-
1
-
-
84923611351
-
Molecular mechanisms of antibiotic resistance
-
Blair, J.M. et al. 2015. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13: 42–51.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 42-51
-
-
Blair, J.M.1
-
3
-
-
84940903689
-
Antimicrobial resistance: Tackling a crisis for the health and wealth of nations
-
HM Government, Welcome Trust
-
O’Neil, J. 2014. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. In Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally. HM Government, Welcome Trust. Accessed April 28, 2017. https://amr-review.org/sites/default/files/160518_ Final%20paper_with%20cover.pdf.
-
(2014)
Review on Antimicrobial Resistance: Tackling Drug-Resistant Infections Globally
-
-
O’Neil, J.1
-
4
-
-
84856756887
-
Harnessing evolutionary biology to combat infectious disease
-
Little, T.J. et al. 2012. Harnessing evolutionary biology to combat infectious disease. Nat. Med. 18: 217–220.
-
(2012)
Nat. Med.
, vol.18
, pp. 217-220
-
-
Little, T.J.1
-
5
-
-
84946833974
-
Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium
-
Freschi, L. et al. 2015. Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium. Front. Microbiol. 6: 1036.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 1036
-
-
Freschi, L.1
-
6
-
-
85016050964
-
CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database
-
Jia, B. et al. 2016. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 45: D566–D573.
-
(2016)
Nucleic Acids Res
, vol.45
, pp. D566-D573
-
-
Jia, B.1
-
7
-
-
84879017399
-
The comprehensive antibiotic resistance database
-
McArthur, A.G. et al. 2013. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 57: 3348– 3357.
-
(2013)
Antimicrob. Agents Chemother.
, vol.57
, pp. 3348-3357
-
-
McArthur, A.G.1
-
8
-
-
85006705701
-
Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in Gram-negative bacilli from whole genome sequence data
-
Pesesky, M.W. et al. 2016. Evaluation of machine learning and rules-based approaches for predicting antimicrobial resistance profiles in Gram-negative bacilli from whole genome sequence data. Front. Microbiol. 7: 1887.
-
(2016)
Front. Microbiol.
, vol.7
, pp. 1887
-
-
Pesesky, M.W.1
-
9
-
-
84952836879
-
Making the leap from research laboratory to clinic: Challenges and opportunities for next-generation sequencing in infectious disease diagnostics
-
Goldberg, B. et al. 2015. Making the leap from research laboratory to clinic: challenges and opportunities for next-generation sequencing in infectious disease diagnostics. mBio 6: e01888-15.
-
(2015)
Mbio
, vol.6
, pp. e01888
-
-
Goldberg, B.1
-
10
-
-
79958048843
-
Pseudomonas genomes: Diverse and adaptable
-
Silby, M.W. et al. 2011. Pseudomonas genomes: diverse and adaptable. FEMS Microb. Rev. 35: 652–680.
-
(2011)
FEMS Microb. Rev.
, vol.35
, pp. 652-680
-
-
Silby, M.W.1
-
11
-
-
84959309866
-
Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections
-
Winstanley, C., S. O’Brien & M.A. Brockhurst. 2016. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microb. 24: 327–337.
-
(2016)
Trends Microb
, vol.24
, pp. 327-337
-
-
Winstanley, C.1
O’Brien, S.2
Brockhurst, M.A.3
-
12
-
-
84877098245
-
Shared Pseudomonas aeruginosa geno-typesarecommonin Australiancysticfibrosiscentres
-
Kidd, T.J. et al. 2013. Shared Pseudomonas aeruginosa geno-typesarecommonin Australiancysticfibrosiscentres. Eur. Respir. J. 41: 1091–1100.
-
(2013)
Eur. Respir. J.
, vol.41
, pp. 1091-1100
-
-
Kidd, T.J.1
-
13
-
-
0036498656
-
Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: Our worst nightmare?
-
Livermore, D.M. 2002. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin. Infect. Dis. 34: 634–640.
-
(2002)
Clin. Infect. Dis.
, vol.34
, pp. 634-640
-
-
Livermore, D.M.1
-
14
-
-
85018392164
-
Resistance of antimicrobial in Pseudomonas aeruginosa
-
Sharma, S. & P. Srivastava. 2016. Resistance of antimicrobial in Pseudomonas aeruginosa. Int.J.Curr.Microbiol.Appl.Sci. 5: 121–128.
