메뉴 건너뛰기




Volumn 78, Issue , 2017, Pages

Estimation of extended mixed models using latent classes and latent processes: The R package lcmm

Author keywords

Curvilinearity; Dynamic prediction; Fortran 90; Growth mixture model; Joint model; Psychometric tests; R

Indexed keywords


EID: 85020429515     PISSN: 15487660     EISSN: None     Source Type: Journal    
DOI: 10.18637/jss.v078.i02     Document Type: Article
Times cited : (577)

References (51)
  • 2
    • 0037469122 scopus 로고    scopus 로고
    • Choosing Starting Values for the EM Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models.
    • Biernacki C, Celeux G, Govaert G (2003). “Choosing Starting Values for the EM Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models.” Computational Statistics & Data Analysis, 41(3-4), 561-575. doi:10.1016/s0167-9473(02)00163-9.
    • (2003) Computational Statistics & Data Analysis , vol.41 , Issue.3-4 , pp. 561-575
    • Biernacki, C.1    Celeux, G.2    Govaert, G.3
  • 3
    • 84926006939 scopus 로고    scopus 로고
    • Quantifying and Comparing Dynamic Predictive Accuracy of Joint Models for Longitudinal Marker and Time-to-Event in Presence of Censoring and Competing Risks.
    • Blanche P, Proust-Lima C, Loubère L, Berr C, Dartigues J, Jacqmin-Gadda H (2015). “Quantifying and Comparing Dynamic Predictive Accuracy of Joint Models for Longitudinal Marker and Time-to-Event in Presence of Censoring and Competing Risks.” Biometrics, 71(1), 102-113. doi:10.1111/biom.12232.
    • (2015) Biometrics , vol.71 , Issue.1 , pp. 102-113
    • Blanche, P.1    Proust-Lima, C.2    Loubère, L.3    Berr, C.4    Dartigues, J.5    Jacqmin-Gadda, H.6
  • 4
    • 7444243206 scopus 로고    scopus 로고
    • Developmental Trajectories of Externalizing Behaviors in Childhood and Adolescence.
    • Bongers IL, Koot HM, Van der Ende J, Verhulst FC (2004). “Developmental Trajectories of Externalizing Behaviors in Childhood and Adolescence.” Child Development, 75(5), 1523-1537. doi:10.1111/j.1467-8624.2004.00755.x.
    • (2004) Child Development , vol.75 , Issue.5 , pp. 1523-1537
    • Bongers, I.L.1    Koot, H.M.2    Van Der Ende, J.3    Verhulst, F.C.4
  • 5
    • 84927163182 scopus 로고    scopus 로고
    • Using Statistical Procedures to Identify Differentially Functioning Test Items.
    • Clauser BE, Mazor KM (1998). “Using Statistical Procedures to Identify Differentially Functioning Test Items.” Educational Measurement: Issues and Practice, 17(1), 31-44. doi: 10.1111/j.1745-3992.1998.tb00619.x.
    • (1998) Educational Measurement: Issues and Practice , vol.17 , Issue.1 , pp. 31-44
    • Clauser, B.E.1    Mazor, K.M.2
  • 6
    • 84862883959 scopus 로고    scopus 로고
    • Choice of Prognostic Estimators in Joint Models by Estimating Differences of Expected Conditional Kullback-Leibler Risks.
    • Commenges D, Liquet B, Proust-Lima C (2012). “Choice of Prognostic Estimators in Joint Models by Estimating Differences of Expected Conditional Kullback-Leibler Risks.” Biometrics, 68(2), 380-387. doi:10.1111/j.1541-0420.2012.01753.x.
    • (2012) Biometrics , vol.68 , Issue.2 , pp. 380-387
    • Commenges, D.1    Liquet, B.2    Proust-Lima, C.3
  • 7
    • 84928881636 scopus 로고    scopus 로고
    • A Universal Approximate CrossValidation Criterion for Regular Risk Functions.
