-
1
-
-
8344286356
-
MISEP - Linear and nonlinear ICA based on mutual information
-
L. B. Almeida. MISEP - linear and nonlinear ICA based on mutual information. J. of Machine Learning Research, 4: 1297-1318, 2003.
-
(2003)
J. of Machine Learning Research
, vol.4
, pp. 1297-1318
-
-
Almeida, L.B.1
-
2
-
-
80053647086
-
Investigating the electrophysiological basis of resting state networks using magnetoen-cephalography
-
M. J. Brookes et al. Investigating the electrophysiological basis of resting state networks using magnetoen-cephalography. Proc. Natl. Acad. Sci., 108(40): 16783-16788, 2011.
-
(2011)
Proc. Natl. Acad. Sci.
, vol.108
, Issue.40
, pp. 16783-16788
-
-
Brookes, M.J.1
-
3
-
-
0028416938
-
Independent component analysis - A new concept?
-
P. Comon. Independent component analysis - a new concept? Signal Processing, 36: 287-314, 1994.
-
(1994)
Signal Processing
, vol.36
, pp. 287-314
-
-
Comon, P.1
-
4
-
-
84861423904
-
A cortical core for dynamic integration of functional networks in the resting human brain
-
F. de Pasquale et al. A cortical core for dynamic integration of functional networks in the resting human brain. Neuron, 74(4): 753-764, 2012.
-
(2012)
Neuron
, vol.74
, Issue.4
, pp. 753-764
-
-
De Pasquale, F.1
-
6
-
-
0000188120
-
Learning invariance from transformation sequences
-
P. Földiák. Learning invariance from transformation sequences. Neural Computation, 3: 194-200, 1991.
-
(1991)
Neural Computation
, vol.3
, pp. 194-200
-
-
Földiák, P.1
-
7
-
-
79951563340
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS'10, 2010.
-
(2010)
AISTATS'10
-
-
Glorot, X.1
Bengio, Y.2
-
8
-
-
84937849144
-
Generative adversarial nets
-
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In NIPS, pages 2672-2680, 2014.
-
(2014)
NIPS
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
9
-
-
85070926206
-
-
arXiv: 1504.02518
-
R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised feature learning from temporal data. arXiv: 1504.02518, 2015.
-
(2015)
Unsupervised Feature Learning from Temporal Data
-
-
Goroshin, R.1
Bruna, J.2
Tompson, J.3
Eigen, D.4
LeCun, Y.5
-
11
-
-
84857892556
-
Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics
-
M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. J. of Machine Learning Research, 13: 307-361, 2012.
-
(2012)
J. of Machine Learning Research
, vol.13
, pp. 307-361
-
-
Gutmann, M.U.1
Hyvärinen, A.2
-
12
-
-
0041376445
-
Kernel-based nonlinear blind source separation
-
S. Harmeling, A. Ziehe, M. Kawanabe, and K.-R. Müller. Kernel-based nonlinear blind source separation. Neural Comput., 15(5): 1089-1124, 2003.
-
(2003)
Neural Comput.
, vol.15
, Issue.5
, pp. 1089-1124
-
-
Harmeling, S.1
Ziehe, A.2
Kawanabe, M.3
Müller, K.-R.4
-
13
-
-
35348818718
-
Learning multiple layers of representation
-
G. E. Hinton. Learning multiple layers of representation. Trends Cogn. Sci., 11: 428-434, 2007.
-
(2007)
Trends Cogn. Sci.
, vol.11
, pp. 428-434
-
-
Hinton, G.E.1
-
14
-
-
0002834189
-
Autoencoders, minimum description length, and helmholtz free energy
-
G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length, and helmholtz free energy. Adv. Neural Inf. Process. Syst., 1994.
-
(1994)
Adv. Neural Inf. Process. Syst.
-
-
Hinton, G.E.1
Zemel, R.S.2
-
15
-
-
0032629347
-
Fast and robust fixed-point algorithms for independent component analysis
-
A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw., 10(3): 626-634, 1999.
