메뉴 건너뛰기




Volumn 1, Issue 2, 2015, Pages 206-215

Multimodal prediction of conversion to Alzheimer's disease based onincomplete biomarkers

Author keywords

Alzheimer's dementia; Feature selection; Mild cognitive impairment; Missing data; Multimodal biomarker; Prognosis

Indexed keywords


EID: 84938676936     PISSN: None     EISSN: 23528729     Source Type: Journal    
DOI: 10.1016/j.dadm.2015.01.006     Document Type: Article
Times cited : (78)

References (41)
  • 1
    • 84938688332 scopus 로고    scopus 로고
    • Alzheimer-Differentialdiagnostik
    • Dal-Bianco P. Alzheimer-Differentialdiagnostik. Facharzt 2010, 3:4-9.
    • (2010) Facharzt , vol.3 , pp. 4-9
    • Dal-Bianco, P.1
  • 2
    • 0042067944 scopus 로고    scopus 로고
    • Mild cognitive impairment clinical trials
    • Petersen R. Mild cognitive impairment clinical trials. Nat Rev Drug Discov 2003, 2:646-653.
    • (2003) Nat Rev Drug Discov , vol.2 , pp. 646-653
    • Petersen, R.1
  • 3
    • 79551576499 scopus 로고    scopus 로고
    • Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population
    • ADNI
    • Hinrichs C., Singh V., Xu G., Johnson S.C. Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. Neuroimage 2011, 55:574-589. ADNI.
    • (2011) Neuroimage , vol.55 , pp. 574-589
    • Hinrichs, C.1    Singh, V.2    Xu, G.3    Johnson, S.C.4
  • 4
    • 84879076294 scopus 로고    scopus 로고
    • Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment
    • Young J., Modat M., Cardoso M.J., Mendelson A., Cash D., Ourselin S., et al. Accurate multimodal probabilistic prediction of conversion to Alzheimer's disease in patients with mild cognitive impairment. Neuroimage Clin 2013, 2:735-745.
    • (2013) Neuroimage Clin , vol.2 , pp. 735-745
    • Young, J.1    Modat, M.2    Cardoso, M.J.3    Mendelson, A.4    Cash, D.5    Ourselin, S.6
  • 5
    • 84873733610 scopus 로고    scopus 로고
    • Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted predictAD tool
    • Liu Y., Mattila J., Ruiz M.A.M., Paajanen T., Koikkalainen J., van Gils M., et al. Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted predictAD tool. PLoS One 2013, 8:e55246.
    • (2013) PLoS One , vol.8
    • Liu, Y.1    Mattila, J.2    Ruiz, M.A.M.3    Paajanen, T.4    Koikkalainen, J.5    van Gils, M.6
  • 6
    • 55749098303 scopus 로고    scopus 로고
    • Accuracy of dementia diagnosis-a direct comparison between radiologists and a computerized method
    • Kloeppel S., Stonnington C.M., Barnes J., Chen F., Chu C., Good C.D., et al. Accuracy of dementia diagnosis-a direct comparison between radiologists and a computerized method. Brain 2008, 131:2969-2974.
    • (2008) Brain , vol.131 , pp. 2969-2974
    • Kloeppel, S.1    Stonnington, C.M.2    Barnes, J.3    Chen, F.4    Chu, C.5    Good, C.D.6
  • 7
    • 84883552519 scopus 로고    scopus 로고
    • The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception
    • Weiner M.W., Veitch D.P., Aisen P.S., Beckett L.A., Cairns N.J., Green R.C., et al. The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement 2013, 9:e111-e194.
    • (2013) Alzheimers Dement , vol.9 , pp. e111-e194
    • Weiner, M.W.1    Veitch, D.P.2    Aisen, P.S.3    Beckett, L.A.4    Cairns, N.J.5    Green, R.C.6
  • 8
    • 79960638062 scopus 로고    scopus 로고
    • Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors
    • Cui Y., Liu B., Luo S., Zhen X., Fan M., Liu1 T., et al. Identification of conversion from mild cognitive impairment to Alzheimer's disease using multivariate predictors. PLoS One 2011, 6:e21896.
    • (2011) PLoS One , vol.6
    • Cui, Y.1    Liu, B.2    Luo, S.3    Zhen, X.4    Fan, M.5    Liu1, T.6
  • 10
    • 84861645859 scopus 로고    scopus 로고
    • Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion
    • Westman E., Muehlboeck J.S., Simmons A. Combining MRI and CSF measures for classification of Alzheimer's disease and prediction of mild cognitive impairment conversion. Neuroimage 2012, 62:229-238.
    • (2012) Neuroimage , vol.62 , pp. 229-238
    • Westman, E.1    Muehlboeck, J.S.2    Simmons, A.3
  • 13
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
    • Schneider T. Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Climate 2001, 14:853-871.
