메뉴 건너뛰기




Volumn 19-23-Oct-2015, Issue , 2015, Pages 553-562

A hierarchical recurrent encoder-decoder for generative context-aware query suggestion

Author keywords

Query suggestion; Recurrent neural networks

Indexed keywords

ARTIFICIAL INTELLIGENCE; DECODING; KNOWLEDGE MANAGEMENT; LEARNING SYSTEMS; NETWORK ARCHITECTURE; SEARCH ENGINES;

EID: 84958256008     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2806416.2806493     Document Type: Conference Paper
Times cited : (503)

References (43)
  • 3
    • 84931094931 scopus 로고    scopus 로고
    • Deep learning of representations: Looking forward
    • Y. Bengio. Deep learning of representations: Looking forward. CoRR, abs/1305.0445, 2013.
    • (2013) CoRR, Abs/1305.0445
    • Bengio, Y.1
  • 8
    • 84866635144 scopus 로고    scopus 로고
    • Efficient query recommendations in the long tail via center-piece subgraphs
    • F. Bonchi, R. Perego, F. Silvestri, H. Vahabi, and R. Venturini Efficient query recommendations in the long tail via center-piece subgraphs. In In Proc. of SIGIR, pages 345-354, 2012.
    • (2012) Proc. of SIGIR , pp. 345-354
    • Bonchi, F.1    Perego, R.2    Silvestri, F.3    Vahabi, H.4    Venturini, R.5
  • 9
    • 84857356992 scopus 로고    scopus 로고
    • Generating suggestions for queries in the long tail with an inverted index
    • D. Broccolo, L. Marcon, F. M. Nardini, R. Perego, and F. Silvestri. Generating suggestions for queries in the long tail with an inverted index. Inf. Process. Manage., 48(2):326-339, 2012.
    • (2012) Inf. Process. Manage. , vol.48 , Issue.2 , pp. 326-339
    • Broccolo, D.1    Marcon, L.2    Nardini, F.M.3    Perego, R.4    Silvestri, F.5
  • 10
    • 65449160200 scopus 로고    scopus 로고
    • Context-aware query suggestion by mining click-through and session data
    • H. Cao, D. Jiang, J. Pei, Q. He, Z. Liao, E. Chen, and H. Li. Context-aware query suggestion by mining click-through and session data. In In Proc. of SIGKDD, pages 875-883, 2008.
    • (2008) Proc. of SIGKDD , pp. 875-883
    • Cao, H.1    Jiang, D.2    Pei, J.3    He, Q.4    Liao, Z.5    Chen, E.6    Li, H.7
  • 13
    • 84953873103 scopus 로고    scopus 로고
    • Generating sequences with recurrent neural networks
    • A. Graves. Generating sequences with recurrent neural networks. CoRR, abs/1308.0850, 2013.
    • (2013) CoRR, Abs/1308.0850
    • Graves, A.1
  • 16
    • 85057230110 scopus 로고
    • Hierarchical recurrent neural networks for long-term dependencies
    • Citeseer
    • S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term dependencies. In NIPS, pages 493-499. Citeseer, 1995.
    • (1995) NIPS , pp. 493-499
    • El Hihi, S.1    Bengio, Y.2
  • 18
    • 74549161010 scopus 로고    scopus 로고
    • Analyzing and evaluating query reformulation strategies in web search logs
    • J. Huang and E. N. Efthimiadis. Analyzing and evaluating query reformulation strategies in web search logs. In In Proc. of CIKM, pages 77-86, 2009.
    • (2009) Proc. of CIKM , pp. 77-86
    • Huang, J.1    Efthimiadis, E.N.2
  • 19
    • 84889566627 scopus 로고    scopus 로고
    • Learning deep structured semantic models for web search using clickthrough data
    • P. S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep structured semantic models for web search using clickthrough data. In In Proc. of CIKM, pages 2333-2338, 2013.
    • (2013) Proc. of CIKM , pp. 2333-2338
    • Huang, P.S.1    He, X.2    Gao, J.3    Deng, L.4    Acero, A.5    Heck, L.6
  • 20
    • 80052127248 scopus 로고    scopus 로고
    • Synthesizing high utility suggestions for rare web search queries
    • A. Jain, U. Ozertem, and E. Velipasaoglu. Synthesizing high utility suggestions for rare web search queries. In In Proc. of SIGIR, pages 805-814, 2011.
    • (2011) Proc. of SIGIR , pp. 805-814
    • Jain, A.1    Ozertem, U.2    Velipasaoglu, E.3
  • 21
  • 22
    • 84904554946 scopus 로고    scopus 로고
    • Learning user reformulation behavior for query auto-completion
    • J.Y. Jiang, Y.Y. Ke, P.Y. Chien, and P.J. Cheng. Learning user reformulation behavior for query auto-completion. In In Proc. of SIGIR, pages 445-454, 2014.
    • (2014) Proc. of SIGIR , pp. 445-454
    • Jiang, J.Y.1    Ke, Y.Y.2    Chien, P.Y.3    Cheng, P.J.4
  • 24
    • 85055725838 scopus 로고    scopus 로고
    • Deep learning powered in-session contextual ranking using clickthrough data
    • X. Li, C. Guo, W. Chu, Y.Y. Wang, and J. Shavlik. Deep learning powered in-session contextual ranking using clickthrough data. In In Proc. of NIPS, 2014.
    • (2014) Proc. of NIPS
    • Li, X.1    Guo, C.2    Chu, W.3    Wang, Y.Y.4    Shavlik, J.5
  • 27
    • 84953708582 scopus 로고    scopus 로고
    • Exploring session context using distributed representations of queries and reformulations
