메뉴 건너뛰기




Volumn 44, Issue 12, 2017, Pages 2042-2052

Early identification of MCI converting to AD: a FDG PET study

Author keywords

Alzheimer s disease; Conversion to AD; Mild cognitive impairment; Positron emission tomography; Support vector machine; Volume of interest analysis

Indexed keywords

FLUORODEOXYGLUCOSE F 18;

EID: 85021743688     PISSN: 16197070     EISSN: 16197089     Source Type: Journal    
DOI: 10.1007/s00259-017-3761-x     Document Type: Article
Times cited : (94)

References (55)
  • 1
    • 80053654021 scopus 로고    scopus 로고
    • Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification
    • Davatzikos C, Bhatt P, Shaw LM, Batmanghelich KN, Trojanowski JQ. Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiol Aging. 2011;32:2322.e19–e27. doi:10.1016/j.neurobiolaging.2010.05.023.
    • (2011) Neurobiol Aging , vol.32 , pp. 2322.e19-2322.e27
    • Davatzikos, C.1    Bhatt, P.2    Shaw, L.M.3    Batmanghelich, K.N.4    Trojanowski, J.Q.5
  • 2
    • 77954981027 scopus 로고    scopus 로고
    • Comparing predictors of conversion and decline in mild cognitive impairment
    • COI: 1:STN:280:DC%2BC3cnps1ylsA%3D%3D, PID: 20592257
    • Landau SM, Harvey D, Madison CM, Reiman EM, Foster NL, Aisen PS, et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology. 2010;75:230–8. doi:10.1212/WNL.0b013e3181e8e8b8.
    • (2010) Neurology , vol.75 , pp. 230-238
    • Landau, S.M.1    Harvey, D.2    Madison, C.M.3    Reiman, E.M.4    Foster, N.L.5    Aisen, P.S.6
  • 4
    • 77953963850 scopus 로고    scopus 로고
    • MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings
    • COI: 1:CAS:528:DC%2BC3cXmvFaisr4%3D, PID: 19939228
    • Pagani M, Dessi B, Morbelli S, Brugnolo A, Salmaso D, Piccini A, et al. MCI patients declining and not-declining at mid-term follow-up: FDG-PET findings. Curr Alzheimer Res. 2010;7:287–94.
    • (2010) Curr Alzheimer Res , vol.7 , pp. 287-294
    • Pagani, M.1    Dessi, B.2    Morbelli, S.3    Brugnolo, A.4    Salmaso, D.5    Piccini, A.6
  • 5
    • 84925847920 scopus 로고    scopus 로고
    • The trajectory of cognitive decline in the pre-dementia phase in memory clinic visitors: findings from the 4C-MCI study
    • COI: 1:STN:280:DC%2BC2M3pt1WrsA%3D%3D, PID: 25407094
    • Hamel R, Kohler S, Sistermans N, Koene T, Pijnenburg Y, van der Flier W, et al. The trajectory of cognitive decline in the pre-dementia phase in memory clinic visitors: findings from the 4C-MCI study. Psychol Med. 2015;45:1509–19. doi:10.1017/s0033291714002645.
    • (2015) Psychol Med , vol.45 , pp. 1509-1519
    • Hamel, R.1    Kohler, S.2    Sistermans, N.3    Koene, T.4    Pijnenburg, Y.5    van der Flier, W.6
  • 6
    • 61849113222 scopus 로고    scopus 로고
    • Rate of progression of mild cognitive impairment to dementia – meta-analysis of 41 robust inception cohort studies
    • COI: 1:STN:280:DC%2BD1M3gtFGhsg%3D%3D, PID: 19236314
    • Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia – meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119:252–65. doi:10.1111/j.1600-0447.2008.01326.x.
    • (2009) Acta Psychiatr Scand , vol.119 , pp. 252-265
    • Mitchell, A.J.1    Shiri-Feshki, M.2
  • 7
    • 33644784892 scopus 로고    scopus 로고
    • Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study
    • PID: 16520432
    • Barnes DE, Alexopoulos GS, Lopez OL, Williamson JD, Yaffe K. Depressive symptoms, vascular disease, and mild cognitive impairment: findings from the Cardiovascular Health Study. Arch Gen Psychiatry. 2006;63:273–9. doi:10.1001/archpsyc.63.3.273.
