메뉴 건너뛰기




Volumn 66, Issue 1, 2010, Pages 11-19

Score test for conditional independence between longitudinal outcome and time to event given the classes in the joint latent class model

Author keywords

Joint model; Latent class model; Mixture model; Model diagnosis

Indexed keywords

ANTIGENS; DIAGNOSIS; DISEASES; PATIENT MONITORING; RANDOM PROCESSES; RISK PERCEPTION; STATISTICAL TESTS; UROLOGY;

EID: 77949704277     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2009.01234.x     Document Type: Article
Times cited : (34)

References (18)
  • 2
    • 39849089597 scopus 로고    scopus 로고
    • A latent-class mixture model for incomplete longitudinal Gaussian data
    • Beunckens, C., Molenberghs, G., Verbeke, G., and Mallinckrodt, C. (2008). A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics 64, 96-105.
    • (2008) Biometrics , vol.64 , pp. 96-105
    • Beunckens, C.1    Molenberghs, G.2    Verbeke, G.3    Mallinckrodt, C.4
  • 4
    • 48749115069 scopus 로고    scopus 로고
    • Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropout
    • art 14. Available at: http://www.bepress.com/ijb/ vol4/iss1/14
    • Dantan, E., Proust-Lima, C., Letenneur, L., and Jacqmin-Gadda, H. (2008). Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropout. International Journal of Biostatistics 4, art 14. Available at: http://www.bepress.com/ijb/ vol4/iss1/14.
    • (2008) International Journal of Biostatistics , vol.4
    • Dantan, E.1    Proust-Lima, C.2    Letenneur, L.3    Jacqmin-Gadda, H.4
  • 5
    • 85153219221 scopus 로고    scopus 로고
    • Diggle, P. and Kenward, M. (1994). Informative drop-out in longitudinal data analysis. Journal of the Royal Statistical Society Series C, Applied Statistics 43, 49-93.
    • Diggle, P. and Kenward, M. (1994). Informative drop-out in longitudinal data analysis. Journal of the Royal Statistical Society Series C, Applied Statistics 43, 49-93.
  • 6
    • 36649011358 scopus 로고    scopus 로고
    • How can the score test be inconsistent?
    • Freedman, D. A. (2007). How can the score test be inconsistent? The American Statistician 61, 291-295.
    • (2007) The American Statistician , vol.61 , pp. 291-295
    • Freedman, D.A.1
  • 7
    • 29344466706 scopus 로고    scopus 로고
    • Latent class regression on latent factors
    • Guo, J., Wall, M., and Amemyia, Y. (2006). Latent class regression on latent factors. Biostatistics 7, 145-163.
    • (2006) Biostatistics , vol.7 , pp. 145-163
    • Guo, J.1    Wall, M.2    Amemyia, Y.3
  • 8
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480.
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 9
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 10
    • 0036489045 scopus 로고    scopus 로고
    • Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer
    • Lin, H., Turnbull, B. W., McCulloch, C. E., and Slate, E. H. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association 97, 53-65.
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 53-65
    • Lin, H.1    Turnbull, B.W.2    McCulloch, C.E.3    Slate, E.H.4
  • 11
    • 2942677478 scopus 로고    scopus 로고
    • Latent pattern mixture models for informative intermittent missing data in longitudinal studies
    • Lin, H., McCulloch, C. E., and Rosenheck, R. A. (2004). Latent pattern mixture models for informative intermittent missing data in longitudinal studies. Biometrics 60, 295-305.
    • (2004) Biometrics , vol.60 , pp. 295-305
    • Lin, H.1    McCulloch, C.E.2    Rosenheck, R.A.3
  • 12
    • 85153200231 scopus 로고    scopus 로고
    • Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures post-treatment PSA
    • To appear in
    • Proust-Lima, C. and Taylor, J. M. G. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures post-treatment PSA. To appear in Biostatistics.
    • (2009) Biostatistics
    • Proust-Lima, C.1    Taylor, J.M.G.2
  • 14
    • 58749099434 scopus 로고    scopus 로고
    • Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach
    • Proust-Lima, C., Joly, P., and Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach. Computational Statistics and Data Analysis 53, 1142-1154.
    • (2009) Computational Statistics and Data Analysis , vol.53 , pp. 1142-1154
    • Proust-Lima, C.1    Joly, P.2    Jacqmin-Gadda, H.3
  • 15
    • 0346733311 scopus 로고    scopus 로고
    • Modeling longitudinal data with nonignorable dropouts using a latent dropout class model
    • Roy, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. Biometrics 59, 829-836.
    • (2003) Biometrics , vol.59 , pp. 829-836
    • Roy, J.1
  • 16
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 17
    • 14144254555 scopus 로고    scopus 로고
    • Individualized predictions of disease progression following radiation therapy for prostate cancer
    • Taylor, J. M. G., Yu, M., and Sandler, H. M. (2005). Individualized predictions of disease progression following radiation therapy for prostate cancer. Journal of Clinical Oncology 23, 816-825.
    • (2005) Journal of Clinical Oncology , vol.23 , pp. 816-825
    • Taylor, J.M.G.1    Yu, M.2    Sandler, H.M.3
  • 18
    • 0000569928 scopus 로고    scopus 로고
    • A linear mixed-effects model with heterogeneity in the random-effects population
    • Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association 91, 217-221.
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.