메뉴 건너뛰기




Volumn 130, Issue 1, 2014, Pages 134-148

Building type classification using spatial and landscape attributes derived from LiDAR remote sensing data

Author keywords

Building classification; Decision trees; LiDAR; Machine learning; Random forest; Support vector machines

Indexed keywords

BUILDINGS; CLASSIFICATION (OF INFORMATION); DECISION TREES; LEARNING SYSTEMS; RANDOM FORESTS; REMOTE SENSING; SUPPORT VECTOR MACHINES; OPTICAL RADAR;

EID: 84906080423     PISSN: 01692046     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.landurbplan.2014.07.005     Document Type: Article
Times cited : (103)

References (61)
  • 1
    • 65549153752 scopus 로고    scopus 로고
    • Integrating building footprints and LiDAR elevation data to classify roof structures and visualize buildings
    • Alexander, C., Smith-Voysey, S., Jarvis, C., & Tansey, K. (2009). Integrating building footprints and LiDAR elevation data to classify roof structures and visualize buildings. Computers, Environment and Urban Systems, 33, 285-292.
    • (2009) Computers Environment and Urban Systems , vol.33 , pp. 285-292
    • Alexander, C.1    Smith-Voysey, S.2    Jarvis, C.3    Tansey, K.4
  • 2
    • 84881129957 scopus 로고    scopus 로고
    • An intelligent approach towards automatic shape modelling and object extraction from satellite images using cellular automata-based algorithms
    • Arun, P., & Katiyar, S. (2013). An intelligent approach towards automatic shape modelling and object extraction from satellite images using cellular automata-based algorithms. GIScience and Remote Sensing, 50, 337-348.
    • (2013) GIScience and Remote Sensing , vol.50 , pp. 337-348
    • Arun, P.1    Katiyar, S.2
  • 5
    • 72949088834 scopus 로고    scopus 로고
    • Automatic change detection of buildingsin urban environment from very high spatial resolution images using existing geodatabase and prior knowledge
    • Bouziani, M., Goïta, K., & He, D. C. (2010). Automatic change detection of buildingsin urban environment from very high spatial resolution images using existing geodatabase and prior knowledge. ISPRS Journal of Photogrammetry and Remote Sensing, 65, 143-153.
    • (2010) ISPRS Journal of Photogrammetry and Remote Sensing , vol.65 , pp. 143-153
    • Bouziani, M.1    Goïta, K.2    He, D.C.3
  • 6
    • 0038036847 scopus 로고    scopus 로고
    • Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density LiDAR data from the eastern deciduous forest in North America
    • Brandtberg, T., Warner, T. A., Landenberger, R. E., & McGraw, J. B. (2003). Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density LiDAR data from the eastern deciduous forest in North America. Remote Sensing of Environment, 85, 290-303.
    • (2003) Remote Sensing of Environment , vol.85 , pp. 290-303
    • Brandtberg, T.1    Warner, T.A.2    Landenberger, R.E.3    McGraw, J.B.4
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 8
    • 84871294336 scopus 로고    scopus 로고
    • Assessing the accuracy of remotely sensed data:Principles and practices
    • (2nd ed.) Boca Raton, FL: CRC Press
    • Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: Principles and practices (2nd ed.). Boca Raton, FL: CRC Press.
    • (2008)
    • Congalton, R.G.1    Green, K.2
  • 9
    • 34249753618 scopus 로고
    • Support-vector network.
    • Cortes, R., & Vapnik, V. (1995). Support-vector network. Machine Learning, 20,273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, R.1    Vapnik, V.2
  • 10
    • 70349172947 scopus 로고    scopus 로고
    • The role of spectral resolution and classifier complexity in the analysis of hyperspectral images offorest areas
    • Dalponte, M., Bruzzone, L., Vescovo, L., & Gianelle, D. (2009). The role of spectral resolution and classifier complexity in the analysis of hyperspectral images offorest areas. Remote Sensing of Environment, 113, 2345-2355.