    • (2006) Arch Gen Psychiatry , vol.63 , pp. 273-279
    • Barnes, D.E.1    Alexopoulos, G.S.2    Lopez, O.L.3    Williamson, J.D.4    Yaffe, K.5
  • 8
    • 84881670522 scopus 로고    scopus 로고
    • Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease dementia
    • PID: 23715905
    • Arbizu J, Prieto E, Martinez-Lage P, Marti-Climent JM, Garcia-Granero M, Lamet I, et al. Automated analysis of FDG PET as a tool for single-subject probabilistic prediction and detection of Alzheimer’s disease dementia. Eur J Nucl Med Mol Imaging. 2013;40:1394–405. doi:10.1007/s00259-013-2458-z.
    • (2013) Eur J Nucl Med Mol Imaging , vol.40 , pp. 1394-1405
    • Arbizu, J.1    Prieto, E.2    Martinez-Lage, P.3    Marti-Climent, J.M.4    Garcia-Granero, M.5    Lamet, I.6
  • 9
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database
    • PID: 20542124
    • Cuingnet R, Gerardin E, Tessieras J, Auzias G, Lehericy S, Habert MO, et al. Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage. 2011;56:766–81. doi:10.1016/j.neuroimage.2010.06.013.
    • (2011) Neuroimage , vol.56 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehericy, S.5    Habert, M.O.6
  • 10
    • 84911863288 scopus 로고    scopus 로고
    • Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer’s disease from healthy controls. A European Alzheimer’s Disease Consortium (EADC) study
    • COI: 1:STN:280:DC%2BC2MvovF2gug%3D%3D, PID: 25610765
    • Pagani M, De Carli F, Morbelli S, Oberg J, Chincarini A, Frisoni GB, et al. Volume of interest-based [18F]fluorodeoxyglucose PET discriminates MCI converting to Alzheimer’s disease from healthy controls. A European Alzheimer’s Disease Consortium (EADC) study. Neuroimage Clin. 2015;7:34–42. doi:10.1016/j.nicl.2014.11.007.
    • (2015) Neuroimage Clin , vol.7 , pp. 34-42
    • Pagani, M.1    De Carli, F.2    Morbelli, S.3    Oberg, J.4    Chincarini, A.5    Frisoni, G.B.6
  • 11
    • 84892715790 scopus 로고    scopus 로고
    • Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort
    • COI: 1:CAS:528:DC%2BC2cXislKqsg%3D%3D, PID: 24121959
    • Runtti H, Mattila J, van Gils M, Koikkalainen J, Soininen H, Lotjonen J, et al. Quantitative evaluation of disease progression in a longitudinal mild cognitive impairment cohort. J Alzheimers Dis. 2014;39:49–61. doi:10.3233/JAD-130359.
    • (2014) J Alzheimers Dis , vol.39 , pp. 49-61
    • Runtti, H.1    Mattila, J.2    van Gils, M.3    Koikkalainen, J.4    Soininen, H.5    Lotjonen, J.6
  • 12
    • 84994589247 scopus 로고    scopus 로고
    • Prediction of incipient Alzheimer’s disease dementia in patients with mild cognitive impairment
    • COI: 1:CAS:528:DC%2BC28XhslOnu7nL, PID: 27662309
    • Ardekani BA, Bermudez E, Mubeen AM, Bachman AH; Alzheimer’s Disease Neuroimaging Initiative. Prediction of incipient Alzheimer’s disease dementia in patients with mild cognitive impairment. J Alzheimers Dis. 2017;55:269–81. doi:10.3233/JAD-160594.
    • (2017) J Alzheimers Dis , vol.55 , pp. 269-281
    • Ardekani, B.A.1    Bermudez, E.2    Mubeen, A.M.3    Bachman, A.H.4
  • 13
    • 84953728818 scopus 로고    scopus 로고
    • Optimization of statistical single subject analysis of brain FDG PET for the prognosis of mild cognitive impairment-to-Alzheimer’s disease conversion
    • COI: 1:CAS:528:DC%2BC28XjtVKrsg%3D%3D, PID: 26577523
    • Lange C, Suppa P, Frings L, Brenner W, Spies L, Buchert R. Optimization of statistical single subject analysis of brain FDG PET for the prognosis of mild cognitive impairment-to-Alzheimer’s disease conversion. J Alzheimers Dis. 2016;49:945–59. doi:10.3233/JAD-150814.
