메뉴 건너뛰기




Volumn 109, Issue 8, 2017, Pages

Reporting and Guidelines in Propensity Score Analysis: A Systematic Review of Cancer and Cancer Surgical Studies

Author keywords

[No Author keywords available]

Indexed keywords

CANCER RESEARCH; CANCER SURGERY; DIGESTIVE SYSTEM CANCER; HUMAN; LUNG CANCER; MALIGNANT NEOPLASM; MEDICAL LITERATURE; MEDICAL RESEARCH; METHODOLOGY; PRACTICE GUIDELINE; PRIORITY JOURNAL; PROPENSITY SCORE; REVIEW; SYSTEMATIC REVIEW; UROGENITAL TRACT CANCER; ALGORITHM; JOURNAL IMPACT FACTOR; NEOPLASMS; PUBLICATION; RESEARCH; STANDARDS; TRENDS;

EID: 85021080339     PISSN: 00278874     EISSN: 14602105     Source Type: Journal    
DOI: 10.1093/jnci/djw323     Document Type: Review
Times cited : (269)

References (39)
  • 1
    • 0034702184 scopus 로고    scopus 로고
    • Randomized trials or observational tribulations?
    • Pocock SJ, Elbourne DR. Randomized trials or observational tribulations? N Engl J Med. 2000;342(25):1907-1909.
    • (2000) N Engl J Med. , vol.342 , Issue.25 , pp. 1907-1909
    • Pocock, S.J.1    Elbourne, D.R.2
  • 2
    • 0029912547 scopus 로고    scopus 로고
    • Why we need observational studies to evaluate the effectiveness of health care
    • Black N. Why we need observational studies to evaluate the effectiveness of health care. BMJ. 1996;312(7040):1215-1218.
    • (1996) BMJ , vol.312 , Issue.7040 , pp. 1215-1218
    • Black, N.1
  • 3
    • 58649083487 scopus 로고    scopus 로고
    • From randomized controlled trials to observational studies
    • Silverman SL. From randomized controlled trials to observational studies. Am J Med. 2009;122(2):114-120.
    • (2009) Am J Med. , vol.122 , Issue.2 , pp. 114-120
    • Silverman, S.L.1
  • 4
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41-55.
    • (1983) Biometrika. , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 5
    • 3543135271 scopus 로고    scopus 로고
    • Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • D'Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med. 1998;17(19): 2265-2281.
    • (1998) Stat Med. , vol.17 , Issue.19 , pp. 2265-2281
    • D'Agostino, R.B.1
  • 6
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med. 2004;23(19):2937-2960.
    • (2004) Stat Med. , vol.23 , Issue.19 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 7
    • 34247629651 scopus 로고    scopus 로고
    • Propensity scores in cardiovascular research
    • D'Agostino RB Jr. Propensity scores in cardiovascular research. Circulation. 2007;115(17):2340-2343.
    • (2007) Circulation. , vol.115 , Issue.17 , pp. 2340-2343
    • D'Agostino, R.B.1
  • 8
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • Austin PC. A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003. Stat Med. 2008;27(12):2037-2049.
    • (2008) Stat Med. , vol.27 , Issue.12 , pp. 2037-2049
    • Austin, P.C.1
  • 9
    • 77957806232 scopus 로고    scopus 로고
    • Matching methods for causal inference: A review and a look forward
    • Stuart EA. Matching methods for causal inference: A review and a look forward. Stat Sci. 2010;25(1):1-21.
    • (2010) Stat Sci. , vol.25 , Issue.1 , pp. 1-21
    • Stuart, E.A.1
  • 10
    • 84892370875 scopus 로고    scopus 로고
    • Increasing value and reducing waste in research design, conduct, and analysis
    • Ioannidis JPA, Greenland S, Hlatky MA, et al. Increasing value and reducing waste in research design, conduct, and analysis. Lancet. 2014;383(9912):166-175.
    • (2014) Lancet. , vol.383 , Issue.9912 , pp. 166-175
    • Ioannidis, J.P.A.1    Greenland, S.2    Hlatky, M.A.3
  • 11
    • 0024997116 scopus 로고