    • (2009) Remote Sensing of Environment , vol.113 , pp. 2345-2355
    • Dalponte, M.1    Bruzzone, L.2    Vescovo, L.3    Gianelle, D.4
  • 12
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • Foody, G. M. (2004). Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering & Remote Sensing, 70, 627-633.
    • (2004) Photogrammetric Engineering & Remote Sensing , vol.70 , pp. 627-633
    • Foody, G.M.1
  • 13
    • 0038259114 scopus 로고    scopus 로고
    • Classes of kernels for machine learning: A statistics perspective
    • Genton, M. G. (2001). Classes of kernels for machine learning: A statistics perspective. Journal of Machine Learning Research, 2, 299-312.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 299-312
    • Genton, M.G.1
  • 14
    • 79958083302 scopus 로고    scopus 로고
    • A review of remote sensing of forest biomass and biofuel: Options for small area applications.
    • Gleason, C., & Im, J. (2011). A review of remote sensing of forest biomass and biofuel: Options for small area applications. GIScience and Remote Sensing, 48,141-170.
    • (2011) GIScience and Remote Sensing , vol.48 , pp. 141-170
    • Gleason, C.1    Im, J.2
  • 15
    • 84864188599 scopus 로고    scopus 로고
    • A fusion approach for tree crown delineation from LiDAR data
    • Gleason, C., & Im, J. (2012). A fusion approach for tree crown delineation from LiDAR data. Photogrammetric Engineering & Remote Sensing, 78, 679-692.
    • (2012) Photogrammetric Engineering & Remote Sensing , vol.78 , pp. 679-692
    • Gleason, C.1    Im, J.2
  • 16
    • 78650903054 scopus 로고    scopus 로고
    • An artificial immune network approach to multi-sensor land use/land cover classification.
    • Gong, B. L., Im, J., & Mountrakis, G. (2011). An artificial immune network approach to multi-sensor land use/land cover classification. Remote Sensing of Environment,115, 600-614.
    • (2011) Remote Sensing of Environment , vol.115 , pp. 600-614
    • Gong, B.L.1    Im, J.2    Mountrakis, G.3
  • 17
    • 84877685404 scopus 로고    scopus 로고
    • River-flow boundary delineation fromdigital aerial photography and ancillary images using support vector machines.
    • Guneralp, I., Filippi, A., & Hales, B. (2013). River-flow boundary delineation fromdigital aerial photography and ancillary images using support vector machines.GIScience and Remote Sensing, 50, 1-25.
    • (2013) GIScience and Remote Sensing , vol.50 , pp. 1-25
    • Guneralp, I.1    Filippi, A.2    Hales, B.3
  • 18
    • 78650731656 scopus 로고    scopus 로고
    • Relevance of airborne LiDAR and multispectral image data for urban scene classification using Random Forests.
    • Guo, L., Chehata, N., Mallet, C., & Boukir, S. (2011). Relevance of airborne LiDAR and multispectral image data for urban scene classification using Random Forests.ISPRS Journal of Photogrammetry and Remote Sensing, 66, 56-66.
    • ISPRS Journal of Photogrammetry and Remote Sensing , vol.66 , Issue.2011 , pp. 56-66
    • Guo, L.1    Chehata, N.2    Mallet, C.3    Boukir, S.4
  • 20
    • 84859922273 scopus 로고    scopus 로고
    • Assessing contextual descriptive features for plot-based classification of urban areas
    • Hermosilla, T., Ruiz, L. A., Recio, J. A., & Cambra-Lopez, M. (2012). Assessing contextual descriptive features for plot-based classification of urban areas. Landscape and Urban Planning, 106, 124-137.
    • (2012) Landscape and Urban Planning , vol.106 , pp. 124-137
    • Hermosilla, T.1    Ruiz, L.A.2    Recio, J.A.3    Cambra-Lopez, M.4
  • 23
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification.
    • (accessed 11.16.12)
    • Hsu, C. W., Chang, C. C., & Lin, C. J. (2010). A practical guide to support vector classification. www.csie.ntu.edu.tw/~cjlin (accessed 11.16.12)
    • (2010)
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3
  • 24
    • 67650245545 scopus 로고    scopus 로고
    • Road centerline extraction from high-resolution imagery based on multiscale structural features and support vector machines.