    • (2016) J Alzheimers Dis , vol.49 , pp. 945-959
    • Lange, C.1    Suppa, P.2    Frings, L.3    Brenner, W.4    Spies, L.5    Buchert, R.6
  • 14
    • 84963768460 scopus 로고    scopus 로고
    • Predicting progression from mild cognitive impairment to Alzheimer’s disease using longitudinal callosal atrophy
    • Lee SH, Bachman AH, Yu D, Lim J, Ardekani BA. Predicting progression from mild cognitive impairment to Alzheimer’s disease using longitudinal callosal atrophy. Alzheimers Dement (Amst). 2016;2:68–74. doi:10.1016/j.dadm.2016.01.003.
    • (2016) Alzheimers Dement (Amst) , vol.2 , pp. 68-74
    • Lee, S.H.1    Bachman, A.H.2    Yu, D.3    Lim, J.4    Ardekani, B.A.5
  • 15
    • 84873361594 scopus 로고    scopus 로고
    • Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers
    • PID: 23232293
    • Shaffer JL, Petrella JR, Sheldon FC, Choudhury KR, Calhoun VD, Coleman RE, et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology. 2013;266:583–91. doi:10.1148/radiol.12120010.
    • (2013) Radiology , vol.266 , pp. 583-591
    • Shaffer, J.L.1    Petrella, J.R.2    Sheldon, F.C.3    Choudhury, K.R.4    Calhoun, V.D.5    Coleman, R.E.6
  • 16
    • 84873733610 scopus 로고    scopus 로고
    • Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted PredictAD tool
    • COI: 1:CAS:528:DC%2BC3sXjtFKns7s%3D, PID: 23424625
    • Liu Y, Mattila J, Ruiz MA, Paajanen T, Koikkalainen J, van Gils M, et al. Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted PredictAD tool. PLoS One. 2013;8:e55246. doi:10.1371/journal.pone.0055246.
    • (2013) PLoS One , vol.8
    • Liu, Y.1    Mattila, J.2    Ruiz, M.A.3    Paajanen, T.4    Koikkalainen, J.5    van Gils, M.6
  • 17
    • 84879076294 scopus 로고    scopus 로고
    • Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment
    • PID: 24179825
    • Young J, Modat M, Cardoso MJ, Mendelson A, Cash D, Ourselin S, et al. Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neuroimage Clin. 2013;2:735–45. doi:10.1016/j.nicl.2013.05.004.
    • (2013) Neuroimage Clin , vol.2 , pp. 735-745
    • Young, J.1    Modat, M.2    Cardoso, M.J.3    Mendelson, A.4    Cash, D.5    Ourselin, S.6
  • 18
    • 84867502641 scopus 로고    scopus 로고
    • Enriching amnestic mild cognitive impairment populations for clinical trials: optimal combination of biomarkers to predict conversion to dementia
    • COI: 1:CAS:528:DC%2BC38XhsVyksL%2FE, PID: 22796873
    • Yu P, Dean RA, Hall SD, Qi Y, Sethuraman G, Willis BA, et al. Enriching amnestic mild cognitive impairment populations for clinical trials: optimal combination of biomarkers to predict conversion to dementia. J Alzheimers Dis. 2012;32:373–85. doi:10.3233/JAD-2012-120832.
    • (2012) J Alzheimers Dis , vol.32 , pp. 373-385
    • Yu, P.1    Dean, R.A.2    Hall, S.D.3    Qi, Y.4    Sethuraman, G.5    Willis, B.A.6
  • 19
    • 84888606928 scopus 로고    scopus 로고
    • Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects
    • PID: 24286024
    • Ewers M, Brendel M, Rizk-Jackson A, Rominger A, Bartenstein P, Schuff N, et al. Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects. Neuroimage Clin. 2014;4:45–52. doi:10.1016/j.nicl.2013.10.018.
