwattana, K.1    Snead, D.R.2    Rajpoot, N.M.3
  • 30
    • 84979586877 scopus 로고    scopus 로고
    • Image analysis and machine learning in digital pathology: Challenges and opportunities
    • A. Madabhushi and G. Lee, "Image analysis and machine learning in digital pathology: challenges and opportunities," Med. Image Anal. 33(6), 170-175 (2016).
    • (2016) Med. Image Anal. , vol.33 , Issue.6 , pp. 170-175
    • Madabhushi, A.1    Lee, G.2
  • 31
    • 84968661778 scopus 로고    scopus 로고
    • Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique
    • H. Greenspan, B. van Ginneken, and R. M. Summers, "Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique," IEEE Trans. Med. Imaging 35(5), 1153-1159 (2016).
    • (2016) IEEE Trans. Med. Imaging , vol.35 , Issue.5 , pp. 1153-1159
    • Greenspan, H.1    Van Ginneken, B.2    Summers, R.M.3
  • 32
    • 85009238256 scopus 로고    scopus 로고
    • Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
    • A. Janowczyk and A. Madabhushi, "Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases," J. Pathol. Inf. 7, 29 (2016).
    • (2016) J. Pathol. Inf. , vol.7 , pp. 29
    • Janowczyk, A.1    Madabhushi, A.2
  • 33
    • 85021727650 scopus 로고    scopus 로고
    • Gland instance segmentation using deep multichannel neural networks
    • Y. Xu et al., "Gland instance segmentation using deep multichannel neural networks," IEEE Trans. Biomed. Eng. PP(99), 1 (2017).
    • (2017) IEEE Trans. Biomed. Eng , vol.PP , Issue.99 , pp. 1
    • Xu, Y.1
  • 35
    • 85020289809 scopus 로고    scopus 로고
    • Computer aided analysis of prostate histopathology images to support a refined Gleason grading system
    • 10133
    • J. Ren et al., "Computer aided analysis of prostate histopathology images to support a refined Gleason grading system," Proc. SPIE 10133, 101331V (2017).
    • (2017) Proc. SPIE , pp. 101331V
    • Ren, J.1
  • 38
    • 77951298115 scopus 로고    scopus 로고
    • The PASCAL visual object classes (VOC) challenge
    • M. Everingham et al., "The PASCAL visual object classes (VOC) challenge," Int. J. Comput. Vision 88(2), 303-338 (2010).
    • (2010) Int. J. Comput. Vision , vol.88 , Issue.2 , pp. 303-338
    • Everingham, M.1
  • 39
    • 85021729221 scopus 로고    scopus 로고
    • The cancer genome atlas-data portal,15 January
    • The cancer genome atlas-data portal, https://tcga-data.nci.nih.gov/tcga (15 January 2014).
    • (2014)
  • 40
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn. 20(3), 273-297 (1995).
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 41
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," J. Comput. Syst. Sci. 55(1), 119-139 (1997).
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 42
    • 84896542077 scopus 로고    scopus 로고
    • Automatic classification of white regions in liver biopsies by supervised machine learning
    • S. Vanderbeck et al., "Automatic classification of white regions in liver biopsies by supervised machine learning," Hum. Pathol. 45(4), 785-792 (2014).
    • (2014) Hum. Pathol. , vol.45 , Issue.4 , pp. 785-792
    • Vanderbeck, S.1
  • 43
    • 84937655864 scopus 로고
    • Visual pattern recognition by moment invariants
    • M.-K. Hu, "Visual pattern recognition by moment invariants," IRE Trans. Inf. Theory 8(2), 179-187 (1962).
    • (1962) IRE Trans. Inf. Theory , vol.8 , Issue.2 , pp. 179-187
    • Hu, M.-K.1
  • 44
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • N. Otsu, "A threshold selection method from gray-level histograms," IEEE Trans. Syst. Man Cybern. 9(1), 62-66 (1979).
    • (1979) IEEE Trans. Syst. Man Cybern , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 45
    • 0022266946 scopus 로고
    • Moment-preserving thresholding: A new approach
    • W.-H. Tsai, "Moment-preserving thresholding: a new approach," Comput. Vision Graphics Image Process. 29(3), 377-393 (1985).
    • (1985) Comput. Vision Graphics Image Process , vol.29 , Issue.3 , pp. 377-393
    • Tsai, W.-H.1
  • 46
    • 0038823501 scopus 로고
    • Operations useful for similarity-invariant pattern recognition
    • W. Doyle, "Operations useful for similarity-invariant pattern recognition," J. ACM 9(2), 259-267 (1962).
    • (1962) J. ACM , vol.9 , Issue.2 , pp. 259-267
    • Doyle, W.1
  • 47
    • 0022266928 scopus 로고
    • A new method for gray-level picture thresholding using the entropy of the histogram
    • J. N. Kapur, P. K. Sahoo, and A. K.Wong, "A new method for gray-level picture thresholding using the entropy of the histogram," Comput. Vision Graphics Image Process. 29(3), 273-285 (1985).
    • (1985) Comput. Vision Graphics Image Process , vol.29 , Issue.3 , pp. 273-285
    • Kapur, J.N.1    Sahoo, P.K.2    Wong, A.K.3
  • 48
    • 0028513711 scopus 로고
    • Utilization of information measure as a means of image thresholding
    • A. G. Shanbhag, "Utilization of information measure as a means of image thresholding," CVGIP: Graphical Models Image Process. 56(5), 414-419 (1994).
    • (1994) CVGIP: Graphical Models Image Process , vol.56 , Issue.5 , pp. 414-419
    • Shanbhag, A.G.1
  • 49
    • 0034890852 scopus 로고    scopus 로고
    • Quantification of histochemical staining by color deconvolution
    • A. C. Ruifrok et al., "Quantification of histochemical staining by color deconvolution," Anal. Quant. Cytol. Histol. 23, 291-299 (2001).
    • (2001) Anal. Quant. Cytol. Histol , vol.23 , pp. 291-299
    • Ruifrok, A.C.1
  • 50
    • 77949777061 scopus 로고    scopus 로고
    • Evolving generalized Voronoi diagrams for accurate cellular image segmentation
    • W. Yu et al., "Evolving generalized Voronoi diagrams for accurate cellular image segmentation," Cytometry 77(4), 379-386 (2010).
    • (2010) Cytometry , vol.77 , Issue.4 , pp. 379-386
    • Yu, W.1
  • 51
    • 84885969802 scopus 로고
    • Omega: A general formulation of the rand index of cluster recovery suitable for non-disjoint solutions
    • L. M. Collins and C. W. Dent, "Omega: a general formulation of the rand index of cluster recovery suitable for non-disjoint solutions," Multivar. Behav. Res. 23(2), 231-242 (1988).
    • (1988) Multivar. Behav. Res. , vol.23 , Issue.2 , pp. 231-242
    • Collins, L.M.1    Dent, C.W.2
  • 52
    • 0003165311 scopus 로고
    • College admissions and the stability of marriage
    • D. Gale and L. S. Shapley, "College admissions and the stability of marriage," Am. Math. Mon. 69(1), 9-15 (1962).
    • (1962) Am. Math. Mon. , vol.69 , Issue.1 , pp. 9-15
    • Gale, D.1    Shapley, L.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.