    • (2001) J Climate , vol.14 , pp. 853-871
    • Schneider, T.1
  • 14
    • 30344478272 scopus 로고    scopus 로고
    • Fluctuation of estimates in an EM procedure for categorical data
    • Kim S.H., Kim S.H. Fluctuation of estimates in an EM procedure for categorical data. J Stat Comput Simul 2005, 75:941-957.
    • (2005) J Stat Comput Simul , vol.75 , pp. 941-957
    • Kim, S.H.1    Kim, S.H.2
  • 15
    • 34047138318 scopus 로고    scopus 로고
    • Combining SVMs with various feature selection strategies
    • Springer, Berlin Heidelberg, I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.)
    • Chen Y.W., Lin C.J. Combining SVMs with various feature selection strategies. Feature extraction; vol. 207 of studies in fuzziness and soft computing 2006, 315-324. Springer, Berlin Heidelberg. I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.).
    • (2006) Feature extraction; vol. 207 of studies in fuzziness and soft computing , pp. 315-324
    • Chen, Y.W.1    Lin, C.J.2
  • 16
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res 2003, 3:1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 17
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach Learn 1995, 20:273-297.
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 20
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 23
    • 84861633811 scopus 로고    scopus 로고
    • Multi-scale classification of disease using structural MRI and wavelet transform
    • Hackmack K., Paul F., Weygandt M., Allefeld C., Haynes J.D. Multi-scale classification of disease using structural MRI and wavelet transform. Neuroimage 2012, 62:48-58.
    • (2012) Neuroimage , vol.62 , pp. 48-58
    • Hackmack, K.1    Paul, F.2    Weygandt, M.3    Allefeld, C.4    Haynes, J.D.5
  • 26
    • 84868215748 scopus 로고    scopus 로고
    • Random forest-based similarity measures for multi-modal classification of Alzheimer's disease
    • ADNI
    • Gray K.R., Aljabar P., Heckemann R.A., Hammers A., Rueckert D. Random forest-based similarity measures for multi-modal classification of Alzheimer's disease. Neuroimage 2013, 65:167-175. ADNI.
    • (2013) Neuroimage , vol.65 , pp. 167-175
    • Gray, K.R.1    Aljabar, P.2    Heckemann, R.A.3    Hammers, A.4    Rueckert, D.5
  • 27
    • 79955059574 scopus 로고    scopus 로고
    • Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database
    • Cuingnet R., Gerardin E., Tessieras J., Auzias G., Lehericy S., Habert M.O., et al. Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database. Neuroimage 2011, 56:766-781.
    • (2011) Neuroimage , vol.56 , pp. 766-781
    • Cuingnet, R.1    Gerardin, E.2    Tessieras, J.3    Auzias, G.4    Lehericy, S.5    Habert, M.O.6
  • 28
    • 79952073234 scopus 로고    scopus 로고
    • Multimodal classification of Alzheimer's disease and mild cognitive impairment
    • ADNI
    • Zhang D., Wang Y., Zhou L., Yuan H., Shen D. Multimodal classification of Alzheimer's disease and mild cognitive impairment. Neuroimage 2011, 55:856-867. ADNI.
    • (2011) Neuroimage , vol.55 , pp. 856-867
    • Zhang, D.1    Wang, Y.2    Zhou, L.3    Yuan, H.4    Shen, D.5
  • 29
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett 2006, 27:861-874.
    • (2006) Pattern Recognit Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 30
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: a primer with examples
    • Nichols T.E., Holmes A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 2002, 15:1-25.
    • (2002) Hum Brain Mapp , vol.15 , pp. 1-25
    • Nichols, T.E.1    Holmes, A.P.2
  • 31
    • 84899428996 scopus 로고    scopus 로고
    • Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions
    • Noirhomme Q., Lesenfants D., Gomez F., Soddu A., Schrouff J., Garraux G., et al. Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions. Neuroimage Clin 2014, 4:687-694.
    • (2014) Neuroimage Clin , vol.4 , pp. 687-694
    • Noirhomme, Q.1    Lesenfants, D.2    Gomez, F.3    Soddu, A.4    Schrouff, J.5    Garraux, G.6
  • 32
    • 48549094895 scopus 로고    scopus 로고
    • A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification
    • Statnikov A., Wang L., Aliferis C. A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification. BMC Bioinformatics 2008, 9:319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.3
  • 33
    • 36749047332 scopus 로고    scopus 로고
    • Supervised machine learning: a review of classification techniques
    • Kotsiantis S. Supervised machine learning: a review of classification techniques. Informatica 2007, 31:249-268.
    • (2007) Informatica , vol.31 , pp. 249-268
    • Kotsiantis, S.1
  • 34
    • 33747449778 scopus 로고    scopus 로고
    • On multicollinearity and concurvity in some nonlinear multivariate models
    • Morlini I. On multicollinearity and concurvity in some nonlinear multivariate models. Stat Methods Appt 2006, 15:3-26.
    • (2006) Stat Methods Appt , vol.15 , pp. 3-26
    • Morlini, I.1
  • 35
    • 84874725861 scopus 로고    scopus 로고
    • Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
    • Dormann C.F., Elith J., Bacher S., Buchmann C., Carl G., Carre G., et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36:27-46.
    • (2013) Ecography , vol.36 , pp. 27-46
    • Dormann, C.F.1    Elith, J.2    Bacher, S.3    Buchmann, C.4    Carl, G.5    Carre, G.6
  • 36
    • 0036834375 scopus 로고    scopus 로고
    • A comparison of imputation techniques for handling missing data
    • Musil C.M., Warner C.B., Yobas P.K., Jones S.L. A comparison of imputation techniques for handling missing data. West J Nurs Res 2002, 24:815-829.
    • (2002) West J Nurs Res , vol.24 , pp. 815-829
    • Musil, C.M.1    Warner, C.B.2    Yobas, P.K.3    Jones, S.L.4
  • 37
    • 54149086289 scopus 로고    scopus 로고
    • Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease
    • Devanand D.P., Liu X., Tabert M.H., Pradhaban G., Cuasay K., Bell K., et al. Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer's disease. Biol Psychiatry 2008, 64:871-879.
    • (2008) Biol Psychiatry , vol.64 , pp. 871-879
    • Devanand, D.P.1    Liu, X.2    Tabert, M.H.3    Pradhaban, G.4    Cuasay, K.5    Bell, K.6
  • 38
    • 84897372610 scopus 로고    scopus 로고
    • Hierarchical interactions model for predicting mild cognitive impairment (MCI) to Alzheimer's disease (AD) conversion
    • ADNI
    • Li H., Liu Y., Gong P., Zhang C., Ye J. Hierarchical interactions model for predicting mild cognitive impairment (MCI) to Alzheimer's disease (AD) conversion. PLoS One 2014, 9:e82450. ADNI.
    • (2014) PLoS One , vol.9
    • Li, H.1    Liu, Y.2    Gong, P.3    Zhang, C.4    Ye, J.5
  • 39
    • 84873361594 scopus 로고    scopus 로고
    • Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers
    • Shaffer J.L., Petrella J.R., Sheldon F.C., Choudhury K.R., Calhoun V.D., Coleman R.E., et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined cerebrospinal fluid, MR imaging, and PET biomarkers. Radiology 2013, 266:583-591.
    • (2013) Radiology , vol.266 , pp. 583-591
    • Shaffer, J.L.1    Petrella, J.R.2    Sheldon, F.C.3    Choudhury, K.R.4    Calhoun, V.D.5    Coleman, R.E.6
  • 40
    • 84878855409 scopus 로고    scopus 로고
    • Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaing data modalities
    • Filippone M., Marquandt A., Blain C., Williams S., Mourao-Miranda J., Girolami M. Probabilistic prediction of neurological disorders with a statistical assessment of neuroimaing data modalities. Ann Appl Stat 2013, 6:1883-1905.
    • (2013) Ann Appl Stat , vol.6 , pp. 1883-1905
    • Filippone, M.1    Marquandt, A.2    Blain, C.3    Williams, S.4    Mourao-Miranda, J.5    Girolami, M.6
  • 41
    • 84890903550 scopus 로고    scopus 로고
    • Integration and relative value of biomarkers for prediction of MCI to AD progression: spatial patterns of brain atrophy, cognitive scores, APOE genotype and CSF biomarkers
    • Da X., Toledo J.B., Zee J., Wolk D.A., Xie S.X., Ou Y., et al. Integration and relative value of biomarkers for prediction of MCI to AD progression: spatial patterns of brain atrophy, cognitive scores, APOE genotype and CSF biomarkers. Neuroimage Clin 2014, 4:164-173.
    • (2014) Neuroimage Clin , vol.4 , pp. 164-173
    • Da, X.1    Toledo, J.B.2    Zee, J.3    Wolk, D.A.4    Xie, S.X.5    Ou, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.