    • Huang, X., & Zhang, L. (2009). Road centerline extraction from high-resolution imagery based on multiscale structural features and support vector machines.International Journal of Remote Sensing, 30, 1977-1987.
    • (2009) International Journal of Remote Sensing , vol.30 , pp. 1977-1987
    • Huang, X.1    Zhang, L.2
  • 25
    • 27644447968 scopus 로고    scopus 로고
    • A change detection model based on neighborhood correlation image analysis and decision tree classification
    • Im, J., & Jensen, J. R. (2005). A change detection model based on neighborhood correlation image analysis and decision tree classification. Remote Sensing of Environment, 99, 326-340.
    • (2005) Remote Sensing of Environment , vol.99 , pp. 326-340
    • Im, J.1    Jensen, J.R.2
  • 26
    • 33845612780 scopus 로고    scopus 로고
    • An automated binary change detection model using a calibration approach.
    • Im, J., Rhee, J., Jensen, J. R., & Hodgson, M. E. (2007). An automated binary change detection model using a calibration approach. Remote Sensing of Environment,106, 89-105.
    • (2007) Remote Sensing of Environment , vol.106 , pp. 89-105
    • Im, J.1    Rhee, J.2    Jensen, J.R.3    Hodgson, M.E.4
  • 27
    • 44649087029 scopus 로고    scopus 로고
    • Object-based land cover classification using high posting density LiDAR data.
    • Im, J., Jensen, J. R., & Hodgson, M. E. (2008). Object-based land cover classification using high posting density LiDAR data. GIScience and Remote Sensing, 45,208-228.
    • (2008) GIScience and Remote Sensing , vol.45 , pp. 208-228
    • Im, J.1    Jensen, J.R.2    Hodgson, M.E.3
  • 28
    • 37249089673 scopus 로고    scopus 로고
    • Object-based change detection using correlation image analysis and image segmentation techniques
    • Im, J., Jensen, J. R., & Tullis, J. A. (2008). Object-based change detection using correlation image analysis and image segmentation techniques. International Journalof Remote Sensing, 29, 399-423.
    • (2008) International Journalof Remote Sensing , vol.29 , pp. 399-423
    • Im, J.1    Jensen, J.R.2    Tullis, J.A.3
  • 29
    • 84855469971 scopus 로고    scopus 로고
    • Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data
    • Im, J., Lu, Z., Rhee, J., & Quackenbush, L. J. (2012). Impervious surface quantification using a synthesis of artificial immune networks and decision/regression trees from multi-sensor data. Remote Sensing of Environment, 117, 102-113.
    • (2012) Remote Sensing of Environment , vol.117 , pp. 102-113
    • Im, J.1    Lu, Z.2    Rhee, J.3    Quackenbush, L.J.4
  • 31
    • 34447267238 scopus 로고    scopus 로고
    • Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features
    • Inglada, J. (2007). Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS Journal of Photogrammetry and Remote Sensing, 62, 236-248.
    • (2007) ISPRS Journal of Photogrammetry and Remote Sensing , vol.62 , pp. 236-248
    • Inglada, J.1
  • 32
    • 0030318229 scopus 로고    scopus 로고
    • Introductory digital image processing: A remote sensing perspective
    • (3rd ed.) Upper Saddle River, NJ: Prentice Hall
    • Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective(3rd ed.). Upper Saddle River, NJ: Prentice Hall.
    • (2005)
    • Jensen, J.R.1
  • 34
    • 33846597210 scopus 로고    scopus 로고
    • Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City, China
    • Kong, F., Yin, H., & Nakagoshi, N. (2007). Using GIS and landscape metrics in the hedonic price modeling of the amenity value of urban green space: A case study in Jinan City, China. Landscape and Urban Planning, 79, 240-252.
