메뉴 건너뛰기




Volumn 10, Issue 5, 2017, Pages 1859-1864

Detection of deterministic and probabilistic convection initiation using Himawari-8 Advanced Himawari Imager data

Author keywords

[No Author keywords available]

Indexed keywords

BRIGHTNESS TEMPERATURE; CLIMATE MODELING; CONVECTION; CONVECTIVE CLOUD; MODEL VALIDATION; PRECIPITATION INTENSITY; SOCIOECONOMIC IMPACT; THUNDERSTORM;

EID: 85019910702     PISSN: 18671381     EISSN: 18678548     Source Type: Journal    
DOI: 10.5194/amt-10-1859-2017     Document Type: Article
Times cited : (53)

References (61)
  • 1
    • 0013259588 scopus 로고    scopus 로고
    • IR-based satellite and radar rainfall estimates of convective storms over northern Italy
    • Amorati, R., Alberoni, P. P., Levizzani, V., and Nanni, S.: IR-based satellite and radar rainfall estimates of convective storms over northern Italy, Meteorol. Appl., 7, 1-18, doi:10.1017/S1350482700001328, 2000.
    • (2000) Meteorol. Appl. , vol.7 , pp. 1-18
    • Amorati, R.1    Alberoni, P.P.2    Levizzani, V.3    Nanni, S.4
  • 2
    • 23144444441 scopus 로고    scopus 로고
    • The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives
    • Banacos, P. C. and Schultz, D. M.: The Use of Moisture Flux Convergence in Forecasting Convective Initiation: Historical and Operational Perspectives, Weather Forecast., 20, 351-366, doi:10.1175/WAF858.1, 2005.
    • (2005) Weather Forecast. , vol.20 , pp. 351-366
    • Banacos, P.C.1    Schultz, D.M.2
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L.: Random Forests, Machine Learning, 45, 5-32, doi:10.1023/a:1010933404324, 2001.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 5
    • 0036693828 scopus 로고    scopus 로고
    • Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels
    • Craven, J. P., Jewell, R. E., and Brooks, H. E.: Comparison between Observed Convective Cloud-Base Heights and Lifting Condensation Level for Two Different Lifted Parcels, Weather Forecast., 17, 885-890, doi:10.1175/1520-0434 (2002) 017<0885:CBOCCB>2.0. CO;2, 2002.
    • (2002) Weather Forecast. , vol.17 , pp. 885-890
    • Craven, J.P.1    Jewell, R.E.2    Brooks, H.E.3
  • 6
    • 84992723876 scopus 로고    scopus 로고
    • Mining parameter information for building extraction and change detection with very high resolution imagery and GIS data
    • Guo, Z. and Du, S.: Mining parameter information for building extraction and change detection with very high resolution imagery and GIS data, GIS. Remote Sens., 54, 38-63, 2017.
    • (2017) GIS. Remote Sens. , vol.54 , pp. 38-63
    • Guo, Z.1    Du, S.2
  • 7
    • 75349083243 scopus 로고    scopus 로고
    • Multispectral remote sensing for rainfall detection and estimation at the source of the Blue Nile River
    • Haile, A. T., Rientjes, T., Gieske, A., and Gebremichael, M.: Multispectral remote sensing for rainfall detection and estimation at the source of the Blue Nile River, Int. J. Appl. Earth Obs. Geoinf., S76-S82, 2010.
    • (2010) Int. J. Appl. Earth Obs. Geoinf. , pp. S76-S82
    • Haile, A.T.1    Rientjes, T.2    Gieske, A.3    Gebremichael, M.4
  • 8
    • 84937931173 scopus 로고    scopus 로고
    • Detection of convective initiation using Meteorological Imager onboard Communication, Ocean, and Meteorological satellite based on machine learning approaches
    • Han, H., Lee, S., Im, J., Kim, M., Lee, M. I., Ahn, M. H., and Chung, S. R.: Detection of convective initiation using Meteorological Imager onboard Communication, Ocean, and Meteorological satellite based on machine learning approaches, Remote Sens., 7, 9184-9204, 2015.
