-
1
-
-
80053654021
-
Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
-
Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging. 2011;32:2322.e19–e27. doi:10.1016/j.neurobiolaging.2010.05.023.
-
(2011)
Neurobiol Aging
, vol.32
, pp. 2322.e19-2322.e27
-
-
Davatzikos, C.1
Bhatt, P.2
Shaw, L.M.3
Batmanghelich, K.N.4
Trojanowski, J.Q.5
-
2
-
-
77954981027
-
Comparing predictors of conversion and decline in mild cognitive impairment
-
COI: 1:STN:280:DC%2BC3cnps1ylsA%3D%3D, PID: 20592257
-
Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology. 2010;75:230–8. doi:10.1212/WNL.0b013e3181e8e8b8.
-
(2010)
Neurology
, vol.75
, pp. 230-238
-
-
Landau, S.M.1
Harvey, D.2
Madison, C.M.3
Reiman, E.M.4
Foster, N.L.5
Aisen, P.S.6
-
3
-
-
73549084727
-
Mild cognitive impairment: ten years later
-
PID: 20008648
-
Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, et al. Mild cognitive impairment: ten years later. Arch Neurol. 2009;66:1447–55. doi:10.1001/archneurol.2009.266.
-
(2009)
Arch Neurol
, vol.66
, pp. 1447-1455
-
-
Petersen, R.C.1
Roberts, R.O.2
Knopman, D.S.3
Boeve, B.F.4
Geda, Y.E.5
Ivnik, R.J.6
-
4
-
-
77953963850
-
MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings
-
COI: 1:CAS:528:DC%2BC3cXmvFaisr4%3D, PID: 19939228
-
Pagani M, Dessi B, Morbelli S, Brugnolo A, Salmaso D, Piccini A, et al. MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res. 2010;7:287–94.
-
(2010)
Curr Alzheimer Res
, vol.7
, pp. 287-294
-
-
Pagani, M.1
Dessi, B.2
Morbelli, S.3
Brugnolo, A.4
Salmaso, D.5
Piccini, A.6
-
5
-
-
84925847920
-
The trajectory of cognitive decline in the pre-dementia phase in memory clinic visitors: findings from the 4C-MCI study
-
COI: 1:STN:280:DC%2BC2M3pt1WrsA%3D%3D, PID: 25407094
-
Hamel R, Kohler S, Sistermans N, Koene T, Pijnenburg Y, van der Flier W, et al. The trajectory of cognitive decline in the pre-dementia phase in memory clinic visitors: findings from the 4C-MCI study. Psychol Med. 2015;45:1509–19. doi:10.1017/s0033291714002645.
-
(2015)
Psychol Med
, vol.45
, pp. 1509-1519
-
-
Hamel, R.1
Kohler, S.2
Sistermans, N.3
Koene, T.4
Pijnenburg, Y.5
van der Flier, W.6
-
6
-
-
61849113222
-
Rate of progression of mild cognitive impairment to dementia – meta-analysis of 41 robust inception cohort studies
-
COI: 1:STN:280:DC%2BD1M3gtFGhsg%3D%3D, PID: 19236314
-
Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia – meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119:252–65. doi:10.1111/j.1600-0447.2008.01326.x.
-
(2009)
Acta Psychiatr Scand
, vol.119
, pp. 252-265
-
-
Mitchell, A.J.1
Shiri-Feshki, M.2
-
7
-
-
33644784892
-
Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study
-
PID: 16520432
-
Barnes DE, Alexopoulos GS, Lopez OL, Williamson JD, Yaffe K. Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Arch Gen Psychiatry. 2006;63:273–9. doi:10.1001/archpsyc.63.3.273.
-
(2006)
Arch Gen Psychiatry
, vol.63
, pp. 273-279
-
-
Barnes, D.E.1
Alexopoulos, G.S.2
Lopez, O.L.3
Williamson, J.D.4
Yaffe, K.5
-
8
-
-
84881670522
-
Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease dementia
-
PID: 23715905
-
Arbizu J, Prieto E, Martinez-Lage P, Marti-Climent JM, Garcia-Granero M, Lamet I, et al. Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease dementia. Eur J Nucl Med Mol Imaging. 2013;40:1394–405. doi:10.1007/s00259-013-2458-z.