    • Commenges D, Proust-Lima C, Samieri C, Liquet B (2015). “A Universal Approximate CrossValidation Criterion for Regular Risk Functions.” International Journal of Biostatistics, 11(1), 51-67. doi:10.1515/ijb-2015-0004.
    • (2015) International Journal of Biostatistics , vol.11 , Issue.1 , pp. 51-67
    • Commenges, D.1    Proust-Lima, C.2    Samieri, C.3    Liquet, B.4
  • 10
    • 0030190203 scopus 로고    scopus 로고
    • Fully Symmetric Interpolatory Rules for Multiple Integrals over Infinite Regions with Gaussian Weight.
    • Genz A, Keister BD (1996). “Fully Symmetric Interpolatory Rules for Multiple Integrals over Infinite Regions with Gaussian Weight.” Journal of Computational and Applied Mathematics, 71(2), 299-309. doi:10.1016/0377-0427(95)00232-4.
    • (1996) Journal of Computational and Applied Mathematics , vol.71 , Issue.2 , pp. 299-309
    • Genz, A.1    Keister, B.D.2
  • 12
    • 34247868033 scopus 로고    scopus 로고
    • Fitting Finite Mixtures of Generalized Linear Regressions in R.
    • Grün B, Leisch F (2007). “Fitting Finite Mixtures of Generalized Linear Regressions in R.” Computational Statistics & Data Analysis, 51(11), 5247-5252. doi:10.1016/j.csda.2006.08.014.
    • (2007) Computational Statistics & Data Analysis , vol.51 , Issue.11 , pp. 5247-5252
    • Grün, B.1    Leisch, F.2
  • 13
    • 54949126376 scopus 로고    scopus 로고
    • FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters.
    • Grün B, Leisch F (2008). “FlexMix Version 2: Finite Mixtures with Concomitant Variables and Varying and Constant Parameters.” Journal of Statistical Software, 28(4), 1-35. doi: 10.18637/jss.v028.i04.
    • (2008) Journal of Statistical Software , vol.28 , Issue.4 , pp. 1-35
    • Grün, B.1    Leisch, F.2
  • 15
    • 77949704277 scopus 로고    scopus 로고
    • Score Test for Conditional Independence between Longitudinal Outcome and Time to Event Given the Classes in the Joint Latent Class Model.
    • Jacqmin-Gadda H, Proust-Lima C, Taylor JMG, Commenges D (2010). “Score Test for Conditional Independence between Longitudinal Outcome and Time to Event Given the Classes in the Joint Latent Class Model.” Biometrics, 66(1), 11-19. doi:10.1111/j.1541-0420.2009.01234.x.
    • (2010) Biometrics , vol.66 , Issue.1 , pp. 11-19
    • Jacqmin-Gadda, H.1    Proust-Lima, C.2    Taylor, J.3    Commenges, D.4
  • 16
    • 0035530692 scopus 로고    scopus 로고
    • A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories.
    • Jones BL, Nagin DS, Roeder K (2001). “A SAS Procedure Based on Mixture Models for Estimating Developmental Trajectories.” Sociological Methods and Research, 29(3), 374-393. doi:10.1177/0049124101029003005.
    • (2001) Sociological Methods and Research , vol.29 , Issue.3 , pp. 374-393
    • Jones, B.L.1    Nagin, D.S.2    Roeder, K.3
  • 17
    • 69449085475 scopus 로고    scopus 로고
    • A New R Package for Bayesian Estimation of Multivariate Normal Mixtures Allowing for Selection of the Number of Components and Interval-Censored Data.
    • Komárek A (2009). “A New R Package for Bayesian Estimation of Multivariate Normal Mixtures Allowing for Selection of the Number of Components and Interval-Censored Data.” Computational Statistics & Data Analysis, 53(12), 3932-3947. doi:10.1016/j.csda.2009.05.006.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.12 , pp. 3932-3947
    • Komárek, A.1
  • 18
    • 84907104826 scopus 로고    scopus 로고
    • Capabilities of R Package mixAK for Clustering Based on Multivariate Continuous and Discrete Longitudinal Data.