    • (2015) Remote Sens. , vol.7 , pp. 9184-9204
    • Han, H.1    Lee, S.2    Im, J.3    Kim, M.4    Lee, M.I.5    Ahn, M.H.6    Chung, S.R.7
  • 9
    • 0036537715 scopus 로고    scopus 로고
    • A case study of severe storm development along a dryline within a synoptically active environment, Part II: Multiple boundaries and convective initiation
    • Hane, C. E., Rabin, R. M., Crawford, T. M., Bluestein, H. B., and Baldwin, M. E.: A Case Study of Severe Storm Development along a Dryline within a Synoptically Active Environment, Part II: Multiple Boundaries and Convective Initiation, Mon. Weather Rev., 130, 900-920, doi:10.1175/1520-0493 (2002) 130<0900:ACSOSS>2.0. CO;2, 2002.
    • (2002) Mon. Weather Rev. , vol.130 , pp. 900-920
    • Hane, C.E.1    Rabin, R.M.2    Crawford, T.M.3    Bluestein, H.B.4    Baldwin, M.E.5
  • 11
    • 14344255017 scopus 로고    scopus 로고
    • Mesoscale convective systems
    • Houze, R. A.: Mesoscale convective systems, Rev. Geophys., 42, RG4003, 10.1029/2004RG000150, 2004.
    • (2004) Rev. Geophys. , vol.42 , pp. RG4003
    • Houze, R.A.1
  • 12
    • 37249089673 scopus 로고    scopus 로고
    • Object-based change detection using correlation image analysis and image segmentation
    • Im, J., Jensen, J. R., and Tullis, J. A.: Object-based change detection using correlation image analysis and image segmentation, Int. J. Remote Sens., 29, 399-423, doi:10.1080/01431160601075582, 2008.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 399-423
    • Im, J.1    Jensen, J.R.2    Tullis, J.A.3
  • 13
    • 84857854934 scopus 로고    scopus 로고
    • Vegetation cover analysis of hazardous waste sites in utah and Arizona using hyperspectral remote sensing
    • Im, J., Jensen, J., Jensen, R., Gladden, J., Waugh, J., and Serrato, M.: Vegetation cover analysis of hazardous waste sites in utah and arizona using hyperspectral remote sensing, Remote Sens., 4, 327-353, 2012.
    • (2012) Remote Sens. , vol.4 , pp. 327-353
    • Im, J.1    Jensen, J.2    Jensen, R.3    Gladden, J.4    Waugh, J.5    Serrato, M.6
  • 14
    • 77954407984 scopus 로고    scopus 로고
    • Remote sensing change detection in urban environments
    • edited by: Jensen, R. R., Gatrell, J. D., and McLean, D., Springer Berlin Heidelberg, Berlin, Heidelberg
    • Jensen, J. R. and Im, J.: Remote Sensing Change Detection in Urban Environments, in: Geo-Spatial Technologies in Urban Environments: Policy, Practice, and Pixels, edited by: Jensen, R. R., Gatrell, J. D., and McLean, D., Springer Berlin Heidelberg, Berlin, Heidelberg, 7-31, 2007.
    • (2007) Geo-spatial Technologies in Urban Environments: Policy, Practice, and Pixels , pp. 7-31
    • Jensen, J.R.1    Im, J.2
  • 15
    • 84890447056 scopus 로고    scopus 로고
    • Adjusting thresholds of satellitebased convective initiation interest fields based on the cloud environment
    • Jewett, C. P. and Mecikalski, J. R.: Adjusting thresholds of satellitebased convective initiation interest fields based on the cloud environment, J. Geophys. Res-Atmos., 118, 12649-612660, doi:10.1002/2013JD019700, 2013.
