메뉴 건너뛰기




Volumn 295, Issue , 2015, Pages 107-125

A new hybrid enhanced local linear neuro-fuzzy model based on the optimized singular spectrum analysis and its application for nonlinear and chaotic time series forecasting

Author keywords

Local linear neuro fuzzy model; Particle swarm optimization; Singular spectrum analysis; Time series forecasting

Indexed keywords

ALGORITHMS; DATA HANDLING; FORECASTING; NONLINEAR ANALYSIS; OPTIMIZATION; PARTICLE SWARM OPTIMIZATION (PSO); SPECTRUM ANALYSIS; TIME SERIES;

EID: 84961292008     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.09.002     Document Type: Article
Times cited : (79)

References (71)
  • 2
    • 67649911286 scopus 로고    scopus 로고
    • Evolutionary algorithm-based learning of fuzzy neural networks. Part 2: Recurrent fuzzy neural networks
    • R.A. Alieva, B.G. Guirimov, B. Fazlollahi, and R.R. Aliev Evolutionary algorithm-based learning of fuzzy neural networks. Part 2: Recurrent fuzzy neural networks Fuzzy Sets Syst. 160 2009 2553 2566
    • (2009) Fuzzy Sets Syst. , vol.160 , pp. 2553-2566
    • Alieva, R.A.1    Guirimov, B.G.2    Fazlollahi, B.3    Aliev, R.R.4
  • 3
    • 84868511151 scopus 로고    scopus 로고
    • Hybrid adaptive wavelet-neuro-fuzzy system for chaotic time series identification
    • Y. Bodyanskiy, and O. Vynokurova Hybrid adaptive wavelet-neuro-fuzzy system for chaotic time series identification Inform. Sci. 220 2013 170 179
    • (2013) Inform. Sci. , vol.220 , pp. 170-179
    • Bodyanskiy, Y.1    Vynokurova, O.2
  • 5
    • 0036859376 scopus 로고    scopus 로고
    • Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory
    • O. Castillo, and P. Melin Hybrid intelligent systems for time series prediction using neural networks, fuzzy logic, and fractal theory IEEE Trans. Neural Netw. 13 2002 1395 1408
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 1395-1408
    • Castillo, O.1    Melin, P.2
  • 6
    • 78049315978 scopus 로고    scopus 로고
    • An interval type-2 fuzzy neural network for chaotic time series prediction with cross-validation and akaike test
    • J.R. Castro, O. Castillo, P. Melin, O. Mendoza, A.R. Díaz, An interval type-2 fuzzy neural network for chaotic time series prediction with cross-validation and akaike test, in: Soft Computing for Intelligent Control and Mobile Robotics, vol. 318, 2011, pp. 269-285.
    • (2011) Soft Computing for Intelligent Control and Mobile Robotics , vol.318 , pp. 269-285
    • Castro, J.R.1
  • 7
    • 29444444293 scopus 로고    scopus 로고
    • Time-series forecasting using a local linear wavelet neural network
    • Y. Chen, B. Yang, and J. Dong Time-series forecasting using a local linear wavelet neural network Neurocomputing 69 2006 449 465
    • (2006) Neurocomputing , vol.69 , pp. 449-465
    • Chen, Y.1    Yang, B.2    Dong, J.3
  • 8
    • 16544392706 scopus 로고    scopus 로고
    • Nonlinear system modeling via optimal design of neural trees
    • Y. Chen, B. Yang, and J. Dong Nonlinear system modeling via optimal design of neural trees Int. J. Neural Syst. 14 2004 125 137
    • (2004) Int. J. Neural Syst. , vol.14 , pp. 125-137
    • Chen, Y.1    Yang, B.2    Dong, J.3
  • 10
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems their application to system identification and prediction
    • K.B. Cho, and B.H. Wang Radial basis function based adaptive fuzzy systems their application to system identification and prediction Fuzzy Sets Syst. 83 1996 325 339
    • (1996) Fuzzy Sets Syst. , vol.83 , pp. 325-339
    • Cho, K.B.1    Wang, B.H.2
  • 11
    • 0030283350 scopus 로고    scopus 로고
    • Radial basis function based adaptive fuzzy systems their application to system identification and prediction