-
(2016)
Int.J.Curr.Microbiol.Appl.Sci.
, vol.5
, pp. 121-128
-
-
Sharma, S.1
Srivastava, P.2
-
15
-
-
84960192153
-
Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates
-
Cabot, G. et al. 2016. Evolution of Pseudomonas aeruginosa antimicrobial resistance and fitness under low and high mutation rates. Antimicrob. Agents Chemother. 60: 1767– 1778.
-
(2016)
Antimicrob. Agents Chemother.
, vol.60
, pp. 1767-1778
-
-
Cabot, G.1
-
16
-
-
84979529676
-
Transcriptome profiling of antimicrobial resistance in Pseudomonas aeruginosa
-
Khaledi, A. et al. 2016. Transcriptome profiling of antimicrobial resistance in Pseudomonas aeruginosa. Antimi-crob.AgentsChemother.60: 4722–4733.
-
(2016)
Antimi-Crob.Agentschemother.
, vol.60
, pp. 4722-4733
-
-
Khaledi, A.1
-
17
-
-
84864387005
-
Pseudomonas aeruginosa population structure revisited under environmental focus: Impact of water quality and phage pressure
-
Selezska, K. et al. 2012. Pseudomonas aeruginosa population structure revisited under environmental focus: impact of water quality and phage pressure. Environ. Microbiol. 14: 1952–1967.
-
(2012)
Environ. Microbiol.
, vol.14
, pp. 1952-1967
-
-
Selezska, K.1
-
18
-
-
31144458334
-
Sampling the antibiotic resistome
-
D’Costa, V.M. et al. 2006. Sampling the antibiotic resistome. Science 311: 374–377.
-
(2006)
Science
, vol.311
, pp. 374-377
-
-
D’Costa, V.M.1
-
19
-
-
84884228709
-
The antibiotic resistance “mobilome”: Searching for the link between environment and clinic
-
Perry, J.A. & G.D. Wright. 2013. The antibiotic resistance “mobilome”: searching for the link between environment and clinic. Front. Microbiol. 4: 138.
-
(2013)
Front. Microbiol.
, vol.4
, pp. 138
-
-
Perry, J.A.1
Wright, G.D.2
-
20
-
-
84968903135
-
Coming of age: Ten years of next-generation sequencing technologies
-
Goodwin, S., J.D. McPherson & W.R. McCombie. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17: 333–351.
-
(2016)
Nat. Rev. Genet.
, vol.17
, pp. 333-351
-
-
Goodwin, S.1
McPherson, J.D.2
McCombie, W.R.3
-
21
-
-
84947487970
-
Twenty years of bacterial genome sequencing
-
Loman, N.J. & M.J. Pallen. 2015. Twenty years of bacterial genome sequencing. Nat. Rev. Microbiol. 13: 787– 794.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 787-794
-
-
Loman, N.J.1
Pallen, M.J.2
-
22
-
-
77952894849
-
Impact of Pseudomonas aeruginosa genomic instability on the application of typing methods for chronic cystic fibrosis infections
-
Fothergill, J.L. et al. 2010. Impact of Pseudomonas aeruginosa genomic instability on the application of typing methods for chronic cystic fibrosis infections. J. Clin. Microbiol. 48: 2053– 2059.
-
(2010)
J. Clin. Microbiol.
, vol.48
, pp. 2053-2059
-
-
Fothergill, J.L.1
-
23
-
-
0036898092
-
Use of subtractive hybridization to identify a diagnostic probe for a cystic fibrosis epidemic strain of Pseudomonas aeruginosa
-
Parsons, Y.N. et al. 2002. Use of subtractive hybridization to identify a diagnostic probe for a cystic fibrosis epidemic strain of Pseudomonas aeruginosa. J. Clin. Microbiol. 40: 4607–4611.
-
(2002)
J. Clin. Microbiol.
, vol.40
, pp. 4607-4611
-
-
Parsons, Y.N.1
-
24
-
-
78349270511
-
Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis
-
Aaron, S.D. et al. 2010. Infection with transmissible strains of Pseudomonas aeruginosa and clinical outcomes in adults with cystic fibrosis. JAMA 304: 2145–2153.