-
(2013)
Eur J Nucl Med Mol Imaging
, vol.40
, pp. 1394-1405
-
-
Arbizu, J.1
Prieto, E.2
Martinez-Lage, P.3
Marti-Climent, J.M.4
Garcia-Granero, M.5
Lamet, I.6
-
9
-
-
79955059574
-
Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
-
PID: 20542124
-
Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehericy S, Habert MO, et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage. 2011;56:766–81. doi:10.1016/j.neuroimage.2010.06.013.
-
(2011)
Neuroimage
, vol.56
, pp. 766-781
-
-
Cuingnet, R.1
Gerardin, E.2
Tessieras, J.3
Auzias, G.4
Lehericy, S.5
Habert, M.O.6
-
10
-
-
84911863288
-
Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer’s disease from healthy controls. A European Alzheimer’s Disease Consortium (EADC) study
-
COI: 1:STN:280:DC%2BC2MvovF2gug%3D%3D, PID: 25610765
-
Pagani M, De Carli F, Morbelli S, Oberg J, Chincarini A, Frisoni GB, et al. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer’s disease from healthy controls. A European Alzheimer’s Disease Consortium (EADC) study. Neuroimage Clin. 2015;7:34–42. doi:10.1016/j.nicl.2014.11.007.
-
(2015)
Neuroimage Clin
, vol.7
, pp. 34-42
-
-
Pagani, M.1
De Carli, F.2
Morbelli, S.3
Oberg, J.4
Chincarini, A.5
Frisoni, G.B.6
-
11
-
-
84892715790
-
Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort
-
COI: 1:CAS:528:DC%2BC2cXislKqsg%3D%3D, PID: 24121959
-
Runtti H, Mattila J, van Gils M, Koikkalainen J, Soininen H, Lotjonen J, et al. Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort. J Alzheimers Dis. 2014;39:49–61. doi:10.3233/JAD-130359.
-
(2014)
J Alzheimers Dis
, vol.39
, pp. 49-61
-
-
Runtti, H.1
Mattila, J.2
van Gils, M.3
Koikkalainen, J.4
Soininen, H.5
Lotjonen, J.6
-
12
-
-
84994589247
-
Prediction of incipient Alzheimer’s disease dementia in patients with mild cognitive impairment
-
COI: 1:CAS:528:DC%2BC28XhslOnu7nL, PID: 27662309
-
Ardekani BA, Bermudez E, Mubeen AM, Bachman AH; Alzheimer’s Disease Neuroimaging Initiative. Prediction of incipient Alzheimer’s disease dementia in patients with mild cognitive impairment. J Alzheimers Dis. 2017;55:269–81. doi:10.3233/JAD-160594.
-
(2017)
J Alzheimers Dis
, vol.55
, pp. 269-281
-
-
Ardekani, B.A.1
Bermudez, E.2
Mubeen, A.M.3
Bachman, A.H.4
-
13
-
-
84953728818
-
Optimization of statistical single subject analysis of brain FDG PET for the prognosis of mild cognitive impairment-to-Alzheimer’s disease conversion
-
COI: 1:CAS:528:DC%2BC28XjtVKrsg%3D%3D, PID: 26577523
-
Lange C, Suppa P, Frings L, Brenner W, Spies L, Buchert R. Optimization of statistical single subject analysis of brain FDG PET for the prognosis of mild cognitive impairment-to-Alzheimer’s disease conversion. J Alzheimers Dis. 2016;49:945–59. doi:10.3233/JAD-150814.