    • (2013) J. Geophys. Res-atmos. , vol.118 , pp. 12649-612660
    • Jewett, C.P.1    Mecikalski, J.R.2
  • 16
    • 0024812761 scopus 로고
    • Vertical velocity characteristics of oceanic convection
    • Jorgensen, D. P. and LeMone, M. A.: Vertical Velocity Characteristics of Oceanic Convection, J. Atmos. Sci., 46, 621-640, doi:10.1175/1520-0469 (1989) 046<0621:VVCOOC>2.0. CO;2, 1989.
    • (1989) J. Atmos. Sci. , vol.46 , pp. 621-640
    • Jorgensen, D.P.1    LeMone, M.A.2
  • 17
    • 0242415380 scopus 로고    scopus 로고
    • Characteristic differences of rainfall and cloud-to-ground lightning activity over South Korea during the summer monsoon season
    • Kar, S. K. and Ha, K.-J.: Characteristic Differences of Rainfall and Cloud-to-Ground Lightning Activity over South Korea during the Summer Monsoon Season, Mon. Weather Rev., 131, 2312-2323, doi:10.1175/1520-0493 (2003) 131<2312:CDORAC>2.0. CO;2, 2003.
    • (2003) Mon. Weather Rev. , vol.131 , pp. 2312-2323
    • Kar, S.K.1    Ha, K.-J.2
  • 18
    • 84923333853 scopus 로고    scopus 로고
    • Introduction of the in-orbit test and its performance for the first meteorological imager of the Communication, Ocean, and Meteorological Satellite
    • Kim, D. H. and Ahn, M. H.: Introduction of the in-orbit test and its performance for the first meteorological imager of the Communication, Ocean, and Meteorological Satellite, Atmos. Meas. Tech., 7, 2471-2485, 10.5194/amt-7-2471-2014, 2014.
    • (2014) Atmos. Meas. Tech. , vol.7 , pp. 2471-2485
    • Kim, D.H.1    Ahn, M.H.2
  • 19
    • 33646433042 scopus 로고    scopus 로고
    • An observational study of mesoscale convective systems with heavy rainfall over the Korean Peninsula
    • Kim, H. W. and Lee, D. K.: An Observational Study of Mesoscale Convective Systems with Heavy Rainfall over the Korean Peninsula, Weather Forecast., 21, 125-148, doi:10.1175/WAF912.1, 2006.
    • (2006) Weather Forecast. , vol.21 , pp. 125-148
    • Kim, H.W.1    Lee, D.K.2
  • 20
    • 84926504608 scopus 로고    scopus 로고
    • Landfast sea ice monitoring using multisensor fusion in the Antarctic
    • Kim, M., Im, J., Han, H., Kim, J., Lee, S., Shin, M., and Kim, H.-C.: Landfast sea ice monitoring using multisensor fusion in the Antarctic, GIS. Remote Sens., 52, 239-256, doi:10.1080/15481603.2015.1026050, 2015.
    • (2015) GIS. Remote Sens. , vol.52 , pp. 239-256
    • Kim, M.1    Im, J.2    Han, H.3    Kim, J.4    Lee, S.5    Shin, M.6    Kim, H.-C.7
  • 21
    • 84898764774 scopus 로고    scopus 로고
    • Machine learning approaches to coastal water quality monitoring using GOCI satellite data
    • Kim, Y. H., Im, J., Ha, H. K., Choi, J.-K., and Ha, S.: Machine learning approaches to coastal water quality monitoring using GOCI satellite data, GIS. Remote Sens., 51, 158-174, doi:10.1080/15481603.2014.900983, 2014.
    • (2014) GIS. Remote Sens. , vol.51 , pp. 158-174
    • Kim, Y.H.1    Im, J.2    Ha, H.K.3    Choi, J.-K.4    Ha, S.5
  • 22
    • 0035679049 scopus 로고    scopus 로고
    • Rule-based classification systems using classification and regression tree (CART) analysis
    • Lawrence, R. L. and Wright, A.: Rule-based classification systems using classification and regression tree (CART) analysis, Photogramm. Eng. Rem. S., 67, 1137-1142, 2001.