    • (2014) Neuroimage Clin , vol.4 , pp. 45-52
    • Ewers, M.1    Brendel, M.2    Rizk-Jackson, A.3    Rominger, A.4    Bartenstein, P.5    Schuff, N.6
  • 20
    • 84925058025 scopus 로고    scopus 로고
    • Alzheimer’s disease neuroimaging I. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects
    • PID: 25312773
    • Moradi E, Pepe A, Gaser C, Huttunen H, Tohka J. Alzheimer’s disease neuroimaging I. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage. 2015;104:398–412. doi:10.1016/j.neuroimage.2014.10.002.
    • (2015) Neuroimage , vol.104 , pp. 398-412
    • Moradi, E.1    Pepe, A.2    Gaser, C.3    Huttunen, H.4    Tohka, J.5
  • 21
    • 53549134259 scopus 로고    scopus 로고
    • CSF total and phosphorylated tau protein, regional glucose metabolism and dementia severity in Alzheimer’s disease
    • COI: 1:STN:280:DC%2BD1cjgslCmsQ%3D%3D, PID: 18803648
    • Haense C, Buerger K, Kalbe E, Drzezga A, Teipel SJ, Markiewicz P, et al. CSF total and phosphorylated tau protein, regional glucose metabolism and dementia severity in Alzheimer’s disease. Eur J Neurol. 2008;15:1155–62. doi:10.1111/j.1468-1331.2008.02274.x.
    • (2008) Eur J Neurol , vol.15 , pp. 1155-1162
    • Haense, C.1    Buerger, K.2    Kalbe, E.3    Drzezga, A.4    Teipel, S.J.5    Markiewicz, P.6
  • 22
    • 77952879134 scopus 로고    scopus 로고
    • Multi-modal imaging predicts memory performance in normal aging and cognitive decline
    • COI: 1:STN:280:DC%2BC3czjvFWrsQ%3D%3D, PID: 18838195
    • Walhovd KB, Fjell AM, Dale AM, McEvoy LK, Brewer J, Karow DS, et al. Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiol Aging. 2010;31:1107–21. doi:10.1016/j.neurobiolaging.2008.08.013.
    • (2010) Neurobiol Aging , vol.31 , pp. 1107-1121
    • Walhovd, K.B.1    Fjell, A.M.2    Dale, A.M.3    McEvoy, L.K.4    Brewer, J.5    Karow, D.S.6
  • 23
    • 79953041925 scopus 로고    scopus 로고
    • Characterizing Alzheimer’s disease using a hypometabolic convergence index
    • COI: 1:CAS:528:DC%2BC3MXjvVOltro%3D, PID: 21276856
    • Chen K, Ayutyanont N, Langbaum JB, Fleisher AS, Reschke C, Lee W, et al. Characterizing Alzheimer’s disease using a hypometabolic convergence index. Neuroimage. 2011;56:52–60. doi:10.1016/j.neuroimage.2011.01.049.
    • (2011) Neuroimage , vol.56 , pp. 52-60
    • Chen, K.1    Ayutyanont, N.2    Langbaum, J.B.3    Fleisher, A.S.4    Reschke, C.5    Lee, W.6
  • 24
    • 84925354404 scopus 로고    scopus 로고
    • Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET: a multicenter study
    • PID: 25589723
    • Ito K, Fukuyama H, Senda M, Ishii K, Maeda K, Yamamoto Y, et al. Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET: a multicenter study. J Alzheimers Dis. 2015;45:543–52. doi:10.3233/JAD-141338.
    • (2015) J Alzheimers Dis , vol.45 , pp. 543-552
    • Ito, K.1    Fukuyama, H.2    Senda, M.3    Ishii, K.4    Maeda, K.5    Yamamoto, Y.6
  • 25
    • 67749101350 scopus 로고    scopus 로고
    • Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer’s disease
    • PID: 19477964
    • Fouquet M, Desgranges B, Landeau B, Duchesnay E, Mezenge F, de la Sayette V, et al. Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer’s disease. Brain. 2009;132:2058–67. doi:10.1093/brain/awp132.