-
(2010)
JAMA
, vol.304
, pp. 2145-2153
-
-
Aaron, S.D.1
-
25
-
-
84975489395
-
The effect of strict segregation on Pseudomonas aeruginosa in cystic fibrosis patients
-
van Mansfeld, R. et al. 2016. The effect of strict segregation on Pseudomonas aeruginosa in cystic fibrosis patients. PLoS One 11: e0157189.
-
(2016)
Plos One
, vol.11
-
-
van Mansfeld, R.1
-
26
-
-
0028321940
-
Bacterial genome mapping
-
Romling, U. & B. Tummler. 1994. Bacterial genome mapping. J. Biotechnol. 35: 155–164.
-
(1994)
J. Biotechnol.
, vol.35
, pp. 155-164
-
-
Romling, U.1
Tummler, B.2
-
27
-
-
20444457605
-
Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients
-
Romling, U. et al. 2005. Worldwide distribution of Pseudomonas aeruginosa clone C strains in the aquatic environment and cystic fibrosis patients. Environ. Microbiol. 7: 1029–1038.
-
(2005)
Environ. Microbiol.
, vol.7
, pp. 1029-1038
-
-
Romling, U.1
-
28
-
-
70849094620
-
Pseudomonas aeruginosa population structure revisited
-
Pirnay, J.P. et al. 2009. Pseudomonas aeruginosa population structure revisited. PLoS One 4: e7740.
-
(2009)
Plos One
, vol.4
, pp. e7740
-
-
Pirnay, J.P.1
-
29
-
-
0036933708
-
Pseudomonas aeruginosa displays an epidemic population structure
-
Pirnay, J.P. et al. 2002. Pseudomonas aeruginosa displays an epidemic population structure. Environ. Microbiol. 4: 898– 911.
-
(2002)
Environ. Microbiol.
, vol.4
, pp. 898-911
-
-
Pirnay, J.P.1
-
30
-
-
34249946313
-
Population structure of Pseudomonas aeruginosa
-
Wiehlmann, L. et al. 2007. Population structure of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 104: 8101–8106.
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 8101-8106
-
-
Wiehlmann, L.1
-
31
-
-
84866137177
-
Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting
-
Kidd, T.J. et al. 2012. Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting. PLoS One 7: e44199.
-
(2012)
Plos One
, vol.7
-
-
Kidd, T.J.1
-
32
-
-
77955148076
-
Evaluation of a nine-locus variable-number tandem-repeat scheme for typing of Pseudomonas aeruginosa
-
Turton, J.F. et al. 2010. Evaluation of a nine-locus variable-number tandem-repeat scheme for typing of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 16: 1111–1116.
-
(2010)
Clin. Microbiol. Infect.
, vol.16
, pp. 1111-1116
-
-
Turton, J.F.1
-
33
-
-
84865231395
-
Transforming clinical microbiology with bacterial genome sequencing
-
Didelot, X. et al. 2012. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 13: 601– 612.
-
(2012)
Nat. Rev. Genet.
, vol.13
, pp. 601-612
-
-
Didelot, X.1
-
34
-
-
0034641962
-
Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms
-
Singh, P.K. et al. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407: 762–764.
-
(2000)
Nature
, vol.407
, pp. 762-764
-
-
Singh, P.K.1
-
35
-
-
80051561535
-
Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections
-
Mowat, E. et al. 2011. Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am.J.Respir.Crit.CareMed.183: 1674–1679.
-
(2011)
Am.J.Respir.Crit.Caremed.
, vol.183
, pp. 1674-1679
-
-
Mowat, E.1
-
36
-
-
60449106108
-
A retrospective analysis of biofilm antibiotic susceptibility testing: A better predictor of clinical response in cystic fibrosis exacerbations
-
Keays, T. et al. 2009. A retrospective analysis of biofilm antibiotic susceptibility testing: a better predictor of clinical response in cystic fibrosis exacerbations. J. Cyst. Fibros. 8: 122–127.
-
(2009)
J. Cyst. Fibros.
, vol.8
, pp. 122-127
-
-
Keays, T.1
-
37
-
-
84962963862
-
Phenotypic and genotypic characteristics of small colony variants and their role in chronic infection
-
Johns, B.E. et al. 2015. Phenotypic and genotypic characteristics of small colony variants and their role in chronic infection. Microbiol. Insights 8: 15–23.