    • (2001) Photogramm. Eng. Rem. S. , vol.67 , pp. 1137-1142
    • Lawrence, R.L.1    Wright, A.2
  • 23
    • 84883537640 scopus 로고    scopus 로고
    • Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest
    • Li, M., Im, J., and Beier, C.: Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest, GIS. Remote Sens., 50, 361-384, doi:10.1080/15481603.2013.819161, 2013.
    • (2013) GIS. Remote Sens. , vol.50 , pp. 361-384
    • Li, M.1    Im, J.2    Beier, C.3
  • 24
    • 84906945992 scopus 로고    scopus 로고
    • Forest biomass and carbon stock quantification using airborne lidar data: A case study over huntington wildlife forest in the adirondack park
    • Li, M., Im, J., Quackenbush, L. J., and Liu, T.: Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study Over Huntington Wildlife Forest in the Adirondack Park, IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens., 7, 3143-3156, doi:10.1109/JSTARS.2014.2304642, 2014.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obser. Remote Sens. , vol.7 , pp. 3143-3156
    • Li, M.1    Im, J.2    Quackenbush, L.J.3    Liu, T.4
  • 25
    • 84945250026 scopus 로고    scopus 로고
    • A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification
    • Liu, T., Im, J., and Quackenbush, L. J.: A novel transferable individual tree crown delineation model based on Fishing Net Dragging and boundary classification, ISPRS J. Photogramme., 110, 34-47, doi:10.1016/j.isprsjprs.2015.10.002, 2015.
    • (2015) ISPRS J. Photogramme. , vol.110 , pp. 34-47
    • Liu, T.1    Im, J.2    Quackenbush, L.J.3
  • 26
    • 84883778115 scopus 로고    scopus 로고
    • Remote sensingbased house value estimation using an optimized regional regression model
    • Lu, Z., Im, J., Quackenbush, L. J., and Yoo, S.: Remote Sensingbased House Value Estimation Using an Optimized Regional Regression Model, Photogramm. Eng. Remote Sens., 79, 809-820, doi:10.14358/PERS.79.9.809, 2013.
    • (2013) Photogramm. Eng. Remote Sens. , vol.79 , pp. 809-820
    • Lu, Z.1    Im, J.2    Quackenbush, L.J.3    Yoo, S.4
  • 27
    • 84906080423 scopus 로고    scopus 로고
    • Building type classification using spatial and landscape attributes derived from Li-DAR remote sensing data
    • Lu, Z., Im, J., Rhee, J., and Hodgson, M.: Building type classification using spatial and landscape attributes derived from Li-DAR remote sensing data, Landscape, Urban Plan., 130, 134-148, doi:10.1016/j.landurbplan. 2014.07.005, 2014.
    • (2014) Landscape, Urban Plan. , vol.130 , pp. 134-148
    • Lu, Z.1    Im, J.2    Rhee, J.3    Hodgson, M.4
  • 28
    • 33644784004 scopus 로고    scopus 로고
    • Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery
    • Mecikalski, J. R. and Bedka, K. M.: Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery, Mon. Weather Rev., 134, 49-78, doi:10.1175/MWR3062.1, 2006.
    • (2006) Mon. Weather Rev. , vol.134 , pp. 49-78
    • Mecikalski, J.R.1    Bedka, K.M.2
  • 29
    • 58149284802 scopus 로고    scopus 로고
    • A statistical evaluation of GOES cloud-top properties for nowcasting convective initiation
    • Mecikalski, J. R., Bedka, K. M., Paech, S. J., and Litten, L. A.: A Statistical Evaluation of GOES Cloud-Top Properties for Nowcasting Convective Initiation, Mon. Weather Rev., 136, 4899-4914, doi:10.1175/2008MWR2352.1, 2008.