-
(2016)
J Alzheimers Dis
, vol.49
, pp. 945-959
-
-
Lange, C.1
Suppa, P.2
Frings, L.3
Brenner, W.4
Spies, L.5
Buchert, R.6
-
14
-
-
84963768460
-
Predicting progression from mild cognitive impairment to Alzheimer’s disease using longitudinal callosal atrophy
-
Lee SH, Bachman AH, Yu D, Lim J, Ardekani BA. Predicting progression from mild cognitive impairment to Alzheimer’s disease using longitudinal callosal atrophy. Alzheimers Dement (Amst). 2016;2:68–74. doi:10.1016/j.dadm.2016.01.003.
-
(2016)
Alzheimers Dement (Amst)
, vol.2
, pp. 68-74
-
-
Lee, S.H.1
Bachman, A.H.2
Yu, D.3
Lim, J.4
Ardekani, B.A.5
-
15
-
-
84873361594
-
Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers
-
PID: 23232293
-
Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE, et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology. 2013;266:583–91. doi:10.1148/radiol.12120010.
-
(2013)
Radiology
, vol.266
, pp. 583-591
-
-
Shaffer, J.L.1
Petrella, J.R.2
Sheldon, F.C.3
Choudhury, K.R.4
Calhoun, V.D.5
Coleman, R.E.6
-
16
-
-
84873733610
-
Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted PredictAD tool
-
COI: 1:CAS:528:DC%2BC3sXjtFKns7s%3D, PID: 23424625
-
Liu Y, Mattila J, Ruiz MA, Paajanen T, Koikkalainen J, van Gils M, et al. Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted PredictAD tool. PLoS One. 2013;8:e55246. doi:10.1371/journal.pone.0055246.
-
(2013)
PLoS One
, vol.8
-
-
Liu, Y.1
Mattila, J.2
Ruiz, M.A.3
Paajanen, T.4
Koikkalainen, J.5
van Gils, M.6
-
17
-
-
84879076294
-
Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment
-
PID: 24179825
-
Young J, Modat M, Cardoso MJ, Mendelson A, Cash D, Ourselin S, et al. Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neuroimage Clin. 2013;2:735–45. doi:10.1016/j.nicl.2013.05.004.
-
(2013)
Neuroimage Clin
, vol.2
, pp. 735-745
-
-
Young, J.1
Modat, M.2
Cardoso, M.J.3
Mendelson, A.4
Cash, D.5
Ourselin, S.6
-
18
-
-
84867502641
-
Enriching amnestic mild cognitive impairment populations for clinical trials: optimal combination of biomarkers to predict conversion to dementia
-
COI: 1:CAS:528:DC%2BC38XhsVyksL%2FE, PID: 22796873
-
Yu P, Dean RA, Hall SD, Qi Y, Sethuraman G, Willis BA, et al. Enriching amnestic mild cognitive impairment populations for clinical trials: optimal combination of biomarkers to predict conversion to dementia. J Alzheimers Dis. 2012;32:373–85. doi:10.3233/JAD-2012-120832.
-
(2012)
J Alzheimers Dis
, vol.32
, pp. 373-385
-
-
Yu, P.1
Dean, R.A.2
Hall, S.D.3
Qi, Y.4
Sethuraman, G.5
Willis, B.A.6
-
19
-
-
84888606928
-
Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects
-
PID: 24286024
-
Ewers M, Brendel M, Rizk-Jackson A, Rominger A, Bartenstein P, Schuff N, et al. Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects. Neuroimage Clin. 2014;4:45–52. doi:10.1016/j.nicl.2013.10.018.
-
(2014)
Neuroimage Clin
, vol.4
, pp. 45-52
-
-
Ewers, M.1
Brendel, M.2
Rizk-Jackson, A.3
Rominger, A.4
Bartenstein, P.5
Schuff, N.6
-
20
-
-
84925058025
-
Alzheimer’s disease neuroimaging I. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects
-
PID: 25312773
-
Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J. Alzheimer’s disease neuroimaging I. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage. 2015;104:398–412. doi:10.1016/j.neuroimage.2014.10.002.
