메뉴 건너뛰기




Volumn 552, Issue , 2017, Pages 44-51

The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series

Author keywords

Artificial network; Discrete wavelet transform; Hydrological time series; Prediction; Singular spectrum analysis

Indexed keywords

DISCRETE WAVELET TRANSFORMS; FORECASTING; SIGNAL RECONSTRUCTION; SPECTRUM ANALYSIS; SUPPORT VECTOR MACHINES; TIME SERIES;

EID: 85021407587     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2017.06.019     Document Type: Article
Times cited : (89)

References (21)
  • 1
    • 84961292008 scopus 로고    scopus 로고
    • A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting
    • Abdollahzade, M., Miranian, A., Hassani, H., Iranmanesh, H., A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting. Inf. Sci. (Ny) 295 (2015), 107–125, 10.1016/j.ins.2014.09.002.
    • (2015) , vol.295 , pp. 107-125
    • Abdollahzade, M.1    Miranian, A.2    Hassani, H.3    Iranmanesh, H.4
  • 2
    • 0242585368 scopus 로고    scopus 로고
    • Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting
    • Baratta, D., Cicioni, G., Masulli, F., Studer, L., Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting. Neural Netw. 16 (2003), 375–387, 10.1016/S0893-6080(03)00022-4.
    • (2003) Neural Netw. Inf. Sci. (Ny) , vol.16 , pp. 375-387
    • Baratta, D.1    Cicioni, G.2    Masulli, F.3    Studer, L.4
  • 3
    • 34249988665 scopus 로고
    • Extracting qualitative dynamics from experimental data
    • Broomhead, D.S., King, G.P., Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 20 (1986), 217–236, 10.1016/0167-2789(86)90031-X.
    • (1986) Phys. D Nonlinear Phenom. , vol.20 , pp. 217-236
    • Broomhead, D.S.1    King, G.P.2
  • 5
    • 24744466367 scopus 로고    scopus 로고
    • Neural network design
    • Hagan, M., Neural network design. Network, 4120, 2007, 45308.
    • (2007) Network , vol.4120 , pp. 45308
    • Hagan, M.1
  • 6
    • 84928955803 scopus 로고    scopus 로고
    • A hybrid wavelet neural network model with mutual information and particle swarm optimization for forecasting monthly rainfall
    • He, X., Guan, H., Qin, J., A hybrid wavelet neural network model with mutual information and particle swarm optimization for forecasting monthly rainfall. J. Hydrol. 527 (2015), 88–100, 10.1016/j.jhydrol.2015.04.047.
    • (2015) J. Hydrol. , vol.527 , pp. 88-100
    • He, X.1    Guan, H.2    Qin, J.3
  • 7
    • 0035210943 scopus 로고    scopus 로고
    • A stochastic empirical model for regional heavy-metal balances in agroecosystems
    • Keller, A., von Steiger, B., van der Zee, S.E.A.T.M., Schulin, R., A stochastic empirical model for regional heavy-metal balances in agroecosystems. J. Environ. Qual. 30 (2001), 1976–1989.
    • (2001) J. Environ. Qual. , vol.30 , pp. 1976-1989
    • Keller, A.1    von Steiger, B.2    van der Zee, S.E.A.T.M.3    Schulin, R.4
  • 8
    • 70349559015 scopus 로고    scopus 로고
    • Evapotranspiration modelling using support vector machines
    • Kisi, O., Cimen, M., Evapotranspiration modelling using support vector machines. Hydrol. Sci. J. 54 (2009), 918–928.
    • (2009) Hydrol. Sci. J. , vol.54 , pp. 918-928
    • Kisi, O.1    Cimen, M.2
  • 9
    • 84859425235 scopus 로고    scopus 로고
    • Precipitation forecasting by using wavelet-support vector machine conjunction model
    • Kisi, O., Cimen, M., Precipitation forecasting by using wavelet-support vector machine conjunction model. Eng. Appl. Artif. Intell. 25 (2012), 783–792, 10.1016/j.engappai.2011.11.003.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , pp. 783-792
    • Kisi, O.1    Cimen, M.2
  • 10
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I – a discussion of principles
    • Nash, J.E., Sutcliffe, J.V., River flow forecasting through conceptual models part I – a discussion of principles. J. Hydrol. 10 (1970), 282–290, 10.1016/0022-1694(70)90255-6.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 11