    • (2009) Brain , vol.132 , pp. 2058-2067
    • Fouquet, M.1    Desgranges, B.2    Landeau, B.3    Duchesnay, E.4    Mezenge, F.5    de la Sayette, V.6
  • 26
    • 84982797837 scopus 로고    scopus 로고
    • Predicting the transition from normal aging to Alzheimer’s disease: a statistical mechanistic evaluation of FDG-PET data
    • PID: 27453158
    • Pagani M, Giuliani A, Oberg J, Chincarini A, Morbelli S, Brugnolo A, et al. Predicting the transition from normal aging to Alzheimer’s disease: a statistical mechanistic evaluation of FDG-PET data. Neuroimage. 2016;141:282–90. doi:10.1016/j.neuroimage.2016.07.043.
    • (2016) Neuroimage , vol.141 , pp. 282-290
    • Pagani, M.1    Giuliani, A.2    Oberg, J.3    Chincarini, A.4    Morbelli, S.5    Brugnolo, A.6
  • 27
    • 85021797914 scopus 로고    scopus 로고
    • Progressive disintegration of brain networking from normal aging to Alzheimer’s Disease. Analysis of Independent Components of 18F-FDG PET Data
    • Pagani M, Giuliani A, Ӧberg J, De Carli F, Morbelli S, Girtler N, et al. Progressive disintegration of brain networking from normal aging to Alzheimer’s Disease. Analysis of Independent Components of 18F-FDG PET Data. J Nucl Med. 2017;58:1132–1139. doi:10.2967/jnumed.116.184309.
    • (2017) J Nucl Med , vol.58 , pp. 1132-1139
    • Pagani, M.1    Giuliani, A.2    Ӧberg, J.3    De Carli, F.4    Morbelli, S.5    Girtler, N.6
  • 28
    • 38949139850 scopus 로고    scopus 로고
    • Mild cognitive impairment: an overview
    • PID: 18204414
    • Petersen RC, Negash S. Mild cognitive impairment: an overview. CNS Spectr. 2008;13:45–53.
    • (2008) CNS Spectr , vol.13 , pp. 45-53
    • Petersen, R.C.1    Negash, S.2
  • 29
    • 80052400687 scopus 로고    scopus 로고
    • Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association
    • PID: 21778438
    • Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM, Iadecola C, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42:2672–713. doi:10.1161/STR.0b013e3182299496.
    • (2011) Stroke , vol.42 , pp. 2672-2713
    • Gorelick, P.B.1    Scuteri, A.2    Black, S.E.3    Decarli, C.4    Greenberg, S.M.5    Iadecola, C.6
  • 30
    • 0034986196 scopus 로고    scopus 로고
    • A new rating scale for age-related white matter changes applicable to MRI and CT
    • COI: 1:STN:280:DC%2BD3MzhsVerug%3D%3D, PID: 11387493
    • Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjogren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32:1318–22.
    • (2001) Stroke , vol.32 , pp. 1318-1322
    • Wahlund, L.O.1    Barkhof, F.2    Fazekas, F.3    Bronge, L.4    Augustin, M.5    Sjogren, M.6
  • 31
    • 0020638387 scopus 로고
    • Diagnostic evaluation of degenerative and vascular dementia
    • COI: 1:STN:280:DyaL2c%2FpvVOjsg%3D%3D, PID: 6658909
    • Loeb C, Gandolfo C. Diagnostic evaluation of degenerative and vascular dementia. Stroke. 1983;14:399–401.
    • (1983) Stroke , vol.14 , pp. 399-401
    • Loeb, C.1    Gandolfo, C.2
  • 32
    • 84900988440 scopus 로고    scopus 로고
    • Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria
    • PID: 24849862
    • Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL, Blennow K, et al. Advancing research diagnostic criteria for Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol. 2014;13:614–29. doi:10.1016/s1474-4422(14)70090-0.
    • (2014) Lancet Neurol , vol.13 , pp. 614-629
    • Dubois, B.1    Feldman, H.H.2    Jacova, C.3    Hampel, H.4    Molinuevo, J.L.5    Blennow, K.6
  • 33
    • 84897027999 scopus 로고    scopus 로고
    • Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints
    • COI: 1:CAS:528:DC%2BC3sXhvFKgu7vK, PID: 24297504
    • Picco A, Polidori MC, Ferrara M, Cecchetti R, Arnaldi D, Baglioni M, et al. Plasma antioxidants and brain glucose metabolism in elderly subjects with cognitive complaints. Eur J Nucl Med Mol Imaging. 2014;41:764–75. doi:10.1007/s00259-013-2638-x.