    • K.B. Cho, and B.K. Wang Radial basis function based adaptive fuzzy systems their application to system identification and prediction Fuzzy Sets Syst. 83 1996 325 339
    • (1996) Fuzzy Sets Syst. , vol.83 , pp. 325-339
    • Cho, K.B.1    Wang, B.K.2
  • 14
    • 84891745412 scopus 로고    scopus 로고
    • Interval type-2 fuzzy weight adjustment for backpropagation neural networks with application in time series prediction
    • F. Gaxiola, P. Melin, F. Valdez, and O. Castillo Interval type-2 fuzzy weight adjustment for backpropagation neural networks with application in time series prediction Inform. Sci. 260 2014 1 14
    • (2014) Inform. Sci. , vol.260 , pp. 1-14
    • Gaxiola, F.1    Melin, P.2    Valdez, F.3    Castillo, O.4
  • 16
    • 84862800348 scopus 로고    scopus 로고
    • Sparsely connected neural network-based time series forecasting
    • Z.X. Guo, W.K. Wong, and M. Li Sparsely connected neural network-based time series forecasting Inform. Sci. 193 2012 54 71
    • (2012) Inform. Sci. , vol.193 , pp. 54-71
    • Guo, Z.X.1    Wong, W.K.2    Li, M.3
  • 17
    • 33748424239 scopus 로고    scopus 로고
    • The effect of different basis functions on a radial basis function network for time series prediction: A comparative study
    • C. Harpham, and C.W. Dawson The effect of different basis functions on a radial basis function network for time series prediction: a comparative study Neurocomputing 69 2006 2161 2170
    • (2006) Neurocomputing , vol.69 , pp. 2161-2170
    • Harpham, C.1    Dawson, C.W.2
  • 18
    • 0031164783 scopus 로고    scopus 로고
    • Testing the equality of prediction mean squared errors
    • D.I. Harvey, S. Leybourne, and P. Newbold Testing the equality of prediction mean squared errors Int. J. Forecast. 13 1997 281 291
    • (1997) Int. J. Forecast. , vol.13 , pp. 281-291
    • Harvey, D.I.1    Leybourne, S.2    Newbold, P.3
  • 20
    • 84884498702 scopus 로고    scopus 로고
    • Multivariate singular spectrum analysis: A general view and new vector forecasting approach
    • H. Hassani, and R. Mahmoudvand Multivariate singular spectrum analysis: a general view and new vector forecasting approach Int. J. Energy Statist. 1 2013 55 83
    • (2013) Int. J. Energy Statist. , vol.1 , pp. 55-83
    • Hassani, H.1    Mahmoudvand, R.2
  • 21
    • 80053287977 scopus 로고    scopus 로고
    • Separability and window length in singular spectrum analysis
    • H. Hassani, R. Mahmoudvand, and M. Zokaei Separability and window length in singular spectrum analysis C.R. Math. - CRMATH 349 2011 987 990
    • (2011) C.R. Math. - CRMATH , vol.349 , pp. 987-990
    • Hassani, H.1    Mahmoudvand, R.2    Zokaei, M.3
  • 23
    • 84856557353 scopus 로고    scopus 로고
    • A long-term energy demand forecasting by hybrid neuro-fuzzy models
    • H. Iranmanesh, M. Abdollahzade, and A. Miranian A long-term energy demand forecasting by hybrid neuro-fuzzy models Energies 5 2012 1 21
    • (2012) Energies , vol.5 , pp. 1-21
    • Iranmanesh, H.1    Abdollahzade, M.2    Miranian, A.3
  • 25
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference systems
    • J.S.R. Jang ANFIS: adaptive-network-based fuzzy inference systems Man Cyber. 23 1993 665 685
    • (1993) Man Cyber. , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 26
    • 58149487281 scopus 로고    scopus 로고
    • A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning
    • C.F. Juang, and Y.W. Tsao A self-evolving interval type-2 fuzzy neural network with online structure and parameter learning IEEE Trans. Fuzzy Syst. 16 2008 1411 1424
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , pp. 1411-1424
    • Juang, C.F.1    Tsao, Y.W.2
  • 28
    • 0031253132 scopus 로고    scopus 로고