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani, V., Alami, M.T., Aminfar, M.H., A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 22 (2009), 466–472, 10.1016/j.engappai.2008.09.003.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 12
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid wavelet-artificial Intelligence models in hydrology: a review
    • Nourani, V., Hosseini Baghanam, A., Adamowski, J., Kisi, O., Applications of hybrid wavelet-artificial Intelligence models in hydrology: a review. J. Hydrol. 514 (2014), 358–377, 10.1016/j.jhydrol.2014.03.057.
    • (2014) J. Hydrol. , vol.514 , pp. 358-377
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Kisi, O.4
  • 13
    • 71649098140 scopus 로고    scopus 로고
    • Modelling evapotranspiration using discrete wavelet transform and neural networks
    • Partal, T., Modelling evapotranspiration using discrete wavelet transform and neural networks. Hydrol. Process. 23 (2009), 3545–3555.
    • (2009) Hydrol. Process. , vol.23 , pp. 3545-3555
    • Partal, T.1
  • 14
    • 84876984605 scopus 로고    scopus 로고
    • Improved wavelet modeling framework for hydrologic time series forecasting
    • Sang, Y.F., Improved wavelet modeling framework for hydrologic time series forecasting. Water Resour. Manage. 27 (2013), 2807–2821, 10.1007/s11269-013-0316-1.
    • (2013) Water Resour. Manage. , vol.27 , pp. 2807-2821
    • Sang, Y.F.1
  • 15
    • 85006941509 scopus 로고    scopus 로고
    • Rainfall and runoff forecasting with SSA-SVM approach
    • Sivapragasam, C., Liong, S., Pasha, M., Rainfall and runoff forecasting with SSA-SVM approach. J. Hydroinf., 141–152, 2001, 10.1016/j.jhydrol.2010.02.030.
    • (2001) J. Hydroinf. , vol.141-152
    • Sivapragasam, C.1    Liong, S.2    Pasha, M.3
  • 16
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • Valipour, M., Banihabib, M.E., Behbahani, S.M.R., Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 476 (2013), 433–441, 10.1016/j.jhydrol.2012.11.017.
    • (2013) J. Hydrol. , vol.476 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 17
    • 84880043630 scopus 로고    scopus 로고
    • Monthly rainfall prediction using wavelet neural network analysis
    • Venkata Ramana, R., Krishna, B., Kumar, S.R., Pandey, N.G., Monthly rainfall prediction using wavelet neural network analysis. Water Resour. Manage. 27 (2013), 3697–3711, 10.1007/s11269-013-0374-4.
    • (2013) Water Resour. Manage. , vol.27 , pp. 3697-3711
    • Venkata Ramana, R.1    Krishna, B.2    Kumar, S.R.3    Pandey, N.G.4
  • 18
    • 84873992358 scopus 로고    scopus 로고
    • Prediction of rainfall time series using modular soft computing methods
    • Wu, C.L., Chau, K.W., Prediction of rainfall time series using modular soft computing methods. Eng. Appl. Artif. Intell. 26 (2013), 997–1007, 10.1016/j.engappai.2012.05.023.
    • (2013) Eng. Appl. Artif. Intell. , vol.26 , pp. 997-1007
    • Wu, C.L.1    Chau, K.W.2
  • 19
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu, C.L., Chau, K.W., Li, Y.S., Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 45 (2009), 1–23, 10.1029/2007WR006737.
    • (2009) Water Resour. Res. , vol.45 , pp. 1-23
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 20
    • 65749118118 scopus 로고    scopus 로고
    • Methods to improve neural network performance in daily flows prediction
    • Wu, C.L., Chau, K.W., Li, Y.S., Methods to improve neural network performance in daily flows prediction. J. Hydrol. 372 (2009), 80–93, 10.1016/j.jhydrol.2009.03.038.
    • (2009) J. Hydrol. , vol.372 , pp. 80-93
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 21
    • 77954384622 scopus 로고    scopus 로고
    • Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
    • Wu, C.L., Chau, K.W., Fan, C., Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 389 (2010), 146–167, 10.1016/j.jhydrol.2010.05.040.
    • (2010) J. Hydrol. , vol.389 , pp. 146-167
    • Wu, C.L.1    Chau, K.W.2    Fan, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.