-
(2015)
Microbiol. Insights
, vol.8
, pp. 15-23
-
-
Johns, B.E.1
-
38
-
-
0034739007
-
Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen
-
Stover, C.K. et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959–964.
-
(2000)
Nature
, vol.406
, pp. 959-964
-
-
Stover, C.K.1
-
39
-
-
84976908656
-
Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database
-
Winsor, G.L. et al. 2016. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44: D646– D653.
-
(2016)
Nucleic Acids Res
, vol.44
, pp. D646-D653
-
-
Winsor, G.L.1
-
40
-
-
79952328144
-
Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections
-
Stewart, R.M. et al. 2011. Genetic characterization indicates that a specific subpopulation of Pseudomonas aeruginosa is associated with keratitis infections. J. Clin. Microbiol. 49: 993–1003.
-
(2011)
J. Clin. Microbiol.
, vol.49
, pp. 993-1003
-
-
Stewart, R.M.1
-
41
-
-
10744225048
-
The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes
-
He, J. et al. 2004. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc. Natl. Acad. Sci. U.S.A. 101: 2530–2535.
-
(2004)
Proc. Natl. Acad. Sci. U.S.A.
, vol.101
, pp. 2530-2535
-
-
He, J.1
-
42
-
-
42949094250
-
Dynamics of Pseudomonas aeruginosa genome evolution
-
Mathee, K. et al. 2008. Dynamics of Pseudomonas aeruginosa genome evolution. Proc. Natl. Acad. Sci. U.S.A. 105: 3100– 3105.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 3100-3105
-
-
Mathee, K.1
-
43
-
-
77749320916
-
Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7
-
Roy, P.H. et al. 2010. Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 5: e8842.
-
(2010)
Plos One
, vol.5
-
-
Roy, P.H.1
-
44
-
-
61449134105
-
Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa
-
Winstanley, C. et al. 2009. Newly introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. Genome Res. 19: 12–23.
-
(2009)
Genome Res
, vol.19
, pp. 12-23
-
-
Winstanley, C.1
-
45
-
-
84901981871
-
Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny
-
Stewart, L. et al. 2014. Draft genomes of 12 host-adapted and environmental isolates of Pseudomonas aeruginosa and their positions in the core genome phylogeny. Pathog. Dis. 71: 20–25.
-
(2014)
Pathog. Dis.
, vol.71
, pp. 20-25
-
-
Stewart, L.1
-
46
-
-
84859103889
-
Pseudomonas aeruginosa genomic structure and diversity
-
Klockgether, J. et al. 2011. Pseudomonas aeruginosa genomic structure and diversity. Front. Microbiol. 2: 150.
-
(2011)
Front. Microbiol.
, vol.2
, pp. 150
-
-
Klockgether, J.1
-
47
-
-
14044262978
-
Genomic insights that advance the species definition for prokaryotes
-
Konstantinidis, K.T. & J.M. Tiedje. 2005. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. U.S.A. 102: 2567–2572.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 2567-2572
-
-
Konstantinidis, K.T.1
Tiedje, J.M.2
-
48
-
-
84888796738
-
Predicting antimicrobial suscepti-bilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data
-
Stoesser, N. et al. 2013. Predicting antimicrobial suscepti-bilities for Escherichia coli and Klebsiella pneumoniae isolates using whole genomic sequence data. J. Antimicrob. Chemother. 68: 2234–2244.
-
(2013)
J. Antimicrob. Chemother.
, vol.68
, pp. 2234-2244
-
-
Stoesser, N.1
-
49
-
-
84891552789
-
ARG-ANNOT, a new bioinfor-matic tool to discover antibiotic resistance genes in bacterial genomes
-
Gupta, S.K. et al. 2014. ARG-ANNOT, a new bioinfor-matic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58: 212–220.
-
(2014)
Antimicrob. Agents Chemother.
, vol.58
, pp. 212-220
-
-
Gupta, S.K.1
-
50
-
-
84867587461
-
Identification of acquired antimicrobial resistance genes
-
Zankari, E. et al. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67: 2640– 2644.
-
(2012)
J. Antimicrob. Chemother.
, vol.67
, pp. 2640-2644
-
-
Zankari, E.1
-
51
-
-
84992053162
-
Predictive computational phenotyp-ing and biomarker discovery using reference-free genome comparisons
-
Drouin, A. et al. 2016. Predictive computational phenotyp-ing and biomarker discovery using reference-free genome comparisons. BMC Genomics 17: 754.