    • (2014) Eur J Nucl Med Mol Imaging , vol.41 , pp. 764-775
    • Picco, A.1    Polidori, M.C.2    Ferrara, M.3    Cecchetti, R.4    Arnaldi, D.5    Baglioni, M.6
  • 34
    • 84911007865 scopus 로고    scopus 로고
    • A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia
    • PID: 24952892
    • Della Rosa PA, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, et al. A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12:575–93. doi:10.1007/s12021-014-9235-4.
    • (2014) Neuroinformatics , vol.12 , pp. 575-593
    • Della Rosa, P.A.1    Cerami, C.2    Gallivanone, F.3    Prestia, A.4    Caroli, A.5    Castiglioni, I.6
  • 35
    • 0036322886 scopus 로고    scopus 로고
    • Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain
    • COI: 1:STN:280:DC%2BD38%2FltFCntw%3D%3D, PID: 11771995
    • Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89. doi:10.1006/nimg.2001.0978.
    • (2002) Neuroimage , vol.15 , pp. 273-289
    • Tzourio-Mazoyer, N.1    Landeau, B.2    Papathanassiou, D.3    Crivello, F.4    Etard, O.5    Delcroix, N.6
  • 36
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–97. doi:10.1007/bf00994018.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 37
    • 0000460102 scopus 로고    scopus 로고
    • Interval estimation for a binomial proportion
    • Brown LD, Cai TT, DasGupta A. Interval estimation for a binomial proportion. Statist Sci. 2001;16:101–33. doi:10.1214/ss/1009213286.
    • (2001) Statist Sci , vol.16 , pp. 101-133
    • Brown, L.D.1    Cai, T.T.2    DasGupta, A.3
  • 38
    • 43949083703 scopus 로고    scopus 로고
    • Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test
    • Qin G, Hotilovac L. Comparison of non-parametric confidence intervals for the area under the ROC curve of a continuous-scale diagnostic test. Stat Methods Med Res. 2008;17:207–21. doi:10.1177/0962280207087173.
    • (2008) Stat Methods Med Res , vol.17 , pp. 207-221
    • Qin, G.1    Hotilovac, L.2
  • 40
    • 84859406520 scopus 로고    scopus 로고
    • Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison
    • COI: 1:CAS:528:DC%2BC38XmvFejs70%3D, PID: 22343502
    • Caroli A, Prestia A, Chen K, Ayutyanont N, Landau SM, Madison CM, et al. Summary metrics to assess Alzheimer disease-related hypometabolic pattern with 18F-FDG PET: head-to-head comparison. J Nucl Med. 2012;53:592–600. doi:10.2967/jnumed.111.094946.
    • (2012) J Nucl Med , vol.53 , pp. 592-600
    • Caroli, A.1    Prestia, A.2    Chen, K.3    Ayutyanont, N.4    Landau, S.M.5    Madison, C.M.6
  • 41
    • 84882809044 scopus 로고    scopus 로고
    • Relationship between imaging biomarkers, age, progression and symptom severity in Alzheimer’s disease
    • PID: 24179852
    • Dukart J, Mueller K, Villringer A, Kherif F, Draganski B, Frackowiak R, et al. Relationship between imaging biomarkers, age, progression and symptom severity in Alzheimer’s disease. Neuroimage Clin. 2013;3:84–94. doi:10.1016/j.nicl.2013.07.005.
    • (2013) Neuroimage Clin , vol.3 , pp. 84-94
    • Dukart, J.1    Mueller, K.2    Villringer, A.3    Kherif, F.4    Draganski, B.5    Frackowiak, R.6
  • 42
    • 84892643220 scopus 로고    scopus 로고
    • Alzheimer’s disease risk assessment using large-scale machine learning methods
    • COI: 1:CAS:528:DC%2BC3sXhslOju7rJ, PID: 24250789
    • Casanova R, Hsu FC, Sink KM, Rapp SR, Williamson JD, Resnick SM, et al. Alzheimer’s disease risk assessment using large-scale machine learning methods. PLoS One. 2013;8:e77949. doi:10.1371/journal.pone.0077949.