    • FuNN/2 - A fuzzy neural network architecture for adaptive learning and knowledge acquisition
    • N. Kasabov, J. Kim, M.J. Watts, and A.R. Gray FuNN/2 - a fuzzy neural network architecture for adaptive learning and knowledge acquisition Inform. Sci. 101 1997 155 175
    • (1997) Inform. Sci. , vol.101 , pp. 155-175
    • Kasabov, N.1    Kim, J.2    Watts, M.J.3    Gray, A.R.4
  • 29
    • 0032845493 scopus 로고    scopus 로고
    • HyFIS: Adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems
    • J. Kim, and N. Kasabov HyFIS: adaptive neuro-fuzzy inference systems and their application to nonlinear dynamical systems Neural Netw. 12 1999 1301 1319
    • (1999) Neural Netw. , vol.12 , pp. 1301-1319
    • Kim, J.1    Kasabov, N.2
  • 30
    • 0031272838 scopus 로고    scopus 로고
    • Forecasting time series with genetic fuzzy predictor ensembles
    • D. Kim, and C. Kim Forecasting time series with genetic fuzzy predictor ensembles IEEE Trans. Fuzzy Syst. 5 1997 523 535
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , pp. 523-535
    • Kim, D.1    Kim, C.2
  • 31
    • 84902660037 scopus 로고    scopus 로고
    • Nonlinear time series forecasting with Bayesian neural networks
    • O. KocadaʇlI, and B. AşIkgil Nonlinear time series forecasting with Bayesian neural networks Exp. Syst. Appl. 41 2014 6596 6610
    • (2014) Exp. Syst. Appl. , vol.41 , pp. 6596-6610
    • Kocadaʇli, O.1    Aşikgil, B.2
  • 35
    • 0035441349 scopus 로고    scopus 로고
    • Prediction of noisy chaotic time series using an optimal radial basis function neural network
    • H. Leung Prediction of noisy chaotic time series using an optimal radial basis function neural network IEEE Trans. Neural Netw. 12 2001 1163 1172
    • (2001) IEEE Trans. Neural Netw. , vol.12 , pp. 1163-1172
    • Leung, H.1
  • 36
    • 84941531642 scopus 로고
    • A new approach to fuzzy-neural system modelling
    • Y. Lin, and G.A. Cunningham A new approach to fuzzy-neural system modelling IEEE Trans. Fuzzy Syst. 3 1995 190 198
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , pp. 190-198
    • Lin, Y.1    Cunningham, G.A.2
  • 37
    • 58149517300 scopus 로고    scopus 로고
    • Efficient self-evolving evolutionary learning for neurofuzzy inference systems
    • C.J. Lin, C.H. Chen, and C.T. Lin Efficient self-evolving evolutionary learning for neurofuzzy inference systems IEEE Trans. Fuzzy Syst. 16 2008 1476 1490
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , pp. 1476-1490
    • Lin, C.J.1    Chen, C.H.2    Lin, C.T.3
  • 38
    • 58649101329 scopus 로고    scopus 로고
    • A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications
    • C.J. Lin, C.H. Chen, and C.T. Lin A hybrid of cooperative particle swarm optimization and cultural algorithm for neural fuzzy networks and its prediction applications IEEE Trans. Syst., Man Cyber. - Part C: Appl. Rev. 39 2009 55 68
    • (2009) IEEE Trans. Syst., Man Cyber. - Part C: Appl. Rev. , vol.39 , pp. 55-68
    • Lin, C.J.1    Chen, C.H.2    Lin, C.T.3
  • 39
    • 0028312789 scopus 로고
    • Evolving recurrent perceptrons for time-series modeling
    • J.R. McDonnell, and D. Waagen Evolving recurrent perceptrons for time-series modeling IEEE Trans. Neural Netw. 5 1994 24 38
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 24-38
    • McDonnell, J.R.1    Waagen, D.2
  • 41
    • 40649083824 scopus 로고    scopus 로고
    • Forecasting economic time series using modular neural networks and the fuzzy Sugeno integral as response integration method
    • P. Melin, J. Urías, J. Quintero, M. Ramirez, O. Blanchet, Forecasting economic time series using modular neural networks and the fuzzy Sugeno integral as response integration method, in: IJCNN, 2006, pp. 4363-4368.