    • B. Mitra. Exploring session context using distributed representations of queries and reformulations. In In Proc. of SIGIR. To appear, 2015.
    • (2015) Proc. of SIGIR. to Appear
    • Mitra, B.1
  • 28
    • 84866634628 scopus 로고    scopus 로고
    • Learning to suggest: A machine learning framework for ranking query suggestions
    • U. Ozertem, O. Chapelle, P. Donmez, and E. Velipasaoglu. Learning to suggest: A machine learning framework for ranking query suggestions. In In Proc. of SIGIR, pages 25-34, 2012.
    • (2012) Proc. of SIGIR , pp. 25-34
    • Ozertem, U.1    Chapelle, O.2    Donmez, P.3    Velipasaoglu, E.4
  • 30
    • 84897497795 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural networks. In Proc. of ICML, 2013.
    • (2013) Proc. of ICML
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 31
    • 84909953299 scopus 로고    scopus 로고
    • Understanding intrinsic diversity in web search: Improving whole-session relevance
    • October
    • K. Raman, P. Bennett, and K. Collins-Thompson. Understanding intrinsic diversity in web search: Improving whole-session relevance. ACM Trans. Inf. Syst., 32(4):20:1-20:45, October 2014.
    • (2014) ACM Trans. Inf. Syst. , vol.32 , Issue.4 , pp. 201-2045
    • Raman, K.1    Bennett, P.2    Collins-Thompson, K.3
  • 33
    • 77954583478 scopus 로고    scopus 로고
    • Clustering query refinements by user intent
    • E. Sadikov, J. Madhavan, L. Wang, and A. Halevy. Clustering query refinements by user intent. In In Proc. of WWW, pages 841-850, 2010.
    • (2010) Proc. of WWW , pp. 841-850
    • Sadikov, E.1    Madhavan, J.2    Wang, L.3    Halevy, A.4
  • 34
    • 84880836025 scopus 로고    scopus 로고
    • Learning to rank query suggestions for adhoc and diversity search
    • R. L.T. Santos, C. Macdonald, and I. Ounis. Learning to rank query suggestions for adhoc and diversity search. Information Retrieval, 16(4):429-451, 2013.
    • (2013) Information Retrieval , vol.16 , Issue.4 , pp. 429-451
    • Santos, R.L.T.1    Macdonald, C.2    Ounis, I.3
  • 35
    • 84928315948 scopus 로고    scopus 로고
    • A latent semantic model with convolutional-pooling structure for information retrieval
    • Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. A latent semantic model with convolutional-pooling structure for information retrieval. In In Proc. of CIKM, pages 101-110, 2014.
    • (2014) Proc. of CIKM , pp. 101-110
    • Shen, Y.1    He, X.2    Gao, J.3    Deng, L.4    Mesnil, G.5
  • 36
    • 84883114975 scopus 로고    scopus 로고
    • Learning to personalize query auto-completion
    • M. Shokouhi. Learning to personalize query auto-completion. In In Proc. of SIGIR, pages 103-112, 2013.
    • (2013) Proc. of SIGIR , pp. 103-112
    • Shokouhi, M.1
  • 37
    • 84937868714 scopus 로고    scopus 로고
    • Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips)
    • Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time maximum inner product search (mips). In In Proc. of NIPS, pages 2321-2329, 2014.
    • (2014) Proc. of NIPS , pp. 2321-2329
    • Shrivastava, A.1    Li, P.2
  • 38
    • 84883073763 scopus 로고    scopus 로고
    • Modeling term dependencies with quantum language models for ir
    • A. Sordoni, J.Y. Nie, and Y. Bengio. Modeling term dependencies with quantum language models for ir. In In Proc. of SIGIR, pages 653-662, 2013.
    • (2013) Proc. of SIGIR , pp. 653-662
    • Sordoni, A.1    Nie, J.Y.2    Bengio, Y.3
  • 39
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. V. Le. Sequence to sequence learning with neural networks. In In Proc. of NIPS, pages 3104-3112. 2014.
    • (2014) Proc. of NIPS , pp. 3104-3112
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.V.3
  • 40
    • 83055186849 scopus 로고    scopus 로고
    • Improving recommendation for long-tail queries via templates
    • I. Szpektor, A. Gionis, and Y. Maarek. Improving recommendation for long-tail queries via templates. In In Proc. of WWW, pages 47-56, 2011.
    • (2011) Proc. of WWW , pp. 47-56
    • Szpektor, I.1    Gionis, A.2    Maarek, Y.3
  • 42
    • 84884698326 scopus 로고    scopus 로고
    • Clustering user queries of a search engine
    • ACM
    • J.R. Wen, J.Y. Nie, and H.J. Zhang. Clustering user queries of a search engine. In In Proc. of WWW, pages 162-168. ACM, 2001.
    • (2001) Proc. of WWW , pp. 162-168
    • Wen, J.R.1    Nie, J.Y.2    Zhang, H.J.3
  • 43
    • 77953628309 scopus 로고    scopus 로고
    • Adapting boosting for information retrieval measures
    • June
    • Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting boosting for information retrieval measures. Inf. Retr., 13(3):254-270, June 2010.
    • (2010) Inf. Retr. , vol.13 , Issue.3 , pp. 254-270
    • Wu, Q.1    Burges, C.J.2    Svore, K.M.3    Gao, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.