    • (2013) PLoS One , vol.8
    • Casanova, R.1    Hsu, F.C.2    Sink, K.M.3    Rapp, S.R.4    Williamson, J.D.5    Resnick, S.M.6
  • 43
    • 79551576499 scopus 로고    scopus 로고
    • Alzheimers disease neuroimaging I. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
    • PID: 21146621
    • Hinrichs C, Singh V, Xu G, Johnson SC. Alzheimers disease neuroimaging I. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage. 2011;55:574–89. doi:10.1016/j.neuroimage.2010.10.081.
    • (2011) Neuroimage , vol.55 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3    Johnson, S.C.4
  • 45
    • 85011016443 scopus 로고    scopus 로고
    • FDG-PET for prediction of AD dementia in mild cognitive impairment. A review of the state of the art with particular emphasis on the comparison with other neuroimaging modalities (MRI and perfusion SPECT)
    • COI: 1:CAS:528:DC%2BC2sXht1ektbg%3D, PID: 27357645
    • Sanchez-Catasus CA, Stormezand GN, van Laar PJ, De Deyn PP, Sanchez MA, Dierckx RA. FDG-PET for prediction of AD dementia in mild cognitive impairment. A review of the state of the art with particular emphasis on the comparison with other neuroimaging modalities (MRI and perfusion SPECT). Curr Alzheimer Res. 2017;14:127–42.
    • (2017) Curr Alzheimer Res , vol.14 , pp. 127-142
    • Sanchez-Catasus, C.A.1    Stormezand, G.N.2    van Laar, P.J.3    De Deyn, P.P.4    Sanchez, M.A.5    Dierckx, R.A.6
  • 46
    • 84883619455 scopus 로고    scopus 로고
    • Early indications of future cognitive decline: stable versus declining controls
    • COI: 1:CAS:528:DC%2BC3sXhsVyrsLzN, PID: 24040166
    • Rizk-Jackson A, Insel P, Petersen R, Aisen P, Jack C, Weiner M. Early indications of future cognitive decline: stable versus declining controls. PLoS One. 2013;8:e74062. doi:10.1371/journal.pone.0074062.
    • (2013) PLoS One , vol.8
    • Rizk-Jackson, A.1    Insel, P.2    Petersen, R.3    Aisen, P.4    Jack, C.5    Weiner, M.6
  • 47
    • 77954680712 scopus 로고    scopus 로고
    • A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up
    • PID: 20392973
    • Scola E, Bozzali M, Agosta F, Magnani G, Franceschi M, Sormani MP, et al. A diffusion tensor MRI study of patients with MCI and AD with a 2-year clinical follow-up. J Neurol Neurosurg Psychiatry. 2010;81:798–805. doi:10.1136/jnnp.2009.189639.
    • (2010) J Neurol Neurosurg Psychiatry , vol.81 , pp. 798-805
    • Scola, E.1    Bozzali, M.2    Agosta, F.3    Magnani, G.4    Franceschi, M.5    Sormani, M.P.6
  • 48
    • 84974623132 scopus 로고    scopus 로고
    • Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features
    • PID: 27148045
    • Wei R, Li C, Fogelson N, Li L. Prediction of conversion from mild cognitive impairment to Alzheimer’s disease using MRI and structural network features. Front Aging Neurosci. 2016;8:76. doi:10.3389/fnagi.2016.00076.
    • (2016) Front Aging Neurosci , vol.8 , pp. 76
    • Wei, R.1    Li, C.2    Fogelson, N.3    Li, L.4
  • 49
    • 67651171190 scopus 로고    scopus 로고
    • Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients
    • PID: 19463961
    • Schroeter ML, Stein T, Maslowski N, Neumann J. Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. Neuroimage. 2009;47:1196–206. doi:10.1016/j.neuroimage.2009.05.037.