-
(2015)
Neuroimage
, vol.104
, pp. 398-412
-
-
Moradi, E.1
Pepe, A.2
Gaser, C.3
Huttunen, H.4
Tohka, J.5
-
21
-
-
53549134259
-
CSF total and phosphorylated tau protein, regional glucose metabolism and dementia severity in Alzheimer’s disease
-
COI: 1:STN:280:DC%2BD1cjgslCmsQ%3D%3D, PID: 18803648
-
Haense C, Buerger K, Kalbe E, Drzezga A, Teipel SJ, Markiewicz P, et al. CSF total and phosphorylated tau protein, regional glucose metabolism and dementia severity in Alzheimer’s disease. Eur J Neurol. 2008;15:1155–62. doi:10.1111/j.1468-1331.2008.02274.x.
-
(2008)
Eur J Neurol
, vol.15
, pp. 1155-1162
-
-
Haense, C.1
Buerger, K.2
Kalbe, E.3
Drzezga, A.4
Teipel, S.J.5
Markiewicz, P.6
-
22
-
-
77952879134
-
Multi-modal imaging predicts memory performance in normal aging and cognitive decline
-
COI: 1:STN:280:DC%2BC3czjvFWrsQ%3D%3D, PID: 18838195
-
Walhovd KB, Fjell AM, Dale AM, McEvoy LK, Brewer J, Karow DS, et al. Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol Aging. 2010;31:1107–21. doi:10.1016/j.neurobiolaging.2008.08.013.
-
(2010)
Neurobiol Aging
, vol.31
, pp. 1107-1121
-
-
Walhovd, K.B.1
Fjell, A.M.2
Dale, A.M.3
McEvoy, L.K.4
Brewer, J.5
Karow, D.S.6
-
23
-
-
79953041925
-
Characterizing Alzheimer’s disease using a hypometabolic convergence index
-
COI: 1:CAS:528:DC%2BC3MXjvVOltro%3D, PID: 21276856
-
Chen K, Ayutyanont N, Langbaum JB, Fleisher AS, Reschke C, Lee W, et al. Characterizing Alzheimer’s disease using a hypometabolic convergence index. Neuroimage. 2011;56:52–60. doi:10.1016/j.neuroimage.2011.01.049.
-
(2011)
Neuroimage
, vol.56
, pp. 52-60
-
-
Chen, K.1
Ayutyanont, N.2
Langbaum, J.B.3
Fleisher, A.S.4
Reschke, C.5
Lee, W.6
-
24
-
-
84925354404
-
Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET: a multicenter study
-
PID: 25589723
-
Ito K, Fukuyama H, Senda M, Ishii K, Maeda K, Yamamoto Y, et al. Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET: a multicenter study. J Alzheimers Dis. 2015;45:543–52. doi:10.3233/JAD-141338.
-
(2015)
J Alzheimers Dis
, vol.45
, pp. 543-552
-
-
Ito, K.1
Fukuyama, H.2
Senda, M.3
Ishii, K.4
Maeda, K.5
Yamamoto, Y.6
-
25
-
-
67749101350
-
Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer’s disease
-
PID: 19477964
-
Fouquet M, Desgranges B, Landeau B, Duchesnay E, Mezenge F, de la Sayette V, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer’s disease. Brain. 2009;132:2058–67. doi:10.1093/brain/awp132.
-
(2009)
Brain
, vol.132
, pp. 2058-2067
-
-
Fouquet, M.1
Desgranges, B.2
Landeau, B.3
Duchesnay, E.4
Mezenge, F.5
de la Sayette, V.6
-
26
-
-
84982797837
-
Predicting the transition from normal aging to Alzheimer’s disease: a statistical mechanistic evaluation of FDG-PET data
-
PID: 27453158
-
Pagani M, Giuliani A, Oberg J, Chincarini A, Morbelli S, Brugnolo A, et al. Predicting the transition from normal aging to Alzheimer’s disease: a statistical mechanistic evaluation of FDG-PET data. Neuroimage. 2016;141:282–90. doi:10.1016/j.neuroimage.2016.07.043.
