메뉴 건너뛰기




Volumn 1435, Issue 1, 2019, Pages 5-17

Genomics of antibiotic-resistance prediction in pseudomonas aeruginosa

Author keywords

Antibiotic resistance; Emerging technologies; Genomics; In silico prediction

Indexed keywords

VIRULENCE FACTOR;

EID: 85020132186     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/nyas.13358     Document Type: Review
Times cited : (54)

References (80)
  • 1
    • 84923611351 scopus 로고    scopus 로고
    • Molecular mechanisms of antibiotic resistance
    • Blair, J.M. et al. 2015. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13: 42–51.
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 42-51
    • Blair, J.M.1
  • 3
    • 84940903689 scopus 로고    scopus 로고
    • Antimicrobial resistance: Tackling a crisis for the health and wealth of nations
    • HM Government, Welcome Trust
    • O’Neil, J. 2014. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. In Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally. HM Government, Welcome Trust. Accessed April 28, 2017. https://amr-review.org/sites/default/files/160518_ Final%20paper_with%20cover.pdf.
    • (2014) Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally
    • O’Neil, J.1
  • 4
    • 84856756887 scopus 로고    scopus 로고
    • Harnessing evolutionary biology to combat infectious disease
    • Little, T.J. et al. 2012. Harnessing evolutionary biology to combat infectious disease. Nat. Med. 18: 217–220.
    • (2012) Nat. Med. , vol.18 , pp. 217-220
    • Little, T.J.1
  • 5
    • 84946833974 scopus 로고    scopus 로고
    • Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium
    • Freschi, L. et al. 2015. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front. Microbiol. 6: 1036.
    • (2015) Front. Microbiol. , vol.6 , pp. 1036
    • Freschi, L.1
  • 6
    • 85016050964 scopus 로고    scopus 로고
    • CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database
    • Jia, B. et al. 2016. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45: D566–D573.
    • (2016) Nucleic Acids Res , vol.45 , pp. D566-D573
    • Jia, B.1
  • 7
    • 84879017399 scopus 로고    scopus 로고
    • The comprehensive antibiotic resistance database
    • McArthur, A.G. et al. 2013. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57: 3348– 3357.
    • (2013) Antimicrob. Agents Chemother. , vol.57 , pp. 3348-3357
    • McArthur, A.G.1
  • 8
    • 85006705701 scopus 로고    scopus 로고
    • Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in Gram-negative bacilli from whole genome sequence data
    • Pesesky, M.W. et al. 2016. Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in Gram-negative bacilli from whole genome sequence data. Front. Microbiol. 7: 1887.
    • (2016) Front. Microbiol. , vol.7 , pp. 1887
    • Pesesky, M.W.1
  • 9
    • 84952836879 scopus 로고    scopus 로고
    • Making the leap from research laboratory to clinic: Challenges and opportunities for next-generation sequencing in infectious disease diagnostics
    • Goldberg, B. et al. 2015. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics. mBio 6: e01888-15.
    • (2015) Mbio , vol.6 , pp. e01888
    • Goldberg, B.1
  • 10
    • 79958048843 scopus 로고    scopus 로고
    • Pseudomonas genomes: Diverse and adaptable
    • Silby, M.W. et al. 2011. Pseudomonas genomes: diverse and adaptable. FEMS Microb. Rev. 35: 652–680.
    • (2011) FEMS Microb. Rev. , vol.35 , pp. 652-680
    • Silby, M.W.1
  • 11
    • 84959309866 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections
    • Winstanley, C., S. O’Brien & M.A. Brockhurst. 2016. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microb. 24: 327–337.
    • (2016) Trends Microb , vol.24 , pp. 327-337
    • Winstanley, C.1    O’Brien, S.2    Brockhurst, M.A.3
  • 12
    • 84877098245 scopus 로고    scopus 로고
    • Shared Pseudomonas aeruginosa geno-typesarecommonin Australiancysticfibrosiscentres
    • Kidd, T.J. et al. 2013. Shared Pseudomonas aeruginosa geno-typesarecommonin Australiancysticfibrosiscentres. Eur. Respir. J. 41: 1091–1100.
    • (2013) Eur. Respir. J. , vol.41 , pp. 1091-1100
    • Kidd, T.J.1
  • 13
    • 0036498656 scopus 로고    scopus 로고
    • Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare?