    • (2007) Landscape and Urban Planning , vol.79 , pp. 240-252
    • Kong, F.1    Yin, H.2    Nakagoshi, N.3
  • 35
    • 84870348709 scopus 로고    scopus 로고
    • The value of water-related amenities in an arid city: The case of the Phoenix metropolitan area.
    • Larson, E. K., & Perrings, C. (2013). The value of water-related amenities in an arid city: The case of the Phoenix metropolitan area. Landscape and Urban Planning,109, 45-55.
    • (2013) Landscape and Urban Planning , vol.109 , pp. 45-55
    • Larson, E.K.1    Perrings, C.2
  • 36
  • 38
    • 84883537640 scopus 로고    scopus 로고
    • Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest
    • Li, M., Im, J., & Beier, C. (2013). Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest. GIScience and Remote Sensing, 50, 361-384.
    • (2013) GIScience and Remote Sensing , vol.50 , pp. 361-384
    • Li, M.1    Im, J.2    Beier, C.3
  • 41
    • 80755176683 scopus 로고    scopus 로고
    • A volumetric approach to population estimation using LiDAR remote sensing.
    • Lu, Z. Y., Im, J., & Jensen, J. R. (2011). A volumetric approach to population estimation using LiDAR remote sensing. Photogrammetric Engineering & Remote Sensing, 77,1145-1156.
    • (2011) Photogrammetric Engineering & Remote Sensing , vol.77 , pp. 1145-1156
    • Lu, Z.Y.1    Im, J.2    Jensen, J.R.3
  • 44
    • 1642357293 scopus 로고    scopus 로고
    • Data mining tools See 5 and C5.0. St. Ives, NSW, Australia: Rule-Quest Research.
    • Available online at:(accessed on 02.25.12)
    • Quinlan, J. R. (2003). Data mining tools See 5 and C5.0. St. Ives, NSW, Australia: Rule-Quest Research. Available online at: http://www.rulequest.com/see5-info.html(accessed on 02.25.12)
    • (2003)
    • Quinlan, J.R.1
  • 45
    • 43949096156 scopus 로고    scopus 로고
    • Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas
    • Rhee, J., Im, J., Carbone, G. J., & Jensen, J. R. (2008). Delineation of climate regions using in-situ and remotely-sensed data for the Carolinas. Remote Sensing of Environment, 112, 3099-3111.
    • (2008) Remote Sensing of Environment , vol.112 , pp. 3099-3111
    • Rhee, J.1    Im, J.2    Carbone, G.J.3    Jensen, J.R.4
  • 46
    • 27744505497 scopus 로고    scopus 로고
    • Automatic generation of building models from LiDAR data and the integration of aerial images
    • Dresden: ISPRS
    • Rottenstainer, F., & Briese, C. (2003). . Automatic generation of building models from LiDAR data and the integration of aerial images (Vol. XXXIV) Dresden: ISPRS.
    • (2003) , vol.34
    • Rottenstainer, F.1    Briese, C.2
  • 47
    • 34347396654 scopus 로고    scopus 로고
    • Building boundary tracing and regularization from airborne LiDAR point clouds.
    • Sampath, A., & Shan, J. (2007). Building boundary tracing and regularization from airborne LiDAR point clouds. Photogrammetric Engineering & Remote Sensing, 73,805-812.
    • (2007) Photogrammetric Engineering & Remote Sensing , vol.73 , pp. 805-812
    • Sampath, A.1    Shan, J.2
  • 48
    • 33749554766 scopus 로고    scopus 로고
    • Machine learning benchmarks and random forest regression.
    • Netherlands: Center for Bioinformatics & Molecular Biostatistics, Kluwer Academic.
    • Segal, M. R. (2003). Machine learning benchmarks and random forest regression. Netherlands: Center for Bioinformatics & Molecular Biostatistics, Kluwer Academic.
    • (2003)
    • Segal, M.R.1
  • 51
    • 49649097630 scopus 로고    scopus 로고
    • Property values, parks, and crime: A hedonic analysis in Baltimore, MD
    • Troy, A., & Grove, J. M. (2008). Property values, parks, and crime: A hedonic analysis in Baltimore, MD. Landscape and Urban Planning, 87, 233-245.