-
(2016)
Neuroimage
, vol.141
, pp. 282-290
-
-
Pagani, M.1
Giuliani, A.2
Oberg, J.3
Chincarini, A.4
Morbelli, S.5
Brugnolo, A.6
-
27
-
-
85021797914
-
Progressive disintegration of brain networking from normal aging to Alzheimer’s Disease. Analysis of Independent Components of 18F-FDG PET Data
-
Pagani M, Giuliani A, Ӧberg J, De Carli F, Morbelli S, Girtler N, et al. Progressive disintegration of brain networking from normal aging to Alzheimer’s Disease. Analysis of Independent Components of 18F-FDG PET Data. J Nucl Med. 2017;58:1132–1139. doi:10.2967/jnumed.116.184309.
-
(2017)
J Nucl Med
, vol.58
, pp. 1132-1139
-
-
Pagani, M.1
Giuliani, A.2
Ӧberg, J.3
De Carli, F.4
Morbelli, S.5
Girtler, N.6
-
28
-
-
38949139850
-
Mild cognitive impairment: an overview
-
PID: 18204414
-
Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr. 2008;13:45–53.
-
(2008)
CNS Spectr
, vol.13
, pp. 45-53
-
-
Petersen, R.C.1
Negash, S.2
-
29
-
-
80052400687
-
Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association
-
PID: 21778438
-
Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713. doi:10.1161/STR.0b013e3182299496.
-
(2011)
Stroke
, vol.42
, pp. 2672-2713
-
-
Gorelick, P.B.1
Scuteri, A.2
Black, S.E.3
Decarli, C.4
Greenberg, S.M.5
Iadecola, C.6
-
30
-
-
0034986196
-
A new rating scale for age-related white matter changes applicable to MRI and CT
-
COI: 1:STN:280:DC%2BD3MzhsVerug%3D%3D, PID: 11387493
-
Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32:1318–22.
-
(2001)
Stroke
, vol.32
, pp. 1318-1322
-
-
Wahlund, L.O.1
Barkhof, F.2
Fazekas, F.3
Bronge, L.4
Augustin, M.5
Sjogren, M.6
-
31
-
-
0020638387
-
Diagnostic evaluation of degenerative and vascular dementia
-
COI: 1:STN:280:DyaL2c%2FpvVOjsg%3D%3D, PID: 6658909
-
Loeb C, Gandolfo C. Diagnostic evaluation of degenerative and vascular dementia. Stroke. 1983;14:399–401.
-
(1983)
Stroke
, vol.14
, pp. 399-401
-
-
Loeb, C.1
Gandolfo, C.2
-
32
-
-
84900988440
-
Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria
-
PID: 24849862
-
Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29. doi:10.1016/s1474-4422(14)70090-0.
-
(2014)
Lancet Neurol
, vol.13
, pp. 614-629
-
-
Dubois, B.1
Feldman, H.H.2
Jacova, C.3
Hampel, H.4
Molinuevo, J.L.5
Blennow, K.6
-
33
-
-
84897027999
-
Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints
-
COI: 1:CAS:528:DC%2BC3sXhvFKgu7vK, PID: 24297504
-
Picco A, Polidori MC, Ferrara M, Cecchetti R, Arnaldi D, Baglioni M, et al. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints. Eur J Nucl Med Mol Imaging. 2014;41:764–75. doi:10.1007/s00259-013-2638-x.
-
(2014)
Eur J Nucl Med Mol Imaging
, vol.41
, pp. 764-775
-
-
Picco, A.1
Polidori, M.C.2
Ferrara, M.3
Cecchetti, R.4
Arnaldi, D.5
Baglioni, M.6
-
34
-
-
84911007865
-
A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia
-
PID: 24952892
-
Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12:575–93. doi:10.1007/s12021-014-9235-4.