    • Komárek A, Komárková L (2014). “Capabilities of R Package mixAK for Clustering Based on Multivariate Continuous and Discrete Longitudinal Data.” Journal of Statistical Software, 59(12). doi:10.18637/jss.v059.i12.
    • (2014) Journal of Statistical Software , vol.59 , Issue.12
    • Komárek, A.1    Komárková, L.2
  • 20
    • 0020333131 scopus 로고
    • Random-Effects Models for Longitudinal Data.
    • Laird NM, Ware JH (1982). “Random-Effects Models for Longitudinal Data.” Biometrics, 38(4), 963-974. doi:10.2307/2529876.
    • (1982) Biometrics , vol.38 , Issue.4 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 21
    • 11244333649 scopus 로고    scopus 로고
    • FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R.
    • Leisch F (2004). “FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R.” Journal of Statistical Software, 11(8), 1-18. doi:10.18637/jss.v011.i08.
    • (2004) Journal of Statistical Software , vol.11 , Issue.8 , pp. 1-18
    • Leisch, F.1
  • 22
    • 0028603650 scopus 로고
    • Incidence of Dementia and Alzheimers Disease in Elderly Community Residents of South-Western France.”
    • Letenneur L, Commenges D, Dartigues JF, Barberger-Gateau P (1994). “Incidence of Dementia and Alzheimer’s Disease in Elderly Community Residents of South-Western France.” International Journal of Epidemiology, 23(6), 1256-1261. doi:10.1093/ije/23.6.1256.
    • (1994) International Journal of Epidemiology , vol.23 , Issue.6 , pp. 1256-1261
    • Letenneur, L.1    Commenges, D.2    Dartigues, J.F.3    Barberger-Gateau, P.4
  • 23
    • 0036489045 scopus 로고    scopus 로고
    • Latent Class Models for Joint Analysis of Longitudinal Biomarker and Event Process Data: Application to Longitudinal Prostate-Specific Antigen Readings and Prostate Cancer.
    • Lin H, Turnbull BW, McCulloch CE, Slate EH (2002). “Latent Class Models for Joint Analysis of Longitudinal Biomarker and Event Process Data: Application to Longitudinal Prostate-Specific Antigen Readings and Prostate Cancer.” Journal of the American Statistical Association, 97(457), 53-65. doi:10.1198/016214502753479220.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 53-65
    • Lin, H.1    Turnbull, B.W.2    McCulloch, C.E.3    Slate, E.H.4
  • 24
    • 84950452119 scopus 로고
    • Modeling the Drop-Out Mechanism in Repeated-Measures Studies.
    • Little RJA (1995). “Modeling the Drop-Out Mechanism in Repeated-Measures Studies.” Journal of the American Statistical Association, 90(431), 1112-1121. doi:10.1080/01621459.1995.10476615.
    • (1995) Journal of the American Statistical Association , vol.90 , Issue.431 , pp. 1112-1121
    • Little, R.1
  • 25
    • 0000169232 scopus 로고
    • An Algorithm for Least-Squares Estimation of Nonlinear Parameters.
    • Marquardt D (1963). “An Algorithm for Least-Squares Estimation of Nonlinear Parameters.” Journal of the Society for Industrial and Applied Mathematics, 11(2), 431-441. doi:10.1137/0111030.
    • (1963) Journal of the Society for Industrial and Applied Mathematics , vol.11 , Issue.2 , pp. 431-441
    • Marquardt, D.1
  • 27
    • 0032969449 scopus 로고    scopus 로고
    • Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm.
    • Muthén B, Shedden K (1999). “Finite Mixture Modeling with Mixture Outcomes Using the EM Algorithm.” Biometrics, 55(2), 463-469. doi:10.1111/j.0006-341x.1999.00463.x.