    • Livermore, D.M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34: 634–640.
    • (2002) Clin. Infect. Dis. , vol.34 , pp. 634-640
    • Livermore, D.M.1
  • 14
    • 85018392164 scopus 로고    scopus 로고
    • Resistance of antimicrobial in Pseudomonas aeruginosa
    • Sharma, S. & P. Srivastava. 2016. Resistance of antimicrobial in Pseudomonas aeruginosa. Int.J.Curr.Microbiol.Appl.Sci. 5: 121–128.
    • (2016) Int.J.Curr.Microbiol.Appl.Sci. , vol.5 , pp. 121-128
    • Sharma, S.1    Srivastava, P.2
  • 15
    • 84960192153 scopus 로고    scopus 로고
    • Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates
    • Cabot, G. et al. 2016. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob. Agents Chemother. 60: 1767– 1778.
    • (2016) Antimicrob. Agents Chemother. , vol.60 , pp. 1767-1778
    • Cabot, G.1
  • 16
    • 84979529676 scopus 로고    scopus 로고
    • Transcriptome profiling of antimicrobial resistance in Pseudomonas aeruginosa
    • Khaledi, A. et al. 2016. Transcriptome profiling of antimicrobial resistance in Pseudomonas aeruginosa. Antimi-crob.AgentsChemother.60: 4722–4733.
    • (2016) Antimi-Crob.Agentschemother. , vol.60 , pp. 4722-4733
    • Khaledi, A.1
  • 17
    • 84864387005 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa population structure revisited under environmental focus: Impact of water quality and phage pressure
    • Selezska, K. et al. 2012. Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure. Environ. Microbiol. 14: 1952–1967.
    • (2012) Environ. Microbiol. , vol.14 , pp. 1952-1967
    • Selezska, K.1
  • 18
    • 31144458334 scopus 로고    scopus 로고
    • Sampling the antibiotic resistome
    • D’Costa, V.M. et al. 2006. Sampling the antibiotic resistome. Science 311: 374–377.
    • (2006) Science , vol.311 , pp. 374-377
    • D’Costa, V.M.1
  • 19
    • 84884228709 scopus 로고    scopus 로고
    • The antibiotic resistance “mobilome”: Searching for the link between environment and clinic
    • Perry, J.A. & G.D. Wright. 2013. The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front. Microbiol. 4: 138.
    • (2013) Front. Microbiol. , vol.4 , pp. 138
    • Perry, J.A.1    Wright, G.D.2
  • 20
    • 84968903135 scopus 로고    scopus 로고
    • Coming of age: Ten years of next-generation sequencing technologies
    • Goodwin, S., J.D. McPherson & W.R. McCombie. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17: 333–351.
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 333-351
    • Goodwin, S.1    McPherson, J.D.2    McCombie, W.R.3
  • 21
    • 84947487970 scopus 로고    scopus 로고
    • Twenty years of bacterial genome sequencing
    • Loman, N.J. & M.J. Pallen. 2015. Twenty years of bacterial genome sequencing. Nat. Rev. Microbiol. 13: 787– 794.
    • (2015) Nat. Rev. Microbiol. , vol.13 , pp. 787-794
    • Loman, N.J.1    Pallen, M.J.2
  • 22
    • 77952894849 scopus 로고    scopus 로고
    • Impact of Pseudomonas aeruginosa genomic instability on the application of typing methods for chronic cystic fibrosis infections
    • Fothergill, J.L. et al. 2010. Impact of Pseudomonas aeruginosa genomic instability on the application of typing methods for chronic cystic fibrosis infections. J. Clin. Microbiol. 48: 2053– 2059.
    • (2010) J. Clin. Microbiol. , vol.48 , pp. 2053-2059
    • Fothergill, J.L.1
  • 23
    • 0036898092 scopus 로고    scopus 로고
    • Use of subtractive hybridization to identify a diagnostic probe for a cystic fibrosis epidemic strain of Pseudomonas aeruginosa
    • Parsons, Y.N. et al. 2002. Use of subtractive hybridization to identify a diagnostic probe for a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. J. Clin. Microbiol. 40: 4607–4611.
    • (2002) J. Clin. Microbiol. , vol.40 , pp. 4607-4611
    • Parsons, Y.N.1
  • 24
    • 78349270511 scopus 로고    scopus 로고
    • Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis
    • Aaron, S.D. et al. 2010. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA 304: 2145–2153.