    • Need for uniformity in collection and reporting of data in cancer clinical trials
    • Phelps RM, Dearing MP, Mulshine JL. Need for uniformity in collection and reporting of data in cancer clinical trials. J Natl Cancer Inst. 1990;82(17): 1377-1378.
    • (1990) J Natl Cancer Inst. , vol.82 , Issue.17 , pp. 1377-1378
    • Phelps, R.M.1    Dearing, M.P.2    Mulshine, J.L.3
  • 12
    • 84891532381 scopus 로고    scopus 로고
    • Selecting an appropriate caliper can be essential for achieving good balance with propensity score matching
    • Lunt M. Selecting an appropriate caliper can be essential for achieving good balance with propensity score matching. Am J Epidemiol. 2014;179(2):226-235.
    • (2014) Am J Epidemiol. , vol.179 , Issue.2 , pp. 226-235
    • Lunt, M.1
  • 13
    • 84897968569 scopus 로고    scopus 로고
    • Metrics for covariate balance in cohort studies of causal effects
    • Franklin JM, Rassen JA, Ackermann D, et al. Metrics for covariate balance in cohort studies of causal effects. Stat Med. 2014;33(10):1685-1699.
    • (2014) Stat Med. , vol.33 , Issue.10 , pp. 1685-1699
    • Franklin, J.M.1    Rassen, J.A.2    Ackermann, D.3
  • 14
    • 0027717184 scopus 로고
    • Effects of misspecification of the propensity score on estimators of treatment effect
    • Drake C. Effects of misspecification of the propensity score on estimators of treatment effect. Biometrics. 1993;49(4):1231-1236.
    • (1993) Biometrics. , vol.49 , Issue.4 , pp. 1231-1236
    • Drake, C.1
  • 15
    • 0030862072 scopus 로고    scopus 로고
    • Estimating causal effects from large data sets using propensity scores
    • Rubin DB. Estimating causal effects from large data sets using propensity scores. Ann Intern Med. 1997;127(8 pt 2):757-763.
    • (1997) Ann Intern Med. , vol.127 , Issue.8 , pp. 757-763
    • Rubin, D.B.1
  • 16
    • 0017360990 scopus 로고
    • The measurement of observer agreement for categorical data
    • Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-174.
    • (1977) Biometrics. , vol.33 , Issue.1 , pp. 159-174
    • Landis, J.R.1    Koch, G.G.2
  • 17
    • 84941062637 scopus 로고    scopus 로고
    • Propensity scores: Methods, considerations, and applications in the Journal of Thoracic and Cardiovascular Surgery
    • McMurry TL, Hu Y, Blackstone EH, et al. Propensity scores: Methods, considerations, and applications in the Journal of Thoracic and Cardiovascular Surgery. J Thorac Cardiovasc Surg. 2015;150(1):14-19.
    • (2015) J Thorac Cardiovasc Surg. , vol.150 , Issue.1 , pp. 14-19
    • McMurry, T.L.1    Hu, Y.2    Blackstone, E.H.3
  • 18
    • 0035044501 scopus 로고    scopus 로고
    • Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: A matched analysis using propensity scores
    • Normand ST, Landrum MB, Guadagnoli E, et al. Validating recommendations for coronary angiography following acute myocardial infarction in the elderly: A matched analysis using propensity scores. J Clin Epidemiol. 2001;54(4): 387-398.
    • (2001) J Clin Epidemiol. , vol.54 , Issue.4 , pp. 387-398
    • Normand, S.T.1    Landrum, M.B.2    Guadagnoli, E.3
  • 19
    • 38849182246 scopus 로고    scopus 로고
    • Some practical guidance for the implementation of propensity score matching
    • Caliendo M, Kopeinig S. Some practical guidance for the implementation of propensity score matching. J Econ Surv. 2008;22(1):31-72.
    • (2008) J Econ Surv. , vol.22 , Issue.1 , pp. 31-72
    • Caliendo, M.1    Kopeinig, S.2
  • 20
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: Parallelswith the design of randomized trials
