메뉴 건너뛰기




Volumn 150, Issue 1, 2015, Pages 14-19

Propensity scores: Methods, considerations, and applications in the Journal of Thoracic and Cardiovascular Surgery

Author keywords

causal inference; Key Words propensity score; matching; observational studies; statistical methods

Indexed keywords

CARDIOVASCULAR SURGERY; CONCEPTUAL FRAMEWORK; DATA ANALYSIS; DOCUMENTATION; EFFECT SIZE; HUMAN; INFORMATION; LITERATURE; LOGISTIC REGRESSION ANALYSIS; PRIORITY JOURNAL; PROPENSITY SCORE; PUBLICATION; REVIEW; SCIENTIFIC LITERATURE; STATISTICAL SIGNIFICANCE; THORAX SURGERY; TREATMENT OUTCOME; CLINICAL TRIAL (TOPIC);

EID: 84941062637     PISSN: 00225223     EISSN: 1097685X     Source Type: Journal    
DOI: 10.1016/j.jtcvs.2015.03.057     Document Type: Article
Times cited : (133)

References (29)
  • 1
    • 0034858082 scopus 로고    scopus 로고
    • Breaking down barriers: Helpful breakthrough statistical methods you need to understand better
    • E.H. Blackstone Breaking down barriers: helpful breakthrough statistical methods you need to understand better J Thorac Cardiovasc Surg 122 2001 430 439
    • (2001) J Thorac Cardiovasc Surg , vol.122 , pp. 430-439
    • Blackstone, E.H.1
  • 6
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials
    • D.B. Rubin The design versus the analysis of observational studies for causal effects: parallels with the design of randomized trials Stat Med 26 2007 20 36
    • (2007) Stat Med , vol.26 , pp. 20-36
    • Rubin, D.B.1
  • 7
    • 77957806232 scopus 로고    scopus 로고
    • Matching methods for causal inference: A review and a look forward
    • E.A. Stuart Matching methods for causal inference: a review and a look forward Stat Sci 25 2010 1 21
    • (2010) Stat Sci , vol.25 , pp. 1-21
    • Stuart, E.A.1
  • 8
    • 3543135271 scopus 로고    scopus 로고
    • Tutorial in biostatistics: Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group
    • R.B. d'Agostino Tutorial in biostatistics: propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group Stat Med 17 1998 2265 2281
    • (1998) Stat Med , vol.17 , pp. 2265-2281
    • D'Agostino, R.B.1
  • 9
    • 35448972461 scopus 로고    scopus 로고
    • Propensity-score matching in the cardiovascular surgery literature from 2004 to 2006: A systematic review and suggestions for improvement
    • e3
    • P.C. Austin Propensity-score matching in the cardiovascular surgery literature from 2004 to 2006: a systematic review and suggestions for improvement J Thorac Cardiovasc Surg 134 2007 1128 1135 e3
    • (2007) J Thorac Cardiovasc Surg , vol.134 , pp. 1128-1135
    • Austin, P.C.1
  • 10
    • 0142242590 scopus 로고    scopus 로고
    • Gender and outcomes after coronary artery bypass grafting: A propensity-matched comparison
    • C.G. Koch, F. Khandwala, N. Nussmeier, and E.H. Blackstone Gender and outcomes after coronary artery bypass grafting: a propensity-matched comparison J Thorac Cardiovasc Surg 126 2003 2032 2043
    • (2003) J Thorac Cardiovasc Surg , vol.126 , pp. 2032-2043
    • Koch, C.G.1    Khandwala, F.2    Nussmeier, N.3    Blackstone, E.H.4
  • 11
    • 0022033155 scopus 로고
    • The bias due to incomplete matching
    • P.R. Rosenbaum, and D.B. Rubin The bias due to incomplete matching Biometrics 41 1985 103 116
    • (1985) Biometrics , vol.41 , pp. 103-116
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 12
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • P.R. Rosenbaum, and D.B. Rubin The central role of the propensity score in observational studies for causal effects Biometrika 70 1983 41 55
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 13
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • B.K. Lee, J. Lessler, and E.A. Stuart Improving propensity score weighting using machine learning Stat Med 29 2010 337 346
    • (2010) Stat Med , vol.29 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 14
    • 77953607621 scopus 로고    scopus 로고
    • Propensity score estimation: Neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
    • D. Westreich, J. Lessler, and M.J. Funk Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression J Clin Epidemiol 63 2010 826 833
    • (2010) J Clin Epidemiol , vol.63 , pp. 826-833
    • Westreich, D.1    Lessler, J.2    Funk, M.J.3
  • 17