    • (2009) Neuroimage , vol.47 , pp. 1196-1206
    • Schroeter, M.L.1    Stein, T.2    Maslowski, N.3    Neumann, J.4
  • 50
    • 84933532290 scopus 로고    scopus 로고
    • The relative importance of imaging markers for the prediction of Alzheimer’s disease dementia in mild cognitive impairment – beyond classical regression
    • PID: 26199870
    • Teipel SJ, Kurth J, Krause B, Grothe MJ; Alzheimer’s Disease Neuroimaging Initiative. The relative importance of imaging markers for the prediction of Alzheimer’s disease dementia in mild cognitive impairment – beyond classical regression. Neuroimage Clin. 2015;8:583–93. doi:10.1016/j.nicl.2015.05.006.
    • (2015) Neuroimage Clin , vol.8 , pp. 583-593
    • Teipel, S.J.1    Kurth, J.2    Krause, B.3    Grothe, M.J.4
  • 51
    • 84964059164 scopus 로고    scopus 로고
    • Hypometabolism in brain of cognitively normal patients with depressive symptoms is accompanied by atrophy-related partial volume effects
    • COI: 1:CAS:528:DC%2BC28Xlt1KhtL0%3D, PID: 26971944
    • Brendel M, Reinisch V, Kalinowski E, Levin J, Delker A, Darr S, et al. Hypometabolism in brain of cognitively normal patients with depressive symptoms is accompanied by atrophy-related partial volume effects. Curr Alzheimer Res. 2016;13:475–86.
    • (2016) Curr Alzheimer Res , vol.13 , pp. 475-486
    • Brendel, M.1    Reinisch, V.2    Kalinowski, E.3    Levin, J.4    Delker, A.5    Darr, S.6
  • 52
    • 67650709050 scopus 로고    scopus 로고
    • Subcortical vascular versus amnestic mild cognitive impairment: comparison of cerebral glucose metabolism
    • PID: 19021838
    • Seo SW, Cho SS, Park A, Chin J, Na DL. Subcortical vascular versus amnestic mild cognitive impairment: comparison of cerebral glucose metabolism. J Neuroimaging. 2009;19:213–9. doi:10.1111/j.1552-6569.2008.00292.x.
    • (2009) J Neuroimaging , vol.19 , pp. 213-219
    • Seo, S.W.1    Cho, S.S.2    Park, A.3    Chin, J.4    Na, D.L.5
  • 53
    • 77951965415 scopus 로고    scopus 로고
    • Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer’s Disease Neuroimaging Initiative
    • PID: 20202480
    • Chen K, Langbaum JB, Fleisher AS, Ayutyanont N, Reschke C, Lee W, et al. Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: findings from the Alzheimer’s Disease Neuroimaging Initiative. Neuroimage. 2010;51:654–64. doi:10.1016/j.neuroimage.2010.02.064.
    • (2010) Neuroimage , vol.51 , pp. 654-664
    • Chen, K.1    Langbaum, J.B.2    Fleisher, A.S.3    Ayutyanont, N.4    Reschke, C.5    Lee, W.6
  • 54
    • 84881287638 scopus 로고    scopus 로고
    • Imaging markers for Alzheimer disease: which vs how
    • COI: 1:CAS:528:DC%2BC3sXht1SksbvI, PID: 23897875
    • Frisoni GB, Bocchetta M, Chetelat G, Rabinovici GD, de Leon MJ, Kaye J, et al. Imaging markers for Alzheimer disease: which vs how. Neurology. 2013;81:487–500. doi:10.1212/WNL.0b013e31829d86e8.
    • (2013) Neurology , vol.81 , pp. 487-500
    • Frisoni, G.B.1    Bocchetta, M.2    Chetelat, G.3    Rabinovici, G.D.4    de Leon, M.J.5    Kaye, J.6
  • 55
    • 85015651911 scopus 로고    scopus 로고
    • Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework
    • COI: 1:CAS:528:DC%2BC2sXks1Snt7k%3D, PID: 28317648
    • Garibotto V, Herholz K, Boccardi M, Picco A, Varrone A, Nordberg A, et al. Clinical validity of brain fluorodeoxyglucose positron emission tomography as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol Aging. 2017;52:183–195. doi:10.1016/j.neurobiolaging.2016.03.033
    • (2017) Neurobiol Aging , vol.52 , pp. 183-195
    • Garibotto, V.1    Herholz, K.2    Boccardi, M.3    Picco, A.4    Varrone, A.5    Nordberg, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.