    • (2008) Landscape and Urban Planning , vol.87 , pp. 233-245
    • Troy, A.1    Grove, J.M.2
  • 52
    • 10944240176 scopus 로고    scopus 로고
    • Classifying land development in high-resolution satellite imagery using hybrid structural-multispectral features
    • Ünsalan, C., & Boyer, K. L. (2004). Classifying land development in high-resolution satellite imagery using hybrid structural-multispectral features. IEEE Transactions on Geoscience and Remote Sensing, 42, 2840-2850.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 2840-2850
    • Ünsalan, C.1    Boyer, K.L.2
  • 53
    • 55349114714 scopus 로고    scopus 로고
    • Subpixel urban land cover estimation: Comparing cubist, random forests, and support vector regression
    • Walton, J. T. (2008). Subpixel urban land cover estimation: Comparing cubist, random forests, and support vector regression. Photogrammetric Engineering & Remote Sensing, 74(10), 1213-1222.
    • (2008) Photogrammetric Engineering & Remote Sensing , vol.74 , Issue.10 , pp. 1213-1222
    • Walton, J.T.1
  • 55
    • 33745611126 scopus 로고    scopus 로고
    • Urban land-use classification using variogram-based analysis with an aerial photograph
    • Wu, S. S., Xu, B., & Wang, L. (2006). Urban land-use classification using variogram-based analysis with an aerial photograph. Photogrammetric Engineering & Remote Sensing, 72, 813-822.
    • (2006) Photogrammetric Engineering & Remote Sensing , vol.72 , pp. 813-822
    • Wu, S.S.1    Xu, B.2    Wang, L.3
  • 56
    • 38549161164 scopus 로고    scopus 로고
    • Incorporating GIS building data and census housing statistics for sub-block population estimation.
    • Wu, S. S., Wang, L., & Qiu, X. (2008). Incorporating GIS building data and census housing statistics for sub-block population estimation. The Professional Geographer,60, 121-135.
    • (2008) The Professional Geographer , vol.60 , pp. 121-135
    • Wu, S.S.1    Wang, L.2    Qiu, X.3
  • 57
    • 65449189515 scopus 로고    scopus 로고
    • Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use.
    • Annals of Association of American Geographers
    • Wu, S. S., Qiu, X., Usery, E. L., & Wang, L. (2009). Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use. Incorporating GIS building data and census housing statistics for sub-block population estimation. Annals of Association of American Geographers, 99,76-98.
    • (2009) Incorporating GIS building data and census housing statistics for sub-block population estimation. , vol.99 , pp. 76-98
    • Wu, S.S.1    Qiu, X.2    Usery, E.L.3    Wang, L.4
  • 58
    • 84864519896 scopus 로고    scopus 로고
    • Variable selection for hedonic modeling using machine learning approaches: A case study in Onondaga County, NY, USA
    • Yoo, S., Im, J., & Wagner, J. E. (2012). Variable selection for hedonic modeling using machine learning approaches: A case study in Onondaga County, NY, USA. Land-scape and Urban Planning, 107, 293-306.
    • (2012) Land-scape and Urban Planning , vol.107 , pp. 293-306
    • Yoo, S.1    Im, J.2    Wagner, J.E.3
  • 60
    • 46249127568 scopus 로고    scopus 로고
    • An object-oriented approach for analyzing and characterizing urban landscape at the parcel level
    • Zhou, W., & Troy, A. (2008). An object-oriented approach for analyzing and characterizing urban landscape at the parcel level. International Journal of Remote Sensing, 29(11), 3119-3135.
    • (2008) International Journal of Remote Sensing , vol.29 , Issue.11 , pp. 3119-3135
    • Zhou, W.1    Troy, A.2
  • 61
    • 0036113847 scopus 로고    scopus 로고
    • Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel.
    • Zhu, G., & Blumberg, D. G. (2002). Classification using ASTER data and SVM algorithms: The case study of Beer Sheva, Israel. Remote Sensing of Environment, 80,233-240.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 233-240
    • Zhu, G.1    Blumberg, D.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.