    • (2010) JAMA , vol.304 , pp. 2145-2153
    • Aaron, S.D.1
  • 25
    • 84975489395 scopus 로고    scopus 로고
    • The effect of strict segregation on Pseudomonas aeruginosa in cystic fibrosis patients
    • van Mansfeld, R. et al. 2016. The effect of strict segregation on Pseudomonas aeruginosa in cystic fibrosis patients. PLoS One 11: e0157189.
    • (2016) Plos One , vol.11
    • van Mansfeld, R.1
  • 26
    • 0028321940 scopus 로고
    • Bacterial genome mapping
    • Romling, U. & B. Tummler. 1994. Bacterial genome mapping. J. Biotechnol. 35: 155–164.
    • (1994) J. Biotechnol. , vol.35 , pp. 155-164
    • Romling, U.1    Tummler, B.2
  • 27
    • 20444457605 scopus 로고    scopus 로고
    • Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients
    • Romling, U. et al. 2005. Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. Environ. Microbiol. 7: 1029–1038.
    • (2005) Environ. Microbiol. , vol.7 , pp. 1029-1038
    • Romling, U.1
  • 28
    • 70849094620 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa population structure revisited
    • Pirnay, J.P. et al. 2009. Pseudomonas aeruginosa population structure revisited. PLoS One 4: e7740.
    • (2009) Plos One , vol.4 , pp. e7740
    • Pirnay, J.P.1
  • 29
    • 0036933708 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa displays an epidemic population structure
    • Pirnay, J.P. et al. 2002. Pseudomonas aeruginosa displays an epidemic population structure. Environ. Microbiol. 4: 898– 911.
    • (2002) Environ. Microbiol. , vol.4 , pp. 898-911
    • Pirnay, J.P.1
  • 30
    • 34249946313 scopus 로고    scopus 로고
    • Population structure of Pseudomonas aeruginosa
    • Wiehlmann, L. et al. 2007. Population structure of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 104: 8101–8106.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 8101-8106
    • Wiehlmann, L.1
  • 31
    • 84866137177 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting
    • Kidd, T.J. et al. 2012. Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting. PLoS One 7: e44199.
    • (2012) Plos One , vol.7
    • Kidd, T.J.1
  • 32
    • 77955148076 scopus 로고    scopus 로고
    • Evaluation of a nine-locus variable-number tandem-repeat scheme for typing of Pseudomonas aeruginosa
    • Turton, J.F. et al. 2010. Evaluation of a nine-locus variable-number tandem-repeat scheme for typing of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 16: 1111–1116.
    • (2010) Clin. Microbiol. Infect. , vol.16 , pp. 1111-1116
    • Turton, J.F.1
  • 33
    • 84865231395 scopus 로고    scopus 로고
    • Transforming clinical microbiology with bacterial genome sequencing
    • Didelot, X. et al. 2012. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 13: 601– 612.
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 601-612
    • Didelot, X.1
  • 34
    • 0034641962 scopus 로고    scopus 로고
    • Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms
    • Singh, P.K. et al. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407: 762–764.
    • (2000) Nature , vol.407 , pp. 762-764
    • Singh, P.K.1
  • 35
    • 80051561535 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections
    • Mowat, E. et al. 2011. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am.J.Respir.Crit.CareMed.183: 1674–1679.
    • (2011) Am.J.Respir.Crit.Caremed. , vol.183 , pp. 1674-1679
    • Mowat, E.1
  • 36
    • 60449106108 scopus 로고    scopus 로고
    • A retrospective analysis of biofilm antibiotic susceptibility testing: A better predictor of clinical response in cystic fibrosis exacerbations
    • Keays, T. et al. 2009. A retrospective analysis of biofilm antibiotic susceptibility testing: a better predictor of clinical response in cystic fibrosis exacerbations. J. Cyst. Fibros. 8: 122–127.
    • (2009) J. Cyst. Fibros. , vol.8 , pp. 122-127
    • Keays, T.1
  • 37
    • 84962963862 scopus 로고    scopus 로고
    • Phenotypic and genotypic characteristics of small colony variants and their role in chronic infection
    • Johns, B.E. et al. 2015. Phenotypic and genotypic characteristics of small colony variants and their role in chronic infection. Microbiol. Insights 8: 15–23.