    • (1999) Biometrics , vol.55 , Issue.2 , pp. 463-469
    • Muthén, B.1    Shedden, K.2
  • 28
    • 0033441152 scopus 로고    scopus 로고
    • Analyzing Developmental Trajectories: A Semiparametric, Group-Based Approach.
    • Nagin DS (1999). “Analyzing Developmental Trajectories: A Semiparametric, Group-Based Approach.” Psychological Methods, 4(2), 139-157. doi:10.1037/1082-989x.4.2.139.
    • (1999) Psychological Methods , vol.4 , Issue.2 , pp. 139-157
    • Nagin, D.S.1
  • 30
    • 17644379544 scopus 로고    scopus 로고
    • Estimation of Linear Mixed Models with a Mixture of Distribution for the Random Effects.
    • Proust C, Jacqmin-Gadda H (2005). “Estimation of Linear Mixed Models with a Mixture of Distribution for the Random Effects.” Computer Methods and Programs in Biomedicine, 78(2), 165-173. doi:10.1016/j.cmpb.2004.12.004.
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , Issue.2 , pp. 165-173
    • Proust, C.1    Jacqmin-Gadda, H.2
  • 31
    • 33845493274 scopus 로고    scopus 로고
    • A Nonlinear Model with Latent Process for Cognitive Evolution Using Multivariate Longitudinal Data.
    • Proust C, Jacqmin-Gadda H, Taylor JMG, Ganiayre J, Commenges D (2006). “A Nonlinear Model with Latent Process for Cognitive Evolution Using Multivariate Longitudinal Data.” Biometrics, 62(4), 1014-1024. doi:10.1111/j.1541-0420.2006.00573.x.
    • (2006) Biometrics , vol.62 , Issue.4 , pp. 1014-1024
    • Proust, C.1    Jacqmin-Gadda, H.2    Taylor, J.3    Ganiayre, J.4    Commenges, D.5
  • 34
    • 80054905986 scopus 로고    scopus 로고
    • Misuse of the Linear Mixed Model When Evaluating Risk Factors of Cognitive Decline.
    • Proust-Lima C, Dartigues JF, Jacqmin-Gadda H (2011). “Misuse of the Linear Mixed Model When Evaluating Risk Factors of Cognitive Decline.” American Journal of Epidemiology, 174(9), 1077-1088. doi:10.1093/aje/kwr243.
    • (2011) American Journal of Epidemiology , vol.174 , Issue.9 , pp. 1077-1088
    • Proust-Lima, C.1    Dartigues, J.F.2    Jacqmin-Gadda, H.3
  • 35
    • 84954368071 scopus 로고    scopus 로고
    • Joint Modelling of Repeated Multivariate Cognitive Measures and Competing Risks of Dementia and Death: A Latent Process and Latent Class Approach.
    • Proust-Lima C, Dartigues JF, Jacqmin-Gadda H (2016). “Joint Modelling of Repeated Multivariate Cognitive Measures and Competing Risks of Dementia and Death: A Latent Process and Latent Class Approach.” Statistics in Medicine, 35(3), 382-398. doi: 10.1002/sim.6731.
    • (2016) Statistics in Medicine , vol.35 , Issue.3 , pp. 382-398
    • Proust-Lima, C.1    Dartigues, J.F.2    Jacqmin-Gadda, H.3
  • 36
    • 58749099434 scopus 로고    scopus 로고
    • Joint Modelling of Multivariate Longitudinal Outcomes and a Time-to-Event: A Nonlinear Latent Class Approach.
    • Proust-Lima C, Joly P, Jacqmin-Gadda H (2009). “Joint Modelling of Multivariate Longitudinal Outcomes and a Time-to-Event: A Nonlinear Latent Class Approach.” Computational Statistics & Data Analysis, 53(4), 1142-1154. doi:10.1016/j.csda.2008.10.017.