    • (2008) Mon. Weather Rev. , vol.136 , pp. 4899-4914
    • Mecikalski, J.R.1    Bedka, K.M.2    Paech, S.J.3    Litten, L.A.4
  • 30
    • 77953502273 scopus 로고    scopus 로고
    • Cloud-top properties of growing cumulus prior to convective initiation as measured by meteosat second generation. Part I: Infrared fields
    • Mecikalski, J. R., MacKenzie, W. M., Koenig, M., and Muller, S.: Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part I: Infrared Fields, J. Appl. Meteorol. Climatol., 49, 521-534, doi:10.1175/2009JAMC2344.1, 2009.
    • (2009) J. Appl. Meteorol. Climatol. , vol.49 , pp. 521-534
    • Mecikalski, J.R.1    MacKenzie, W.M.2    Koenig, M.3    Muller, S.4
  • 31
    • 78651072433 scopus 로고    scopus 로고
    • Cloud-top properties of growing cumulus prior to convective initiation as measured by meteosat second generation. Part II: Use of visible reflectance
    • Mecikalski, J. R., MacKenzie, W. M., König, M., and Muller, S.: Cloud-Top Properties of Growing Cumulus prior to Convective Initiation as Measured by Meteosat Second Generation. Part II: Use of Visible Reflectance, J. Appl. Meteorol. Climatol., 49, 2544-2558, doi:10.1175/2010JAMC2480.1, 2010.
    • (2010) J. Appl. Meteorol. Climatol. , vol.49 , pp. 2544-2558
    • Mecikalski, J.R.1    MacKenzie, W.M.2    König, M.3    Muller, S.4
  • 32
    • 84943743955 scopus 로고    scopus 로고
    • Probabilistic 0-1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data
    • Mecikalski, J. R., Williams, J. K., Jewett, C. P., Ahijevych, D., LeRoy, A., and Walker, J. R.: Probabilistic 0-1-h Convective Initiation Nowcasts that Combine Geostationary Satellite Observations and Numerical Weather Prediction Model Data, J. Appl. Meteorol. Climatol., 54, 1039-1059, doi:10.1175/JAMC-D-14-0129.1, 2015.
    • (2015) J. Appl. Meteorol. Climatol. , vol.54 , pp. 1039-1059
    • Mecikalski, J.R.1    Williams, J.K.2    Jewett, C.P.3    Ahijevych, D.4    LeRoy, A.5    Walker, J.R.6
  • 33
    • 84882419167 scopus 로고    scopus 로고
    • Detection of convective initiation using Meteosat SEVIRI: Implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM
    • Merk, D. and Zinner, T.: Detection of convective initiation using Meteosat SEVIRI: implementation in and verification with the tracking and nowcasting algorithm Cb-TRAM, Atmos. Meas. Tech., 6, 1903-1918, 10.5194/amt-6-1903-2013, 2013.
    • (2013) Atmos. Meas. Tech. , vol.6 , pp. 1903-1918
    • Merk, D.1    Zinner, T.2
  • 35
    • 0036655255 scopus 로고    scopus 로고
    • A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology
    • Morel, C. and Senesi, S.: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology, Q. J. Roy. Meteorol. Soc., 128, 1953-1971, doi:10.1256/003590002320603485, 2002.
    • (2002) Q. J. Roy. Meteorol. Soc. , vol.128 , pp. 1953-1971
    • Morel, C.1    Senesi, S.2
  • 37
    • 84929292462 scopus 로고    scopus 로고
    • Floodplain wetland mapping in the White Volta River Basin of Ghana
    • Nyarko, B., Diekkruger, B., Van De Giesen, N., and Vlek, P.: Floodplain wetland mapping in the White Volta River Basin of Ghana, GIS. Remote Sens. 52, 374-395, 2015.
    • (2015) GIS. Remote Sens , vol.52 , pp. 374-395
    • Nyarko, B.1    Diekkruger, B.2    Van De Giesen, N.3    Vlek, P.4
  • 38
    • 84945550767 scopus 로고    scopus 로고
    • Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions
    • Park, S., Im, J., Jang, E., and Rhee, J.: Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions, Agr. Forest Meteorol., 216, 157-169, doi:10.1016/j.agrformet.2015.10.011, 2016.