    • (2015) Microbiol. Insights , vol.8 , pp. 15-23
    • Johns, B.E.1
  • 38
    • 0034739007 scopus 로고    scopus 로고
    • Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen
    • Stover, C.K. et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959–964.
    • (2000) Nature , vol.406 , pp. 959-964
    • Stover, C.K.1
  • 39
    • 84976908656 scopus 로고    scopus 로고
    • Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database
    • Winsor, G.L. et al. 2016. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44: D646– D653.
    • (2016) Nucleic Acids Res , vol.44 , pp. D646-D653
    • Winsor, G.L.1
  • 40
    • 79952328144 scopus 로고    scopus 로고
    • Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections
    • Stewart, R.M. et al. 2011. Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J. Clin. Microbiol. 49: 993–1003.
    • (2011) J. Clin. Microbiol. , vol.49 , pp. 993-1003
    • Stewart, R.M.1
  • 41
    • 10744225048 scopus 로고    scopus 로고
    • The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes
    • He, J. et al. 2004. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc. Natl. Acad. Sci. U.S.A. 101: 2530–2535.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 2530-2535
    • He, J.1
  • 42
    • 42949094250 scopus 로고    scopus 로고
    • Dynamics of Pseudomonas aeruginosa genome evolution
    • Mathee, K. et al. 2008. Dynamics of Pseudomonas aeruginosa genome evolution. Proc. Natl. Acad. Sci. U.S.A. 105: 3100– 3105.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 3100-3105
    • Mathee, K.1
  • 43
    • 77749320916 scopus 로고    scopus 로고
    • Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7
    • Roy, P.H. et al. 2010. Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 5: e8842.
    • (2010) Plos One , vol.5
    • Roy, P.H.1
  • 44
    • 61449134105 scopus 로고    scopus 로고
    • Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa
    • Winstanley, C. et al. 2009. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res. 19: 12–23.
    • (2009) Genome Res , vol.19 , pp. 12-23
    • Winstanley, C.1
  • 45
    • 84901981871 scopus 로고    scopus 로고
    • Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny
    • Stewart, L. et al. 2014. Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathog. Dis. 71: 20–25.
    • (2014) Pathog. Dis. , vol.71 , pp. 20-25
    • Stewart, L.1
  • 46
    • 84859103889 scopus 로고    scopus 로고
    • Pseudomonas aeruginosa genomic structure and diversity
    • Klockgether, J. et al. 2011. Pseudomonas aeruginosa genomic structure and diversity. Front. Microbiol. 2: 150.
    • (2011) Front. Microbiol. , vol.2 , pp. 150
    • Klockgether, J.1
  • 47
    • 14044262978 scopus 로고    scopus 로고
    • Genomic insights that advance the species definition for prokaryotes
    • Konstantinidis, K.T. & J.M. Tiedje. 2005. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U.S.A. 102: 2567–2572.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 2567-2572
    • Konstantinidis, K.T.1    Tiedje, J.M.2
  • 48
    • 84888796738 scopus 로고    scopus 로고
    • Predicting antimicrobial suscepti-bilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data
    • Stoesser, N. et al. 2013. Predicting antimicrobial suscepti-bilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J. Antimicrob. Chemother. 68: 2234–2244.
    • (2013) J. Antimicrob. Chemother. , vol.68 , pp. 2234-2244
    • Stoesser, N.1
  • 49
    • 84891552789 scopus 로고    scopus 로고
    • ARG-ANNOT, a new bioinfor-matic tool to discover antibiotic resistance genes in bacterial genomes
    • Gupta, S.K. et al. 2014. ARG-ANNOT, a new bioinfor-matic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58: 212–220.
    • (2014) Antimicrob. Agents Chemother. , vol.58 , pp. 212-220
    • Gupta, S.K.1
  • 50
    • 84867587461 scopus 로고    scopus 로고
    • Identification of acquired antimicrobial resistance genes
    • Zankari, E. et al. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67: 2640– 2644.
    • (2012) J. Antimicrob. Chemother. , vol.67 , pp. 2640-2644
    • Zankari, E.1
  • 51
    • 84992053162 scopus 로고    scopus 로고
    • Predictive computational phenotyp-ing and biomarker discovery using reference-free genome comparisons
    • Drouin, A. et al. 2016. Predictive computational phenotyp-ing and biomarker discovery using reference-free genome comparisons. BMC Genomics 17: 754.