-
(2016)
BMC Genomics
, vol.17
, pp. 754
-
-
Drouin, A.1
-
53
-
-
0029131005
-
DNA gyrase gyrA mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa
-
Yonezawa, M. et al. 1995. DNA gyrase gyrA mutations in quinolone-resistant clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39: 1970–1972.
-
(1995)
Antimicrob. Agents Chemother.
, vol.39
, pp. 1970-1972
-
-
Yonezawa, M.1
-
55
-
-
82955229539
-
The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy
-
Wu, C.P., C.H. Hsieh & Y.S. Wu. 2011. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol. Pharm. 8: 1996–2011.
-
(2011)
Mol. Pharm.
, vol.8
, pp. 1996-2011
-
-
Wu, C.P.1
Hsieh, C.H.2
Wu, Y.S.3
-
56
-
-
34247568394
-
Efflux pumps as antimicrobial resistance mechanisms
-
Poole, K. 2007. Efflux pumps as antimicrobial resistance mechanisms. Ann. Med. 39: 162–176.
-
(2007)
Ann. Med.
, vol.39
, pp. 162-176
-
-
Poole, K.1
-
57
-
-
0037257321
-
The importance of efflux pumps in bacterial antibiotic resistance
-
Webber, M.A. & L.J. Piddock. 2003. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51: 9–11.
-
(2003)
J. Antimicrob. Chemother.
, vol.51
, pp. 9-11
-
-
Webber, M.A.1
Piddock, L.J.2
-
58
-
-
84994059858
-
Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence
-
Alcalde-Rico, M. et al. 2016. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Front. Microbiol. 7: 1483.
-
(2016)
Front. Microbiol.
, vol.7
, pp. 1483
-
-
Alcalde-Rico, M.1
-
59
-
-
0031661594
-
Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa
-
Evans, K. et al. 1998. Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 180: 5443–5447.
-
(1998)
J. Bacteriol.
, vol.180
, pp. 5443-5447
-
-
Evans, K.1
-
60
-
-
0034871821
-
Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa
-
Kohler, T. et al. 2001. Overexpression of the MexEF-OprN multidrug efflux system affects cell-to-cell signaling in Pseudomonas aeruginosa. J. Bacteriol. 183: 5213–5222.
-
(2001)
J. Bacteriol.
, vol.183
, pp. 5213-5222
-
-
Kohler, T.1
-
61
-
-
68949110351
-
Efflux-mediated drug resistance in bacteria
-
Li, X.-Z. & H. Nikaido. 2009. Efflux-mediated drug resistance in bacteria. Drugs 69: 1555–1623.
-
(2009)
Drugs
, vol.69
, pp. 1555-1623
-
-
Li, X.-Z.1
Nikaido, H.2
-
62
-
-
33646251815
-
Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria
-
Piddock, L.J.V. 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 19: 382–402.
-
(2006)
Clin. Microbiol. Rev.
, vol.19
, pp. 382-402
-
-
Piddock, L.J.V.1
-
63
-
-
77954132745
-
Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa
-
Kiser, T.H. et al. 2010. Efflux pump contribution to multidrug resistance in clinical isolates of Pseudomonas aeruginosa. Pharmacotherapy 30: 632–638.
-
(2010)
Pharmacotherapy
, vol.30
, pp. 632-638
-
-
Kiser, T.H.1
-
65
-
-
84952009484
-
Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis
-
Bradley, P. et al. 2015. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat. Commun. 6: 10063.
-
(2015)
Nat. Commun
, vol.6
-
-
Bradley, P.1
-
66
-
-
84922243002
-
Protein design algorithms predict viable resistance to an experimental antifolate
-
Reeve, S.M. et al. 2015. Protein design algorithms predict viable resistance to an experimental antifolate. Proc. Natl. Acad. Sci. U.S.A. 112: 749–754.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. 749-754
-
-
Reeve, S.M.1
-
67
-
-
84874218295
-
The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus
-
Coelho, J.R. et al. 2013. The use of machine learning methodologies to analyse antibiotic and biocide susceptibility in Staphylococcus aureus. PLoS One 8: e55582.