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, Issue.3
, pp. 626-634
-
-
Hyvärinen, A.1
-
16
-
-
0035506142
-
Blind source separation by nonstationarity of variance: A cumulant-based approach
-
A. Hyvärinen. Blind source separation by nonstationarity of variance: A cumulant-based approach. IEEE Transactions on Neural Networks, 12(6): 1471-1474, 2001.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.6
, pp. 1471-1474
-
-
Hyvärinen, A.1
-
18
-
-
0041435860
-
Nonlinear independent component analysis: Existence and uniqueness results
-
A. Hyvärinen and P. Pajunen. Nonlinear independent component analysis: Existence and uniqueness results. Neural Netw., 12(3): 429-439, 1999.
-
(1999)
Neural Netw.
, vol.12
, Issue.3
, pp. 429-439
-
-
Hyvärinen, A.1
Pajunen, P.2
-
19
-
-
84973287466
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.
-
(2015)
CoRR, Abs/1502.03167
-
-
Ioffe, S.1
Szegedy, C.2
-
20
-
-
78449303071
-
Nonlinear mixtures
-
C. Jutten, M. Babaie-Zadeh, and J. Karhunen. Nonlinear mixtures. Handbook of Blind Source Separation, Independent Component Analysis and Applications, pages 549-592, 2010.
-
(2010)
Handbook of Blind Source Separation, Independent Component Analysis and Applications
, pp. 549-592
-
-
Jutten, C.1
Babaie-Zadeh, M.2
Karhunen, J.3
-
22
-
-
0029064164
-
A neural net for blind separation of nonstationary signals
-
K. Matsuoka, M. Ohya, and M. Kawamoto. A neural net for blind separation of nonstationary signals. Neural Netw., 8(3): 411-419, 1995.
-
(1995)
Neural Netw.
, vol.8
, Issue.3
, pp. 411-419
-
-
Matsuoka, K.1
Ohya, M.2
Kawamoto, M.3
-
24
-
-
0035448026
-
Blind separation of instantaneous mixtures of non stationary sources
-
D.-T. Pham and J.-F. Cardoso. Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans. Signal Processing, 49(9): 1837-1848, 2001.
-
(2001)
IEEE Trans. Signal Processing
, vol.49
, Issue.9
, pp. 1837-1848
-
-
Pham, D.-T.1
Cardoso, J.-F.2
-
25
-
-
84862269359
-
Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis
-
P. Ramkumar, L. Parkkonen, R. Hari, and A. Hyvärinen. Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis. Hum. Brain Mapp., 33(7): 1648-1662, 2012.
-
(2012)
Hum. Brain Mapp.
, vol.33
, Issue.7
, pp. 1648-1662
-
-
Ramkumar, P.1
Parkkonen, L.2
Hari, R.3
Hyvärinen, A.4
-
26
-
-
84899790321
-
An extension of slow feature analysis for nonlinear blind source separation
-
H. Sprekeler, T. Zito, and L. Wiskott. An extension of slow feature analysis for nonlinear blind source separation. J. of Machine Learning Research, 15(1): 921-947, 2014.
-
(2014)
J. of Machine Learning Research
, vol.15
, Issue.1
, pp. 921-947
-
-
Sprekeler, H.1
Zito, T.2
Wiskott, L.3
-
27
-
-
84869028832
-
Learning temporal coherent features through life-time sparsity
-
Springer
-
J. T. Springenberg and M. Riedmiller. Learning temporal coherent features through life-time sparsity. In Neural Information Processing, pages 347-356. Springer, 2012.
-
(2012)
Neural Information Processing
, pp. 347-356
-
-
Springenberg, J.T.1
Riedmiller, M.2
-
28
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res., 15(1): 1929-1958, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
29
-
-
0035112152
-
Nonlinear blind source separation using a radial basis function network
-
Y. Tan, J. Wang, and J.M. Zurada. Nonlinear blind source separation using a radial basis function network. IEEE Transactions on Neural Networks, 12(1): 124-134, 2001.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.1
, pp. 124-134
-
-
Tan, Y.1
Wang, J.2
Zurada, J.M.3
-
31
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11: 3371-3408, 2010.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
32
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
L. Wiskott and T. J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural Comput., 14(4): 715-770, 2002.
-
(2002)
Neural Comput.
, vol.14
, Issue.4
, pp. 715-770
-
-
Wiskott, L.1
Sejnowski, T.J.2
|