    • (2006) IJCNN , pp. 4363-4368
    • Melin, P.1
  • 42
    • 80255133268 scopus 로고    scopus 로고
    • A new approach for time series prediction using ensembles of ANFIS models
    • P. Melin, J. Soto, O. Castillo, and J. Soria A new approach for time series prediction using ensembles of ANFIS models Exp. Syst. Appl. 39 2012 3494 3506
    • (2012) Exp. Syst. Appl. , vol.39 , pp. 3494-3506
    • Melin, P.1    Soto, J.2    Castillo, O.3    Soria, J.4
  • 43
    • 84880918022 scopus 로고    scopus 로고
    • Nonlinear power system load identification using local model networks
    • A. Miranian, and K. Rouzbehi Nonlinear power system load identification using local model networks IEEE Trans. Power Syst. 28 2013 2872 2881
    • (2013) IEEE Trans. Power Syst. , vol.28 , pp. 2872-2881
    • Miranian, A.1    Rouzbehi, K.2
  • 44
    • 84898678160 scopus 로고    scopus 로고
    • Developing a local LSSVM-based neuro-fuzzy model for nonlinear and chaotic time series prediction
    • A. Miranian, and M. Abdollahzade Developing a local LSSVM-based neuro-fuzzy model for nonlinear and chaotic time series prediction IEEE Trans. Neural Netw. Learn. Syst. 24 2013 207 218
    • (2013) IEEE Trans. Neural Netw. Learn. Syst. , vol.24 , pp. 207-218
    • Miranian, A.1    Abdollahzade, M.2
  • 45
    • 84961340885 scopus 로고    scopus 로고
    • National Geophysical Data Center. < >.
    • National Geophysical Data Center. < http://www.ngdc.noaa.gov/stp/solar/ssndata.html >.
  • 47
    • 0029323249 scopus 로고
    • Constructing fuzzy model by self-organising counterpropagation network
    • J. Nie Constructing fuzzy model by self-organising counterpropagation network IEEE Trans. Syst., Man Cyber. 25 1995 963 970
    • (1995) IEEE Trans. Syst., Man Cyber. , vol.25 , pp. 963-970
    • Nie, J.1
  • 48
    • 0021455631 scopus 로고
    • An identification algorithm in fuzzy relational systems
    • W. Pedrycz An identification algorithm in fuzzy relational systems Fuzzy Sets Syst. 13 1984 153 167
    • (1984) Fuzzy Sets Syst. , vol.13 , pp. 153-167
    • Pedrycz, W.1
  • 49
    • 84870502430 scopus 로고    scopus 로고
    • A new method for type-2 fuzzy integration in ensemble neural networks based on genetic algorithms
    • M. Pulido, and P. Melin A new method for type-2 fuzzy integration in ensemble neural networks based on genetic algorithms Recent Adv. Hybrid Intell. Syst. 451 2013 173 182
    • (2013) Recent Adv. Hybrid Intell. Syst. , vol.451 , pp. 173-182
    • Pulido, M.1    Melin, P.2
  • 51
    • 84902438284 scopus 로고    scopus 로고
    • Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange
    • M. Pulido, P. Melin, and O. Castillo Particle swarm optimization of ensemble neural networks with fuzzy aggregation for time series prediction of the Mexican Stock Exchange Inform. Sci. 280 2014 188 204
    • (2014) Inform. Sci. , vol.280 , pp. 188-204
    • Pulido, M.1    Melin, P.2    Castillo, O.3
  • 53
    • 0035494005 scopus 로고    scopus 로고
    • Solar cycle forecasting: A nonlinear dynamics approach
    • S. Sello Solar cycle forecasting: a nonlinear dynamics approach Astron. Astrophys. 377 2001 312 320
    • (2001) Astron. Astrophys. , vol.377 , pp. 312-320
    • Sello, S.1
  • 54
    • 0036825521 scopus 로고    scopus 로고
    • On the use of the wavelet decomposition for time series prediction
    • S. Soltani On the use of the wavelet decomposition for time series prediction Neurocomputing 48 2002 267 277
    • (2002) Neurocomputing , vol.48 , pp. 267-277
    • Soltani, S.1
  • 55
    • 0002354761 scopus 로고
    • Linguistic modeling based on numerical data
    • M. Sugeno, T. Yasukawa, Linguistic modeling based on numerical data, in: Proc. IFSA, 1991, pp. 234-247.
    • (1991) Proc. IFSA , pp. 234-247
    • Sugeno, M.1    Yasukawa, T.2
  • 56
    • 0000009629 scopus 로고
    • Self-organizing and genetic algorithm for an automatic design of fuzzy control and decision systems
    • H. Surmann, A. Kanstein, K. Goser, Self-organizing and genetic algorithm for an automatic design of fuzzy control and decision systems, in: Proc. FUFITs, 1993, pp. 1079-1104.