-
(2014)
Neuroinformatics
, vol.12
, pp. 575-593
-
-
Della Rosa, P.A.1
Cerami, C.2
Gallivanone, F.3
Prestia, A.4
Caroli, A.5
Castiglioni, I.6
-
35
-
-
0036322886
-
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
-
COI: 1:STN:280:DC%2BD38%2FltFCntw%3D%3D, PID: 11771995
-
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. doi:10.1006/nimg.2001.0978.
-
(2002)
Neuroimage
, vol.15
, pp. 273-289
-
-
Tzourio-Mazoyer, N.1
Landeau, B.2
Papathanassiou, D.3
Crivello, F.4
Etard, O.5
Delcroix, N.6
-
36
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97. doi:10.1007/bf00994018.
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
37
-
-
0000460102
-
Interval estimation for a binomial proportion
-
Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Statist Sci. 2001;16:101–33. doi:10.1214/ss/1009213286.
-
(2001)
Statist Sci
, vol.16
, pp. 101-133
-
-
Brown, L.D.1
Cai, T.T.2
DasGupta, A.3
-
38
-
-
43949083703
-
Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test
-
Qin G, Hotilovac L. Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test. Stat Methods Med Res. 2008;17:207–21. doi:10.1177/0962280207087173.
-
(2008)
Stat Methods Med Res
, vol.17
, pp. 207-221
-
-
Qin, G.1
Hotilovac, L.2
-
39
-
-
84937529451
-
Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis
-
PID: 25988463
-
Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van Berckel BN, et al. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA. 2015;313:1939–49. doi:10.1001/jama.2015.4669.
-
(2015)
JAMA
, vol.313
, pp. 1939-1949
-
-
Ossenkoppele, R.1
Jansen, W.J.2
Rabinovici, G.D.3
Knol, D.L.4
van der Flier, W.M.5
van Berckel, B.N.6
-
40
-
-
84859406520
-
Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison
-
COI: 1:CAS:528:DC%2BC38XmvFejs70%3D, PID: 22343502
-
Caroli A, Prestia A, Chen K, Ayutyanont N, Landau SM, Madison CM, et al. Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison. J Nucl Med. 2012;53:592–600. doi:10.2967/jnumed.111.094946.
-
(2012)
J Nucl Med
, vol.53
, pp. 592-600
-
-
Caroli, A.1
Prestia, A.2
Chen, K.3
Ayutyanont, N.4
Landau, S.M.5
Madison, C.M.6
-
41
-
-
84882809044
-
Relationship between imaging biomarkers, age, progression and symptom severity in Alzheimer’s disease
-
PID: 24179852
-
Dukart J, Mueller K, Villringer A, Kherif F, Draganski B, Frackowiak R, et al. Relationship between imaging biomarkers, age, progression and symptom severity in Alzheimer’s disease. Neuroimage Clin. 2013;3:84–94. doi:10.1016/j.nicl.2013.07.005.
-
(2013)
Neuroimage Clin
, vol.3
, pp. 84-94
-
-
Dukart, J.1
Mueller, K.2
Villringer, A.3
Kherif, F.4
Draganski, B.5
Frackowiak, R.6
-
42
-
-
84892643220
-
Alzheimer’s disease risk assessment using large-scale machine learning methods
-
COI: 1:CAS:528:DC%2BC3sXhslOju7rJ, PID: 24250789
-
Casanova R, Hsu FC, Sink KM, Rapp SR, Williamson JD, Resnick SM, et al. Alzheimer’s disease risk assessment using large-scale machine learning methods. PLoS One. 2013;8:e77949. doi:10.1371/journal.pone.0077949.
-
(2013)
PLoS One
, vol.8
-
-
Casanova, R.1
Hsu, F.C.2
Sink, K.M.3
Rapp, S.R.4
Williamson, J.D.5
Resnick, S.M.6
-
43
-
-
79551576499
-
Alzheimers disease neuroimaging I. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
-
PID: 21146621
-
Hinrichs C, Singh V, Xu G, Johnson SC. Alzheimers disease neuroimaging I. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage. 2011;55:574–89. doi:10.1016/j.neuroimage.2010.10.081.