    • Rubin DB. The design versus the analysis of observational studies for causal effects: Parallelswith the design of randomized trials. Stat Med. 2007;26(1):20-36.
    • (2007) Stat Med. , vol.26 , Issue.1 , pp. 20-36
    • Rubin, D.B.1
  • 21
    • 77955722285 scopus 로고    scopus 로고
    • On the limitations of comparative effectiveness research
    • Rubin DB. On the limitations of comparative effectiveness research. Stat Med. 2010;29(19):1991-1995.
    • (2010) Stat Med. , vol.29 , Issue.19 , pp. 1991-1995
    • Rubin, D.B.1
  • 22
    • 84888314733 scopus 로고    scopus 로고
    • A tool for assessing the feasibility of comparative effectiveness research
    • Walker A, Patrick Lauer, et al. A tool for assessing the feasibility of comparative effectiveness research. Com Eff Res. 2013;3:11-20.
    • (2013) Com Eff Res. , vol.3 , pp. 11-20
    • Walker, A.1    Lauer, P.2
  • 23
    • 33846978784 scopus 로고    scopus 로고
    • Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting
    • Dupuy A, Simon RM. Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst. 2007;99(2):147-157.
    • (2007) J Natl Cancer Inst. , vol.99 , Issue.2 , pp. 147-157
    • Dupuy, A.1    Simon, R.M.2
  • 24
    • 36348939350 scopus 로고    scopus 로고
    • Statistics in medicine-reporting of subgroup analyses in clinical trials
    • Wang R, Lagakos SW, Ware JH, et al. Statistics in medicine-reporting of subgroup analyses in clinical trials. N Engl J Med. 2007;357(21):2189-2194.
    • (2007) N Engl J Med. , vol.357 , Issue.21 , pp. 2189-2194
    • Wang, R.1    Lagakos, S.W.2    Ware, J.H.3
  • 25
    • 84947290122 scopus 로고    scopus 로고
    • From protocols to publications: A study in selective reporting of outcomes in randomized trials in oncology
    • Raghav KP, Mahajan S, Yao JC, et al. From protocols to publications: A study in selective reporting of outcomes in randomized trials in oncology. J Clin Oncol. 2015;33(31):3583-3590.
    • (2015) J Clin Oncol. , vol.33 , Issue.31 , pp. 3583-3590
    • Raghav, K.P.1    Mahajan, S.2    Yao, J.C.3
  • 26
    • 39649090053 scopus 로고    scopus 로고
    • The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies
    • von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J Clin Epidemiol. 2008;61(4):344-349.
    • (2008) J Clin Epidemiol. , vol.61 , Issue.4 , pp. 344-349
    • Von Elm, E.1    Altman, D.G.2    Egger, M.3
  • 27
    • 84880306368 scopus 로고    scopus 로고
    • A tutorial on propensity score estimation for multiple treatments using generalized boosted models
    • McCaffrey DF, Griffin BA, Almirall D, et al. A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Stat Med. 2013;32(19):3388-3414.
    • (2013) Stat Med. , vol.32 , Issue.19 , pp. 3388-3414
    • McCaffrey, D.F.1    Griffin, B.A.2    Almirall, D.3
  • 28
    • 34547657092 scopus 로고    scopus 로고
    • On the estimation and use of propensity scores in case-control and case-cohort studies
    • Månsson R, Joffe MM, Sun W, et al. On the estimation and use of propensity scores in case-control and case-cohort studies. Am J Epidemiol. 2007;166(3): 332-339.
    • (2007) Am J Epidemiol. , vol.166 , Issue.3 , pp. 332-339
    • Månsson, R.1    Joffe, M.M.2    Sun, W.3
  • 29
    • 27744462592 scopus 로고    scopus 로고
    • Propensity score matching with time-dependent covariates
    • Lu B. Propensity score matching with time-dependent covariates. Biometrics. 2005;61(3):721-728.
    • (2005) Biometrics. , vol.61 , Issue.3 , pp. 721-728
    • Lu, B.1
  • 30
    • 33645236260 scopus 로고    scopus 로고
    • Variable selection for propensity score models
    • Brookhart MA, Schneeweiss S, Rothman KJ, et al. Variable selection for propensity score models. Am J Epidemiol. 2006;163(12):1149-1156.