    • (2016) Agr. Forest Meteorol. , vol.216 , pp. 157-169
    • Park, S.1    Im, J.2    Jang, E.3    Rhee, J.4
  • 39
    • 1642357293 scopus 로고    scopus 로고
    • version 2.10, last access: 10 February 2016
    • Quinlan, J. R.: Data mining tools See5 and C4.5, version 2.10, available at: https://www.rulequest.com/see5-info.html (last access: 10 February 2016), 2015.
    • (2015) Data Mining Tools See5 and C4.5
    • Quinlan, J.R.1
  • 40
    • 43949096156 scopus 로고    scopus 로고
    • Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas
    • Rhee, J., Im, J., Carbone, G. J., and Jensen, J. R.: Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas, Remote Sens. Environ., 112, 3099-3111, doi:10.1016/j.rse.2008.03.001, 2008.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 3099-3111
    • Rhee, J.1    Im, J.2    Carbone, G.J.3    Jensen, J.R.4
  • 41
    • 84908509694 scopus 로고    scopus 로고
    • Relationship between land cover patterns and surface temperature in urban areas
    • Rhee, J., Park, S., and Lu, Z.: Relationship between land cover patterns and surface temperature in urban areas, GIS. Remote Sens., 51, 521-536, doi:10.1080/15481603.2014.964455, 2014.
    • (2014) GIS. Remote Sens. , vol.51 , pp. 521-536
    • Rhee, J.1    Park, S.2    Lu, Z.3
  • 42
    • 39749151765 scopus 로고    scopus 로고
    • Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events
    • Roberts, N. M. and Lean, H. W.: Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events, Mon. Weather Rev., 136, 78-97, doi:10.1175/2007MWR2123.1, 2008.
    • (2008) Mon. Weather Rev. , vol.136 , pp. 78-97
    • Roberts, N.M.1    Lean, H.W.2
  • 43
    • 0141745004 scopus 로고    scopus 로고
    • Nowcasting storm initiation and growth using GOES-8 and WSR-88D data
    • Roberts, R. D. and Rutledge, S.: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data, Weather Forecast., 18, 562-584, 2003.
    • (2003) Weather Forecast. , vol.18 , pp. 562-584
    • Roberts, R.D.1    Rutledge, S.2
  • 44
    • 42549152804 scopus 로고    scopus 로고
    • Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase
    • Rosenfeld, D., Woodley, W. L., Lerner, A., Kelman, G., and Lindsey, D. T.: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase, J. Geophys. Res-Atmos., 113, D04208, doi:10.1029/2007JD008600, 2008.
    • (2008) J. Geophys. Res-atmos. , vol.113 , pp. D04208
    • Rosenfeld, D.1    Woodley, W.L.2    Lerner, A.3    Kelman, G.4    Lindsey, D.T.5
  • 45
    • 23944500566 scopus 로고    scopus 로고
    • Introducing the next-generation Advanced Baseline Imager on GOES-R
    • Schmit, T. J., Gunshor, M. M., Menzel, W. P., and Gurka, J. J.: Introducing the next-generation Advanced Baseline Imager on GOES-R, B. Am. Meteorol. Soc. 86, 1079-1096, 2005.
    • (2005) B. Am. Meteorol. Soc , vol.86 , pp. 1079-1096
    • Schmit, T.J.1    Gunshor, M.M.2    Menzel, W.P.3    Gurka, J.J.4
  • 46
    • 79951614926 scopus 로고    scopus 로고
    • Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends
    • Sieglaff, J. M., Cronce, L. M., Feltz, W. F., Bedka, K. M., Pavolonis, M. J., and Heidinger, A. K.: Nowcasting Convective Storm Initiation Using Satellite-Based Box-Averaged Cloud-Top Cooling and Cloud-Type Trends, J. Appl. Meteorol. Climatol., 50, 110-126, doi:10.1175/2010JAMC2496.1, 2011.