-
(2013)
Plos One
, vol.8
-
-
Coelho, J.R.1
-
68
-
-
84906875539
-
Machine learning for the prediction of antibacterial susceptibility in Mycobacterium tuberculosis
-
Niehaus, K.E. et al. 2014. Machine learning for the prediction of antibacterial susceptibility in Mycobacterium tuberculosis. In IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). 618–621. https://doi.org/10.1109/BHI.2014.6864440
-
(2014)
In IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)
, pp. 618-621
-
-
Niehaus, K.E.1
-
69
-
-
84891776599
-
PATRIC, the bacterial bioinformatics database and analysis resource
-
Wattam, A.R. et al. 2014. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 42: D581–D591.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D581-D591
-
-
Wattam, A.R.1
-
70
-
-
84974799196
-
Antimicrobial resistance prediction in PATRIC and RAST
-
Davis, J.J. et al. 2016. Antimicrobial resistance prediction in PATRIC and RAST. Sci. Rep. 6: 27930.
-
(2016)
Sci. Rep.
, vol.6
-
-
Davis, J.J.1
-
71
-
-
79955079817
-
Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq
-
Gallagher, L.A., J. Shendure & C. Manoil. 2011. Genome-scale identification of resistance functions in Pseudomonas aeruginosa using Tn-seq. mBio 2: e00315-10.
-
(2011)
Mbio
, vol.2
-
-
Gallagher, L.A.1
Shendure, J.2
Manoil, C.3
-
72
-
-
84925343017
-
The fitness costs of antibiotic resistance mutations
-
Melnyk, A.H., A. Wong & R. Kassen. 2015. The fitness costs of antibiotic resistance mutations. Evol. Appl. 8: 273– 283.
-
(2015)
Evol. Appl.
, vol.8
, pp. 273-283
-
-
Melnyk, A.H.1
Wong, A.2
Kassen, R.3
-
73
-
-
84866893020
-
Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa
-
Wong, A., N. Rodrigue & R. Kassen. 2012. Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa. PLoS Genet. 8: e1002928.
-
(2012)
Plos Genet
, vol.8
-
-
Wong, A.1
Rodrigue, N.2
Kassen, R.3
-
74
-
-
84991236036
-
Assess drug-resistance phenotypes, not just genotypes
-
Piddock, L.J. 2016. Assess drug-resistance phenotypes, not just genotypes. Nat. Microbiol. 1: 16120.
-
(2016)
Nat. Microbiol.
, vol.1
-
-
Piddock, L.J.1
-
75
-
-
84902536156
-
Microbiological effects of sublethal levels of antibiotics
-
Andersson, D.I. & D. Hughes. 2014. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12: 465–478.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 465-478
-
-
Andersson, D.I.1
Hughes, D.2
-
76
-
-
0034798494
-
The relative contributions of recombination and point mutation to the diversification of bacterial clones
-
Spratt, B.G., W.P. Hanage & E.J. Feil. 2001. The relative contributions of recombination and point mutation to the diversification of bacterial clones. Curr. Opin. Microbiol. 4: 602–606.
-
(2001)
Curr. Opin. Microbiol.
, vol.4
, pp. 602-606
-
-
Spratt, B.G.1
Hanage, W.P.2
Feil, E.J.3
-
77
-
-
67651204792
-
Bacterial gene amplification: Implications for the evolution of antibiotic resistance
-
Sandegren, L. & D.I. Andersson. 2009. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7: 578–588.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 578-588
-
-
Sandegren, L.1
Andersson, D.I.2
-
78
-
-
84908135412
-
Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes
-
Chewapreecha, C. et al. 2014. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet. 10: e1004547.
-
(2014)
Plos Genet
, vol.10
-
-
Chewapreecha, C.1
-
79
-
-
84940856057
-
The Pseudomonas aeruginosa transcriptional landscape is shaped by environmental heterogeneity and genetic variation
-
Dotsch, A. et al. 2015. The Pseudomonas aeruginosa transcriptional landscape is shaped by environmental heterogeneity and genetic variation. mBio 6: e00749.
-
(2015)
Mbio
, vol.6
-
-
Dotsch, A.1
-
80
-
-
84958606331
-
Single-cell genome sequencing: Current state of the science
-
Gawad, C., W. Koh & S.R. Quake. 2016. Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17: 175–188.
-
(2016)
Nat. Rev. Genet.
, vol.17
, pp. 175-188
-
-
Gawad, C.1
Koh, W.2
Quake, S.R.3
|