    • (2016) BMC Genomics , vol.17 , pp. 754
    • Drouin, A.1
  • 53
    • 0029131005 scopus 로고
    • DNA gyrase gyrA mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa
    • Yonezawa, M. et al. 1995. DNA gyrase gyrA mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39: 1970–1972.
    • (1995) Antimicrob. Agents Chemother. , vol.39 , pp. 1970-1972
    • Yonezawa, M.1
  • 55
    • 82955229539 scopus 로고    scopus 로고
    • The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy
    • Wu, C.P., C.H. Hsieh & Y.S. Wu. 2011. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol. Pharm. 8: 1996–2011.
    • (2011) Mol. Pharm. , vol.8 , pp. 1996-2011
    • Wu, C.P.1    Hsieh, C.H.2    Wu, Y.S.3
  • 56
    • 34247568394 scopus 로고    scopus 로고
    • Efflux pumps as antimicrobial resistance mechanisms
    • Poole, K. 2007. Efflux pumps as antimicrobial resistance mechanisms. Ann. Med. 39: 162–176.
    • (2007) Ann. Med. , vol.39 , pp. 162-176
    • Poole, K.1
  • 57
    • 0037257321 scopus 로고    scopus 로고
    • The importance of efflux pumps in bacterial antibiotic resistance
    • Webber, M.A. & L.J. Piddock. 2003. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51: 9–11.
    • (2003) J. Antimicrob. Chemother. , vol.51 , pp. 9-11
    • Webber, M.A.1    Piddock, L.J.2
  • 58
    • 84994059858 scopus 로고    scopus 로고
    • Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence
    • Alcalde-Rico, M. et al. 2016. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front. Microbiol. 7: 1483.
    • (2016) Front. Microbiol. , vol.7 , pp. 1483
    • Alcalde-Rico, M.1
  • 59
    • 0031661594 scopus 로고    scopus 로고
    • Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa
    • Evans, K. et al. 1998. Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 180: 5443–5447.
    • (1998) J. Bacteriol. , vol.180 , pp. 5443-5447
    • Evans, K.1
  • 60
    • 0034871821 scopus 로고    scopus 로고
    • Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa
    • Kohler, T. et al. 2001. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J. Bacteriol. 183: 5213–5222.
    • (2001) J. Bacteriol. , vol.183 , pp. 5213-5222
    • Kohler, T.1
  • 61
    • 68949110351 scopus 로고    scopus 로고
    • Efflux-mediated drug resistance in bacteria
    • Li, X.-Z. & H. Nikaido. 2009. Efflux-mediated drug resistance in bacteria. Drugs 69: 1555–1623.
    • (2009) Drugs , vol.69 , pp. 1555-1623
    • Li, X.-Z.1    Nikaido, H.2
  • 62
    • 33646251815 scopus 로고    scopus 로고
    • Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria
    • Piddock, L.J.V. 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 19: 382–402.
    • (2006) Clin. Microbiol. Rev. , vol.19 , pp. 382-402
    • Piddock, L.J.V.1
  • 63
    • 77954132745 scopus 로고    scopus 로고
    • Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa
    • Kiser, T.H. et al. 2010. Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Pharmacotherapy 30: 632–638.
    • (2010) Pharmacotherapy , vol.30 , pp. 632-638
    • Kiser, T.H.1
  • 65
    • 84952009484 scopus 로고    scopus 로고
    • Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis
    • Bradley, P. et al. 2015. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 6: 10063.
    • (2015) Nat. Commun , vol.6
    • Bradley, P.1
  • 66
    • 84922243002 scopus 로고    scopus 로고
    • Protein design algorithms predict viable resistance to an experimental antifolate
    • Reeve, S.M. et al. 2015. Protein design algorithms predict viable resistance to an experimental antifolate. Proc. Natl. Acad. Sci. U.S.A. 112: 749–754.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 749-754
    • Reeve, S.M.1
  • 67
    • 84874218295 scopus 로고    scopus 로고
    • The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus
    • Coelho, J.R. et al. 2013. The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus. PLoS One 8: e55582.