    • (2011) J. Appl. Meteorol. Climatol. , vol.50 , pp. 110-126
    • Sieglaff, J.M.1    Cronce, L.M.2    Feltz, W.F.3    Bedka, K.M.4    Pavolonis, M.J.5    Heidinger, A.K.6
  • 47
    • 78649687927 scopus 로고    scopus 로고
    • Application of Meteosat second generation data towards improving the nowcasting of convective initiation
    • Siewert, C. W., Koenig, M., and Mecikalski, J. R.: Application of Meteosat second generation data towards improving the nowcasting of convective initiation, Meteorol. Appl., 17, 442-451, doi:10.1002/met.176, 2010.
    • (2010) Meteorol. Appl. , vol.17 , pp. 442-451
    • Siewert, C.W.1    Koenig, M.2    Mecikalski, J.R.3
  • 48
    • 84937924530 scopus 로고    scopus 로고
    • Japan Meteorological Agency Algorithm Theoretical Basis Document, Meteorological Satellite Center, Tokyo, Japan
    • Sobajima, A.: Rapidly Development Cumulus Areas Derivation Algorithm. Japan Meteorological Agency Algorithm Theoretical Basis Document, Meteorological Satellite Center, Tokyo, Japan, 2012.
    • (2012) Rapidly Development Cumulus Areas Derivation Algorithm
    • Sobajima, A.1
  • 49
    • 84888414560 scopus 로고    scopus 로고
    • Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements
    • Sohn, B. J., Ryu, G. H., Song, H. J., and Ou, M. L.: Characteristic features of warm-type rain producing heavy rainfall over the Korean Peninsula inferred from TRMM measurements, Mon. Weather Rev., 141, 3873-3888l, 2013.
    • (2013) Mon. Weather Rev. , vol.141 , pp. 3873-3888l
    • Sohn, B.J.1    Ryu, G.H.2    Song, H.J.3    Ou, M.L.4
  • 50
    • 84921457682 scopus 로고    scopus 로고
    • Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study
    • Song, H. J. and Sohn, B. J.: Two heavy rainfall types over the Korean peninsula in the humid East Asian summer environment: A satellite observation study, Mon. Weather Rev., 143, 363-382, 2015.
    • (2015) Mon. Weather Rev. , vol.143 , pp. 363-382
    • Song, H.J.1    Sohn, B.J.2
  • 51
    • 84942550297 scopus 로고    scopus 로고
    • Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades
    • Torbick, N. and Corbiere, M.: Mapping urban sprawl and impervious surfaces in the northeast United States for the past four decades, GIS. Remote Sens., 52, 746-764, doi:10.1080/15481603.2015.1076561, 2015.
    • (2015) GIS. Remote Sens. , vol.52 , pp. 746-764
    • Torbick, N.1    Corbiere, M.2
  • 52
    • 11844294089 scopus 로고    scopus 로고
    • A study of convection initiation in a mesoscale model using high-resolution land surface initial conditions
    • Trier, S. B., Chen, F., and Manning, K. W.: A Study of Convection Initiation in a Mesoscale Model Using High-Resolution Land Surface Initial Conditions, Mon. Weather Rev., 132, 2954-2976, doi:10.1175/MWR2839.1, 2004.
    • (2004) Mon. Weather Rev. , vol.132 , pp. 2954-2976
    • Trier, S.B.1    Chen, F.2    Manning, K.W.3
  • 53
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu, J. V.: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes, J. Clin. Epidemiol., 49, 1225-1231, doi:10.1016/S0895-4356 (96) 00002-9, 1996.