    • 0035761763 scopus 로고    scopus 로고
    • Using propensity scores to help design observational studies: Application to the tobacco litigation
    • D.B. Rubin Using propensity scores to help design observational studies: application to the tobacco litigation Health Serv Outcomes Res 2 2001 169 188
    • (2001) Health Serv Outcomes Res , vol.2 , pp. 169-188
    • Rubin, D.B.1
  • 18
    • 10844272375 scopus 로고    scopus 로고
    • On principles for modeling propensity scores in medical research
    • D.B. Rubin On principles for modeling propensity scores in medical research Pharmacoepidemiol Drug Saf 13 2004 855 857
    • (2004) Pharmacoepidemiol Drug Saf , vol.13 , pp. 855-857
    • Rubin, D.B.1
  • 19
    • 84949193513 scopus 로고
    • Reducing bias in observational studies using subclassification on the propensity score
    • P.R. Rosenbaum, and D.B. Rubin Reducing bias in observational studies using subclassification on the propensity score J Am Stat Assoc 79 1984 516 524
    • (1984) J Am Stat Assoc , vol.79 , pp. 516-524
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 20
    • 84945581878 scopus 로고
    • Constructing a control group using multivariate matched sampling methods that incorporate the propensity score
    • P.R. Rosenbaum, and D.B. Rubin Constructing a control group using multivariate matched sampling methods that incorporate the propensity score Am Statis 39 1985 33 38
    • (1985) Am Statis , vol.39 , pp. 33-38
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 21
  • 22
    • 0003138938 scopus 로고
    • Comparison of multivariate matching methods: Structures, distances, and algorithms
    • X.S. Gu, and P.R. Rosenbaum Comparison of multivariate matching methods: structures, distances, and algorithms J Comput Graphic Stat 2 1993 405 420
    • (1993) J Comput Graphic Stat , vol.2 , pp. 405-420
    • Gu, X.S.1    Rosenbaum, P.R.2
  • 24
    • 40549104115 scopus 로고    scopus 로고
    • Misunderstandings between experimentalists and observationalists about causal inference
    • K. Imai, G. King, and E.A. Stuart Misunderstandings between experimentalists and observationalists about causal inference J Roy Stat Soc: Ser A 171 2008 481 502
    • (2008) J Roy Stat Soc: Ser A , vol.171 , pp. 481-502
    • Imai, K.1    King, G.2    Stuart, E.A.3
  • 25
    • 70449641720 scopus 로고    scopus 로고
    • Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research
    • P.C. Austin Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research Commun Stat Simul Comput 38 2009 1228 1234
    • (2009) Commun Stat Simul Comput , vol.38 , pp. 1228-1234
    • Austin, P.C.1
  • 26
    • 44649173785 scopus 로고    scopus 로고
    • A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003
    • P.C. Austin A critical appraisal of propensity-score matching in the medical literature between 1996 and 2003 Stat Med 27 2008 2037 2049
    • (2008) Stat Med , vol.27 , pp. 2037-2049
    • Austin, P.C.1
  • 27
    • 44649111276 scopus 로고    scopus 로고
    • Developing practical recommendations for the use of propensity scores: Discussion of 'A critical appraisal of propensity score matching in the medical literature between 1996 and 2003' by Peter Austin, Statistics in Medicine
    • E.A. Stuart Developing practical recommendations for the use of propensity scores: Discussion of 'A critical appraisal of propensity score matching in the medical literature between 1996 and 2003' by Peter Austin, Statistics in Medicine Stat Med 27 2008 2062 2065
    • (2008) Stat Med , vol.27 , pp. 2062-2065
    • Stuart, E.A.1
  • 28
    • 84896544710 scopus 로고    scopus 로고
    • A weighting analogue to pair matching in propensity score analysis
    • L. Li, and T. Greene A weighting analogue to pair matching in propensity score analysis Int J Biostat 9 2013 215 234
    • (2013) Int J Biostat , vol.9 , pp. 215-234
    • Li, L.1    Greene, T.2
  • 29
    • 0000001801 scopus 로고
    • The use of matched sampling and regression adjustment to remove bias in observational studies
    • D.B. Rubin The use of matched sampling and regression adjustment to remove bias in observational studies Biometrics 29 1973 185 203
    • (1973) Biometrics , vol.29 , pp. 185-203
    • Rubin, D.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.