    • (2013) Plos One , vol.8
    • Coelho, J.R.1
  • 68
    • 84906875539 scopus 로고    scopus 로고
    • Machine learning for the prediction of antibacterial susceptibility in Mycobacterium tuberculosis
    • Niehaus, K.E. et al. 2014. Machine learning for the prediction of antibacterial susceptibility in Mycobacterium tuberculosis. In IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). 618–621. https://doi.org/10.1109/BHI.2014.6864440
    • (2014) In IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI) , pp. 618-621
    • Niehaus, K.E.1
  • 69
    • 84891776599 scopus 로고    scopus 로고
    • PATRIC, the bacterial bioinformatics database and analysis resource
    • Wattam, A.R. et al. 2014. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42: D581–D591.
    • (2014) Nucleic Acids Res , vol.42 , pp. D581-D591
    • Wattam, A.R.1
  • 70
    • 84974799196 scopus 로고    scopus 로고
    • Antimicrobial resistance prediction in PATRIC and RAST
    • Davis, J.J. et al. 2016. Antimicrobial resistance prediction in PATRIC and RAST. Sci. Rep. 6: 27930.
    • (2016) Sci. Rep. , vol.6
    • Davis, J.J.1
  • 71
    • 79955079817 scopus 로고    scopus 로고
    • Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq
    • Gallagher, L.A., J. Shendure & C. Manoil. 2011. Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. mBio 2: e00315-10.
    • (2011) Mbio , vol.2
    • Gallagher, L.A.1    Shendure, J.2    Manoil, C.3
  • 72
    • 84925343017 scopus 로고    scopus 로고
    • The fitness costs of antibiotic resistance mutations
    • Melnyk, A.H., A. Wong & R. Kassen. 2015. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8: 273– 283.
    • (2015) Evol. Appl. , vol.8 , pp. 273-283
    • Melnyk, A.H.1    Wong, A.2    Kassen, R.3
  • 73
    • 84866893020 scopus 로고    scopus 로고
    • Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa
    • Wong, A., N. Rodrigue & R. Kassen. 2012. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Genet. 8: e1002928.
    • (2012) Plos Genet , vol.8
    • Wong, A.1    Rodrigue, N.2    Kassen, R.3
  • 74
    • 84991236036 scopus 로고    scopus 로고
    • Assess drug-resistance phenotypes, not just genotypes
    • Piddock, L.J. 2016. Assess drug-resistance phenotypes, not just genotypes. Nat. Microbiol. 1: 16120.
    • (2016) Nat. Microbiol. , vol.1
    • Piddock, L.J.1
  • 75
    • 84902536156 scopus 로고    scopus 로고
    • Microbiological effects of sublethal levels of antibiotics
    • Andersson, D.I. & D. Hughes. 2014. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12: 465–478.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 465-478
    • Andersson, D.I.1    Hughes, D.2
  • 76
    • 0034798494 scopus 로고    scopus 로고
    • The relative contributions of recombination and point mutation to the diversification of bacterial clones
    • Spratt, B.G., W.P. Hanage & E.J. Feil. 2001. The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr. Opin. Microbiol. 4: 602–606.
    • (2001) Curr. Opin. Microbiol. , vol.4 , pp. 602-606
    • Spratt, B.G.1    Hanage, W.P.2    Feil, E.J.3
  • 77
    • 67651204792 scopus 로고    scopus 로고
    • Bacterial gene amplification: Implications for the evolution of antibiotic resistance
    • Sandegren, L. & D.I. Andersson. 2009. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7: 578–588.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 578-588
    • Sandegren, L.1    Andersson, D.I.2
  • 78
    • 84908135412 scopus 로고    scopus 로고
    • Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes
    • Chewapreecha, C. et al. 2014. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet. 10: e1004547.
    • (2014) Plos Genet , vol.10
    • Chewapreecha, C.1
  • 79
    • 84940856057 scopus 로고    scopus 로고
    • The Pseudomonas aeruginosa transcriptional landscape is shaped by environmental heterogeneity and genetic variation
    • Dotsch, A. et al. 2015. The Pseudomonas aeruginosa transcriptional landscape is shaped by environmental heterogeneity and genetic variation. mBio 6: e00749.
    • (2015) Mbio , vol.6
    • Dotsch, A.1
  • 80
    • 84958606331 scopus 로고    scopus 로고
    • Single-cell genome sequencing: Current state of the science
    • Gawad, C., W. Koh & S.R. Quake. 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17: 175–188.
    • (2016) Nat. Rev. Genet. , vol.17 , pp. 175-188
    • Gawad, C.1    Koh, W.2    Quake, S.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.