-
(2011)
Neuroimage
, vol.55
, pp. 574-589
-
-
Hinrichs, C.1
Singh, V.2
Xu, G.3
Johnson, S.C.4
-
44
-
-
84938676936
-
Multimodal prediction of conversion to Alzheimer’s disease based on incomplete biomarkers
-
Ritter K, Schumacher J, Weygandt M, Buchert R, Allefeld C, Haynes JD. Multimodal prediction of conversion to Alzheimer’s disease based on incomplete biomarkers. Alzheimers Dement (Amst). 2015;1:206–15. doi:10.1016/j.dadm.2015.01.006.
-
(2015)
Alzheimers Dement (Amst)
, vol.1
, pp. 206-215
-
-
Ritter, K.1
Schumacher, J.2
Weygandt, M.3
Buchert, R.4
Allefeld, C.5
Haynes, J.D.6
-
45
-
-
85011016443
-
FDG-PET for prediction of AD dementia in mild cognitive impairment. A review of the state of the art with particular emphasis on the comparison with other neuroimaging modalities (MRI and perfusion SPECT)
-
COI: 1:CAS:528:DC%2BC2sXht1ektbg%3D, PID: 27357645
-
Sanchez-Catasus CA, Stormezand GN, van Laar PJ, De Deyn PP, Sanchez MA, Dierckx RA. FDG-PET for prediction of AD dementia in mild cognitive impairment. A review of the state of the art with particular emphasis on the comparison with other neuroimaging modalities (MRI and perfusion SPECT). Curr Alzheimer Res. 2017;14:127–42.
-
(2017)
Curr Alzheimer Res
, vol.14
, pp. 127-142
-
-
Sanchez-Catasus, C.A.1
Stormezand, G.N.2
van Laar, P.J.3
De Deyn, P.P.4
Sanchez, M.A.5
Dierckx, R.A.6
-
46
-
-
84883619455
-
Early indications of future cognitive decline: stable versus declining controls
-
COI: 1:CAS:528:DC%2BC3sXhsVyrsLzN, PID: 24040166
-
Rizk-Jackson A, Insel P, Petersen R, Aisen P, Jack C, Weiner M. Early indications of future cognitive decline: stable versus declining controls. PLoS One. 2013;8:e74062. doi:10.1371/journal.pone.0074062.
-
(2013)
PLoS One
, vol.8
-
-
Rizk-Jackson, A.1
Insel, P.2
Petersen, R.3
Aisen, P.4
Jack, C.5
Weiner, M.6
-
47
-
-
77954680712
-
A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up
-
PID: 20392973
-
Scola E, Bozzali M, Agosta F, Magnani G, Franceschi M, Sormani MP, et al. A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up. J Neurol Neurosurg Psychiatry. 2010;81:798–805. doi:10.1136/jnnp.2009.189639.
-
(2010)
J Neurol Neurosurg Psychiatry
, vol.81
, pp. 798-805
-
-
Scola, E.1
Bozzali, M.2
Agosta, F.3
Magnani, G.4
Franceschi, M.5
Sormani, M.P.6
-
48
-
-
84974623132
-
Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features
-
PID: 27148045
-
Wei R, Li C, Fogelson N, Li L. Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features. Front Aging Neurosci. 2016;8:76. doi:10.3389/fnagi.2016.00076.
-
(2016)
Front Aging Neurosci
, vol.8
, pp. 76
-
-
Wei, R.1
Li, C.2
Fogelson, N.3
Li, L.4
-
49
-
-
67651171190
-
Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients
-
PID: 19463961
-
Schroeter ML, Stein T, Maslowski N, Neumann J. Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. Neuroimage. 2009;47:1196–206. doi:10.1016/j.neuroimage.2009.05.037.
