-
1
-
-
84937855981
-
Scalable kernel methods via doubly stochastic gradients
-
B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M. Balcan, and L. Song. Scalable kernel methods via doubly stochastic gradients. In Neural Information Processing Systems, 2014.
-
(2014)
Neural Information Processing Systems
-
-
Dai, B.1
Xie, B.2
He, N.3
Liang, Y.4
Raj, A.5
Balcan, M.6
Song, L.7
-
4
-
-
0000406385
-
A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
-
G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Annals of Mathematical Statistics, 41:495-502, 1970.
-
(1970)
Annals of Mathematical Statistics
, vol.41
, pp. 495-502
-
-
Kimeldorf, G.S.1
Wahba, G.2
-
5
-
-
77954665893
-
Sparse spectrum Gaussian process regression
-
M. Lazaro-Gredilla, J. Quinonero-Candela, C. E. Ras-mussen, and A. R. Figueiras-Vidal. Sparse spectrum gaussian process regression. The Journal of Machine Learning Research, 99:1865-1881, 2010.
-
(2010)
The Journal of Machine Learning Research
, vol.99
, pp. 1865-1881
-
-
Lazaro-Gredilla, M.1
Quinonero-Candela, J.2
Ras-Mussen, C.E.3
Figueiras-Vidal, A.R.4
-
7
-
-
84954333999
-
-
Technical Report 1411.4000, arXiv November
-
Z. Lu, M. May, K. Liu, A.B. Garakani, Guo D., A. Bel-let, L. Fan, M. Collins, B. Kingsbury, M. Picheny, and F. Sha. How to scale up kernel methods to be as good as deep neural nets. Technical Report 1411.4000, arXiv, November 2014. . http://arxiv.org/abs/1411.4000
-
(2014)
How to Scale Up Kernel Methods to Be As Good As Deep Neural Nets
-
-
Lu, Z.1
May, M.2
Liu, K.3
Garakani, A.B.4
Guo, D.5
Bel-Let, A.6
Fan, L.7
Collins, M.8
Kingsbury, B.9
Picheny, M.10
Sha, F.11
-
8
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., A 209:415-446, 1909.
-
(1909)
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
9
-
-
0001854616
-
Assessing relevance determination methods using delve
-
In C. M. Bishop, editor Springer
-
Radford M. Neal. Assessing relevance determination methods using delve. In C. M. Bishop, editor, Neural Networks and Machine Learning, pages 97-129. Springer, 1998.
-
(1998)
Neural Networks and Machine Learning
, pp. 97-129
-
-
Neal, R.M.1
-
10
-
-
84899013191
-
Hyper-kernels
-
In S. Thrun S. Becker and K. Obermayer, editors MIT Press, Cambridge, MA
-
C. S. Ong, A. J. Smola, and R. C. Williamson. Hyper-kernels. In S. Thrun S. Becker and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 478-485. MIT Press, Cambridge, MA, 2003.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 478-485
-
-
Ong, C.S.1
Smola, A.J.2
Williamson, R.C.3
-
11
-
-
85161980201
-
Random features for large-scale kernel machines
-
In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors. MIT Press, Cambridge, MA
-
A. Rahimi and B. Recht. Random features for large-scale kernel machines. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
-
-
Rahimi, A.1
Recht, B.2
-
12
-
-
78149297677
-
Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
-
A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In Neural Information Processing Systems, 2009.
-
(2009)
Neural Information Processing Systems
-
-
Rahimi, A.1
Recht, B.2
-
14
-
-
0001878701
-
Positive definite functions on spheres
-
I. Schoenberg. Positive definite functions on spheres. Duke Math. J., 9:96-108, 1942.
-
(1942)
Duke Math. J.
, vol.9
, pp. 96-108
-
-
Schoenberg, I.1
-
15
-
-
84865131152
-
A generalized representer theorem
-
In D. P. Helmbold and B. Williamson, editors, London, UK. Springer-Verlag
-
B. Scholkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In D. P. Helmbold and B. Williamson, editors, Proc. Annual Conf. Computational Learning Theory, number 2111 in Lecture Notes in Comput. Sci., pages 416-426, London, UK, 2001. Springer-Verlag.
-
(2001)
Proc. Annual Conf. Computational Learning Theory Lecture Notes in Comput. Sci.
, Issue.2111
, pp. 416-426
-
-
Scholkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
17
-
-
0003017575
-
Prediction with Gaussian processes: From linear regression to linear prediction and beyond
-
In M. I. Jordan, editor, Kluwer Academic
-
C. K. I. Williams. Prediction with Gaussian processes: From linear regression to linear prediction and beyond. In M. I. Jordan, editor, Learning and Inference in Graphical Models, pages 599-621. Kluwer Academic, 1998.
-
(1998)
Learning and Inference in Graphical Models
, pp. 599-621
-
-
Williams, C.K.I.1
|