-
1
-
-
0031315719
-
Latent variable regression for multiple discrete outcomes
-
Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., and Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association 92, 1375-1386.
-
(1997)
Journal of the American Statistical Association
, vol.92
, pp. 1375-1386
-
-
Bandeen-Roche, K.1
Miglioretti, D.L.2
Zeger, S.L.3
Rathouz, P.J.4
-
2
-
-
39849089597
-
A latent-class mixture model for incomplete longitudinal Gaussian data
-
Beunckens, C., Molenberghs, G., Verbeke, G., and Mallinckrodt, C. (2008). A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics 64, 96-105.
-
(2008)
Biometrics
, vol.64
, pp. 96-105
-
-
Beunckens, C.1
Molenberghs, G.2
Verbeke, G.3
Mallinckrodt, C.4
-
3
-
-
0028000318
-
Test of homogeneity of binary data with explanatory variables
-
Commenges, D., Letenneur, L., Jacqmin, H., Moreau, T., and Dartigues, J. F. (1994). Test of homogeneity of binary data with explanatory variables. Biometrics 50, 613-620.
-
(1994)
Biometrics
, vol.50
, pp. 613-620
-
-
Commenges, D.1
Letenneur, L.2
Jacqmin, H.3
Moreau, T.4
Dartigues, J.F.5
-
4
-
-
48749115069
-
Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropout
-
art 14. Available at: http://www.bepress.com/ijb/ vol4/iss1/14
-
Dantan, E., Proust-Lima, C., Letenneur, L., and Jacqmin-Gadda, H. (2008). Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropout. International Journal of Biostatistics 4, art 14. Available at: http://www.bepress.com/ijb/ vol4/iss1/14.
-
(2008)
International Journal of Biostatistics
, vol.4
-
-
Dantan, E.1
Proust-Lima, C.2
Letenneur, L.3
Jacqmin-Gadda, H.4
-
5
-
-
85153219221
-
-
Diggle, P. and Kenward, M. (1994). Informative drop-out in longitudinal data analysis. Journal of the Royal Statistical Society Series C, Applied Statistics 43, 49-93.
-
Diggle, P. and Kenward, M. (1994). Informative drop-out in longitudinal data analysis. Journal of the Royal Statistical Society Series C, Applied Statistics 43, 49-93.
-
-
-
-
6
-
-
36649011358
-
How can the score test be inconsistent?
-
Freedman, D. A. (2007). How can the score test be inconsistent? The American Statistician 61, 291-295.
-
(2007)
The American Statistician
, vol.61
, pp. 291-295
-
-
Freedman, D.A.1
-
7
-
-
29344466706
-
Latent class regression on latent factors
-
Guo, J., Wall, M., and Amemyia, Y. (2006). Latent class regression on latent factors. Biostatistics 7, 145-163.
-
(2006)
Biostatistics
, vol.7
, pp. 145-163
-
-
Guo, J.1
Wall, M.2
Amemyia, Y.3
-
8
-
-
0000710136
-
Joint modelling of longitudinal measurements and event time data
-
Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modelling of longitudinal measurements and event time data. Biostatistics 1, 465-480.
-
(2000)
Biostatistics
, vol.1
, pp. 465-480
-
-
Henderson, R.1
Diggle, P.2
Dobson, A.3
-
9
-
-
0020333131
-
Random-effects models for longitudinal data
-
Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics 38, 963-974.
-
(1982)
Biometrics
, vol.38
, pp. 963-974
-
-
Laird, N.M.1
Ware, J.H.2
-
10
-
-
0036489045
-
Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer
-
Lin, H., Turnbull, B. W., McCulloch, C. E., and Slate, E. H. (2002). Latent class models for joint analysis of longitudinal biomarker and event process data: Application to longitudinal prostate-specific antigen readings and prostate cancer. Journal of the American Statistical Association 97, 53-65.
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 53-65
-
-
Lin, H.1
Turnbull, B.W.2
McCulloch, C.E.3
Slate, E.H.4
-
11
-
-
2942677478
-
Latent pattern mixture models for informative intermittent missing data in longitudinal studies
-
Lin, H., McCulloch, C. E., and Rosenheck, R. A. (2004). Latent pattern mixture models for informative intermittent missing data in longitudinal studies. Biometrics 60, 295-305.
-
(2004)
Biometrics
, vol.60
, pp. 295-305
-
-
Lin, H.1
McCulloch, C.E.2
Rosenheck, R.A.3
-
12
-
-
85153200231
-
Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures post-treatment PSA
-
To appear in
-
Proust-Lima, C. and Taylor, J. M. G. (2009). Development and validation of a dynamic prognostic tool for prostate cancer recurrence using repeated measures post-treatment PSA. To appear in Biostatistics.
-
(2009)
Biostatistics
-
-
Proust-Lima, C.1
Taylor, J.M.G.2
-
13
-
-
52949137903
-
Determinants of change of prostate-specific antigen over time and its association with recurrence following external beam radiation therapy of prostate cancer in 5 large cohorts
-
Proust-Lima, C., Taylor, J. M. G., Williams, S. G., Ankerst, D. P., Liu, N., Kestin, L. L., Bae, K., and Sandler, H. M. (2008). Determinants of change of prostate-specific antigen over time and its association with recurrence following external beam radiation therapy of prostate cancer in 5 large cohorts. International Journal of Radiation Oncology, Biology, Physics 72, 782-791.
-
(2008)
International Journal of Radiation Oncology, Biology, Physics
, vol.72
, pp. 782-791
-
-
Proust-Lima, C.1
Taylor, J.M.G.2
Williams, S.G.3
Ankerst, D.P.4
Liu, N.5
Kestin, L.L.6
Bae, K.7
Sandler, H.M.8
-
14
-
-
58749099434
-
Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach
-
Proust-Lima, C., Joly, P., and Jacqmin-Gadda, H. (2009). Joint modelling of multivariate longitudinal outcomes and a time-to-event: A nonlinear latent class approach. Computational Statistics and Data Analysis 53, 1142-1154.
-
(2009)
Computational Statistics and Data Analysis
, vol.53
, pp. 1142-1154
-
-
Proust-Lima, C.1
Joly, P.2
Jacqmin-Gadda, H.3
-
15
-
-
0346733311
-
Modeling longitudinal data with nonignorable dropouts using a latent dropout class model
-
Roy, J. (2003). Modeling longitudinal data with nonignorable dropouts using a latent dropout class model. Biometrics 59, 829-836.
-
(2003)
Biometrics
, vol.59
, pp. 829-836
-
-
Roy, J.1
-
16
-
-
0000120766
-
Estimating the dimension of a model
-
Schwartz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6, 461-464.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwartz, G.1
-
17
-
-
14144254555
-
Individualized predictions of disease progression following radiation therapy for prostate cancer
-
Taylor, J. M. G., Yu, M., and Sandler, H. M. (2005). Individualized predictions of disease progression following radiation therapy for prostate cancer. Journal of Clinical Oncology 23, 816-825.
-
(2005)
Journal of Clinical Oncology
, vol.23
, pp. 816-825
-
-
Taylor, J.M.G.1
Yu, M.2
Sandler, H.M.3
-
18
-
-
0000569928
-
A linear mixed-effects model with heterogeneity in the random-effects population
-
Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association 91, 217-221.
-
(1996)
Journal of the American Statistical Association
, vol.91
, pp. 217-221
-
-
Verbeke, G.1
Lesaffre, E.2
|