-
(2009)
Neuroimage
, vol.47
, pp. 1196-1206
-
-
Schroeter, M.L.1
Stein, T.2
Maslowski, N.3
Neumann, J.4
-
50
-
-
84933532290
-
The relative importance of imaging markers for the prediction of Alzheimer’s disease dementia in mild cognitive impairment – beyond classical regression
-
PID: 26199870
-
Teipel SJ, Kurth J, Krause B, Grothe MJ; Alzheimer’s Disease Neuroimaging Initiative. The relative importance of imaging markers for the prediction of Alzheimer’s disease dementia in mild cognitive impairment – beyond classical regression. Neuroimage Clin. 2015;8:583–93. doi:10.1016/j.nicl.2015.05.006.
-
(2015)
Neuroimage Clin
, vol.8
, pp. 583-593
-
-
Teipel, S.J.1
Kurth, J.2
Krause, B.3
Grothe, M.J.4
-
51
-
-
84964059164
-
Hypometabolism in brain of cognitively normal patients with depressive symptoms is accompanied by atrophy-related partial volume effects
-
COI: 1:CAS:528:DC%2BC28Xlt1KhtL0%3D, PID: 26971944
-
Brendel M, Reinisch V, Kalinowski E, Levin J, Delker A, Darr S, et al. Hypometabolism in brain of cognitively normal patients with depressive symptoms is accompanied by atrophy-related partial volume effects. Curr Alzheimer Res. 2016;13:475–86.
-
(2016)
Curr Alzheimer Res
, vol.13
, pp. 475-486
-
-
Brendel, M.1
Reinisch, V.2
Kalinowski, E.3
Levin, J.4
Delker, A.5
Darr, S.6
-
52
-
-
67650709050
-
Subcortical vascular versus amnestic mild cognitive impairment: comparison of cerebral glucose metabolism
-
PID: 19021838
-
Seo SW, Cho SS, Park A, Chin J, Na DL. Subcortical vascular versus amnestic mild cognitive impairment: comparison of cerebral glucose metabolism. J Neuroimaging. 2009;19:213–9. doi:10.1111/j.1552-6569.2008.00292.x.
-
(2009)
J Neuroimaging
, vol.19
, pp. 213-219
-
-
Seo, S.W.1
Cho, S.S.2
Park, A.3
Chin, J.4
Na, D.L.5
-
53
-
-
77951965415
-
Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer’s Disease Neuroimaging Initiative
-
PID: 20202480
-
Chen K, Langbaum JB, Fleisher AS, Ayutyanont N, Reschke C, Lee W, et al. Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer’s Disease Neuroimaging Initiative. Neuroimage. 2010;51:654–64. doi:10.1016/j.neuroimage.2010.02.064.
-
(2010)
Neuroimage
, vol.51
, pp. 654-664
-
-
Chen, K.1
Langbaum, J.B.2
Fleisher, A.S.3
Ayutyanont, N.4
Reschke, C.5
Lee, W.6
-
54
-
-
84881287638
-
Imaging markers for Alzheimer disease: which vs how
-
COI: 1:CAS:528:DC%2BC3sXht1SksbvI, PID: 23897875
-
Frisoni GB, Bocchetta M, Chetelat G, Rabinovici GD, de Leon MJ, Kaye J, et al. Imaging markers for Alzheimer disease: which vs how. Neurology. 2013;81:487–500. doi:10.1212/WNL.0b013e31829d86e8.
-
(2013)
Neurology
, vol.81
, pp. 487-500
-
-
Frisoni, G.B.1
Bocchetta, M.2
Chetelat, G.3
Rabinovici, G.D.4
de Leon, M.J.5
Kaye, J.6
-
55
-
-
85015651911
-
Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework
-
COI: 1:CAS:528:DC%2BC2sXks1Snt7k%3D, PID: 28317648
-
Garibotto V, Herholz K, Boccardi M, Picco A, Varrone A, Nordberg A, et al. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:183–195. doi:10.1016/j.neurobiolaging.2016.03.033
-
(2017)
Neurobiol Aging
, vol.52
, pp. 183-195
-
-
Garibotto, V.1
Herholz, K.2
Boccardi, M.3
Picco, A.4
Varrone, A.5
Nordberg, A.6
|