    • (1993) Proc. FUFITs , pp. 1079-1104
    • Surmann, H.1    Kanstein, A.2    Goser, K.3
  • 59
    • 84868367414 scopus 로고    scopus 로고
    • Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon
    • R. Taorminaa, K. Chaua, and R. Sethib Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon Eng. Appl. Artif. Intell. 25 2012 1670 1676
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , pp. 1670-1676
    • Taorminaa, R.1    Chaua, K.2    Sethib, R.3
  • 60
    • 0002907696 scopus 로고
    • The evaluation of fuzzy models derived from experimental data
    • R.M. Tong The evaluation of fuzzy models derived from experimental data Fuzzy Sets Syst. 4 1980 1 12
    • (1980) Fuzzy Sets Syst. , vol.4 , pp. 1-12
    • Tong, R.M.1
  • 61
    • 0000003175 scopus 로고
    • Threshold autoregression, limit cycles and cyclical data
    • H. Tong, and K.S. Lim Threshold autoregression, limit cycles and cyclical data J. Roy. Stat. Soc. Ser. B 42 1980 245 292
    • (1980) J. Roy. Stat. Soc. Ser. B , vol.42 , pp. 245-292
    • Tong, H.1    Lim, K.S.2
  • 62
    • 33144466864 scopus 로고    scopus 로고
    • Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm
    • J.T. Tsai, J.H. Chou, and T.K. Liu Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm IEEE Trans. Neural Netw. 17 1 2006
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.1
    • Tsai, J.T.1    Chou, J.H.2    Liu, T.K.3
  • 63
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • L.X. Wang, and J.M. Mendel Generating fuzzy rules by learning from examples IEEE Trans. Syst., Man Cyber. 22 1992 1414 1427
    • (1992) IEEE Trans. Syst., Man Cyber. , vol.22 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 64
    • 84875899507 scopus 로고    scopus 로고
    • Toward automatic time-series forecasting using neural networks
    • W. Yan Toward automatic time-series forecasting using neural networks IEEE Trans. Neural Netw. Learn. Syst. 23 2012 1028 1039
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , pp. 1028-1039
    • Yan, W.1
  • 65
    • 77957807957 scopus 로고    scopus 로고
    • Fuzzy wavelet neural network models for forecasting and identification of dynamical systems
    • S. Yilmaz, and Y. Oysal Fuzzy wavelet neural network models for forecasting and identification of dynamical systems IEEE Trans. Neural Netw. 21 2010 1599 1609
    • (2010) IEEE Trans. Neural Netw. , vol.21 , pp. 1599-1609
    • Yilmaz, S.1    Oysal, Y.2
  • 66
    • 44649136064 scopus 로고    scopus 로고
    • Chaotic time series prediction using a neuro-fuzzy system with time-delay coordinates
    • J. Zhang, H. Shu-Hung Chung, and L. Wai-Lun Chaotic time series prediction using a neuro-fuzzy system with time-delay coordinates IEEE Trans. Knowl. Data Eng. 20 2008 956 964
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , pp. 956-964
    • Zhang, J.1    Shu-Hung Chung, H.2    Wai-Lun, L.3
  • 67
    • 34548619946 scopus 로고    scopus 로고
    • A neural network ensemble method with jittered training data for time series forecasting
    • P. Zhang A neural network ensemble method with jittered training data for time series forecasting Inform. Sci. 177 2007 5329 5346
    • (2007) Inform. Sci. , vol.177 , pp. 5329-5346
    • Zhang, P.1
  • 68
    • 64549090645 scopus 로고    scopus 로고
    • A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks
    • J.R. Castro, O. Castillo, P. Melin, and A. Rodríguez-Díaz A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks Inform. Sci. 179 2009 2175 2193
    • (2009) Inform. Sci. , vol.179 , pp. 2175-2193
    • Castro, J.R.1    Castillo, O.2    Melin, P.3    Rodríguez-Díaz, A.4
  • 70
    • 0023209327 scopus 로고
    • Fuzzy model identification and self-learning for dynamic systems
    • C.W. Xu, and Y.Z. Lu Fuzzy model identification and self-learning for dynamic systems IEEE Trans. Syst., Man Cyber. 17 1987 683 689
    • (1987) IEEE Trans. Syst., Man Cyber. , vol.17 , pp. 683-689
    • Xu, C.W.1    Lu, Y.Z.2
  • 71
    • 0033098832 scopus 로고    scopus 로고
    • Recurrent neuro-fuzzy networks for nonlinear process modeling
    • J. Zhang, and A.J. Morris Recurrent neuro-fuzzy networks for nonlinear process modeling IEEE Trans. Neural Netw. 10 1999 313 326
    • (1999) IEEE Trans. Neural Netw. , vol.10 , pp. 313-326
    • Zhang, J.1    Morris, A.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.