    • (2009) Computational Statistics & Data Analysis , vol.53 , Issue.4 , pp. 1142-1154
    • Proust-Lima, C.1    Joly, P.2    Jacqmin-Gadda, H.3
  • 39
    • 70149108170 scopus 로고    scopus 로고
    • Development and Validation of a Dynamic Prognostic Tool for Prostate Cancer Recurrence Using Repeated Measures of Posttreatment PSA: A Joint Modeling Approach.
    • Proust-Lima C, Taylor JMG (2009). “Development and Validation of a Dynamic Prognostic Tool for Prostate Cancer Recurrence Using Repeated Measures of Posttreatment PSA: A Joint Modeling Approach.” Biostatistics, 10(3), 535-549. doi:10.1093/biostatistics/kxp009.
    • (2009) Biostatistics , vol.10 , Issue.3 , pp. 535-549
    • Proust-Lima, C.1    Taylor, J.2
  • 40
    • 10044290370 scopus 로고    scopus 로고
    • Generalized Multilevel Structural Equation Modelling.
    • Rabe-Hesketh S, Skrondal A, Pickles A (2004). “Generalized Multilevel Structural Equation Modelling.” Psychometrika, 69(2), 167-190. doi:10.1007/bf02295939.
    • (2004) Psychometrika , vol.69 , Issue.2 , pp. 167-190
    • Rabe-Hesketh, S.1    Skrondal, A.2    Pickles, A.3
  • 41
    • 84972507631 scopus 로고
    • Monotone Regression Splines in Action.
    • Ramsay JO (1988). “Monotone Regression Splines in Action.” Statistical Science, 3(4), 425-461. doi:10.1214/ss/1177012761.
    • (1988) Statistical Science , vol.3 , Issue.4 , pp. 425-461
    • Ramsay, J.O.1
  • 42
    • 85015629308 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • Vienna, Austria
    • R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
    • (2017) R Foundation for Statistical Computing
    • Core Team, R.1
  • 43
    • 0021404166 scopus 로고
    • Mixture Densities, Maximum Likelihood and the EM Algorithm.
    • Redner R, Walker H (1984). “Mixture Densities, Maximum Likelihood and the EM Algorithm.” SIAM Review, 26(2), 195-239. doi:10.1137/1026034.
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Redner, R.1    Walker, H.2
  • 44
    • 85020457303 scopus 로고    scopus 로고
    • Joint Models for Longitudinal and Time-to-Event Data: With Applications in R.
    • Rizopoulos D (2012). “Joint Models for Longitudinal and Time-to-Event Data: With Applications in R.” Chapman & Hall/CRC. doi:10.1201/b12208.
    • (2012) Chapman & Hall/Crc
    • Rizopoulos, D.1
  • 48
    • 85020441771 scopus 로고    scopus 로고
    • Survival: Survival Analysis
    • Therneau TM (2017). Survival: Survival Analysis. R package version 2.41-3, URL https://CRAN.R-project.org/package=survival
    • (2017) R Package Version 2.41-3
    • Therneau, T.M.1
  • 49
    • 0000569928 scopus 로고    scopus 로고
    • A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population.
    • Verbeke G, Lesaffre E (1996). “A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population.” Journal of the American Statistical Association, 91(433), 217-221. doi:10.1080/01621459.1996.10476679.
    • (1996) Journal of the American Statistical Association , vol.91 , Issue.433 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2
  • 51
    • 0035560470 scopus 로고    scopus 로고
    • A Random-Effects Mixture Model for Classifying Treatment Response in Longitudinal Clinical Trials.
    • Xu W, Hedeker D (2001). “A Random-Effects Mixture Model for Classifying Treatment Response in Longitudinal Clinical Trials.” Journal of Biopharmaceutical Statistics, 11(4), 253-273. doi:10.1081/bip-120008848.
    • (2001) Journal of Biopharmaceutical Statistics , vol.11 , Issue.4 , pp. 253-273
    • Xu, W.1    Hedeker, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.