    • (2006) Am J Epidemiol. , vol.163 , Issue.12 , pp. 1149-1156
    • Brookhart, M.A.1    Schneeweiss, S.2    Rothman, K.J.3
  • 32
    • 0041626110 scopus 로고    scopus 로고
    • Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders
    • Cepeda MS. Comparison of logistic regression versus propensity score when the number of events is low and there are multiple confounders. Am J Epidemiol. 2003;158(3):280-287.
    • (2003) Am J Epidemiol. , vol.158 , Issue.3 , pp. 280-287
    • Cepeda, M.S.1
  • 33
    • 33645217214 scopus 로고    scopus 로고
    • Propensity score
    • Armitage P, Colton T, eds. 2nd ed. Boston, MA: Wiley
    • Rosenbaum PR. Propensity Score. In: Armitage P, Colton T, eds. Encyclopedia of Biostatistics. 2nd ed. Boston, MA: Wiley; 2005:4267-4272.
    • (2005) Encyclopedia of Biostatistics , pp. 4267-4272
    • Rosenbaum, P.R.1
  • 34
    • 84879167098 scopus 로고    scopus 로고
    • The performance of different propensity score methods for estimating marginal hazard ratios
    • Austin PC. The performance of different propensity score methods for estimating marginal hazard ratios. Stat Med. 2013;32(16):2837-2849.
    • (2013) Stat Med. , vol.32 , Issue.16 , pp. 2837-2849
    • Austin, P.C.1
  • 35
    • 18844452973 scopus 로고    scopus 로고
    • Propensity score methods gave similar results to traditional regression modeling in observational studies: A systematic review
    • Shah BR, Laupacis A, Hux JE, et al. Propensity score methods gave similar results to traditional regression modeling in observational studies: a systematic review. J Clin Epidemiol. 2005;58(6):550-559.
    • (2005) J Clin Epidemiol. , vol.58 , Issue.6 , pp. 550-559
    • Shah, B.R.1    Laupacis, A.2    Hux, J.E.3
  • 36
    • 33645226210 scopus 로고    scopus 로고
    • A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods
    • Sturmer T, Joshi M, Glynn RJ, et al. A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol. 2006;59(5):437-447.
    • (2006) J Clin Epidemiol. , vol.59 , Issue.5 , pp. 437-447
    • Sturmer, T.1    Joshi, M.2    Glynn, R.J.3
  • 37
    • 84859652622 scopus 로고    scopus 로고
    • Recommendations for presenting analyses of effect modification and interaction
    • Knol MJ, VanderWeele TJ. Recommendations for presenting analyses of effect modification and interaction. Int J Epidemiol. 2012;41(2):514-520.
    • (2012) Int J Epidemiol. , vol.41 , Issue.2 , pp. 514-520
    • Knol, M.J.1    VanderWeele, T.J.2
  • 38
    • 84907163799 scopus 로고    scopus 로고
    • The comparative recall of Google Scholar versus PubMed in identical searches for biomedical systematic reviews: A review of searches used in systematic reviews
    • Bramer WM, Giustini D, Kramer BM, et al. The comparative recall of Google Scholar versus PubMed in identical searches for biomedical systematic reviews: a review of searches used in systematic reviews. Syst Rev. 2013; 2:115.
    • (2013) Syst Rev. , vol.2 , pp. 115
    • Bramer, W.M.1    Giustini, D.2    Kramer, B.M.3
  • 39
    • 84938911177 scopus 로고    scopus 로고
    • Using data sources beyond PubMed has a modest impact on the results of systematic reviews of therapeutic interventions
    • Halladay CW, Trikalinos TA, Schmid IT, et al. Using data sources beyond PubMed has a modest impact on the results of systematic reviews of therapeutic interventions. J Clin Epidemiol. 2015;68(9):1076-1084.
    • (2015) J Clin Epidemiol. , vol.68 , Issue.9 , pp. 1076-1084
    • Halladay, C.W.1    Trikalinos, T.A.2    Schmid, I.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.