    • (1996) J. Clin. Epidemiol. , vol.49 , pp. 1225-1231
    • Tu, J.V.1
  • 54
    • 84872125057 scopus 로고    scopus 로고
    • An enhanced geostationary satellite-based convective initiation algorithm for 0-2-h nowcasting with object tracking
    • Walker, J. R., MacKenzie, W. M., Mecikalski, J. R., and Jewett, C. P.: An Enhanced Geostationary Satellite-Based Convective Initiation Algorithm for 0-2-h Nowcasting with Object Tracking, J. Appl. Meteorol. Climatol., 51, 1931-1949, doi:10.1175/JAMC-D-11-0246.1, 2012.
    • (2012) J. Appl. Meteorol. Climatol. , vol.51 , pp. 1931-1949
    • Walker, J.R.1    MacKenzie, W.M.2    Mecikalski, J.R.3    Jewett, C.P.4
  • 56
    • 3943103342 scopus 로고    scopus 로고
    • A climatology of warm-season cloud patterns over east Asia based on GMS infrared brightness temperature observations
    • Wang, C.-C., Chen, G. T.-J., and Carbone, R. E.: A Climatology of Warm-Season Cloud Patterns over East Asia Based on GMS Infrared Brightness Temperature Observations, Mon. Weather Rev., 132, 1606-1629, doi:10.1175/1520-0493 (2004) 132<1606:ACOWCP>2.0. CO;2, 2004.
    • (2004) Mon. Weather Rev. , vol.132 , pp. 1606-1629
    • Wang, C.-C.1    Chen, G.T.-J.2    Carbone, R.E.3
  • 57
    • 33644764297 scopus 로고    scopus 로고
    • A review of convection initiation and motivation for IHOP-2002
    • Weckwerth, T. M. and Parsons, D. B.: A Review of Convection Initiation and Motivation for IHOP-2002, Mon. Weather Rev., 134, 5-22, doi:10.1175/MWR3067.1, 2006.
    • (2006) Mon. Weather Rev. , vol.134 , pp. 5-22
    • Weckwerth, T.M.1    Parsons, D.B.2
  • 58
    • 75349084545 scopus 로고    scopus 로고
    • Diurnal cycle of convective activity over the West of Central Africa based on meteosat images
    • Vondou, D. A., Nzeukou, A., and Kamga, F. M.: Diurnal cycle of convective activity over the West of Central Africa based on meteosat images, Int. J. Appl. Earth Obs. Geoinf., S58-S62, 2010.
    • (2010) Int. J. Appl. Earth Obs. Geoinf. , pp. S58-S62
    • Vondou, D.A.1    Nzeukou, A.2    Kamga, F.M.3
  • 59
    • 84864519896 scopus 로고    scopus 로고
    • Variable selection for hedonic model using machine learning approaches: A case study in Onondaga County
    • Yoo, S., Im, J., and Wagner, J. E.: Variable selection for hedonic model using machine learning approaches: A case study in Onondaga County, NY, Landscape. Urban Plan., 107, 293-306, doi:10.1016/j.landurbplan. 2012.06.009, 2012.
    • (2012) NY, Landscape. Urban Plan. , vol.107 , pp. 293-306
    • Yoo, S.1    Im, J.2    Wagner, J.E.3
  • 60
    • 55649113967 scopus 로고    scopus 로고
    • Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data
    • Zinner, T., Mannstein, H., and Tafferner, A.: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data, Meteorol. Atmos. Phys. 101, 191-210, doi:10.1007/s00703-008-0290-y, 2008.
    • (2008) Meteorol. Atmos. Phys , vol.101 , pp. 191-210
    • Zinner, T.1    Mannstein, H.2    Tafferner, A.3
  • 61
    • 0012585255 scopus 로고    scopus 로고
    • Convective Clouds over the Bay of Bengal
    • Zuidema, P.: Convective Clouds over the Bay of Bengal, Mon. Weather Rev., 131, 780-798, doi:10.1175/1520-0493 (2003) 131<0780:CCOTBO>2.0. CO;2, 2003.
    • (2003) Mon. Weather Rev. , vol.131 , pp. 780-798
    • Zuidema, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.