메뉴 건너뛰기




Volumn , Issue , 2016, Pages 3772-3780

Unsupervised feature extraction by time-contrastive learning and Nonlinear ICA

Author keywords

[No Author keywords available]

Indexed keywords

FEATURE EXTRACTION; LINEAR TRANSFORMATIONS; MATHEMATICAL TRANSFORMATIONS;

EID: 85019195046     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (451)

References (32)
  • 1
    • 8344286356 scopus 로고    scopus 로고
    • MISEP - Linear and nonlinear ICA based on mutual information
    • L. B. Almeida. MISEP - linear and nonlinear ICA based on mutual information. J. of Machine Learning Research, 4: 1297-1318, 2003.
    • (2003) J. of Machine Learning Research , vol.4 , pp. 1297-1318
    • Almeida, L.B.1
  • 2
    • 80053647086 scopus 로고    scopus 로고
    • Investigating the electrophysiological basis of resting state networks using magnetoen-cephalography
    • M. J. Brookes et al. Investigating the electrophysiological basis of resting state networks using magnetoen-cephalography. Proc. Natl. Acad. Sci., 108(40): 16783-16788, 2011.
    • (2011) Proc. Natl. Acad. Sci. , vol.108 , Issue.40 , pp. 16783-16788
    • Brookes, M.J.1
  • 3
    • 0028416938 scopus 로고
    • Independent component analysis - A new concept?
    • P. Comon. Independent component analysis - a new concept? Signal Processing, 36: 287-314, 1994.
    • (1994) Signal Processing , vol.36 , pp. 287-314
    • Comon, P.1
  • 4
    • 84861423904 scopus 로고    scopus 로고
    • A cortical core for dynamic integration of functional networks in the resting human brain
    • F. de Pasquale et al. A cortical core for dynamic integration of functional networks in the resting human brain. Neuron, 74(4): 753-764, 2012.
    • (2012) Neuron , vol.74 , Issue.4 , pp. 753-764
    • De Pasquale, F.1
  • 6
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • P. Földiák. Learning invariance from transformation sequences. Neural Computation, 3: 194-200, 1991.
    • (1991) Neural Computation , vol.3 , pp. 194-200
    • Földiák, P.1
  • 7
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS'10, 2010.
    • (2010) AISTATS'10
    • Glorot, X.1    Bengio, Y.2
  • 11
    • 84857892556 scopus 로고    scopus 로고
    • Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics
    • M. U. Gutmann and A. Hyvärinen. Noise-contrastive estimation of unnormalized statistical models, with applications to natural image statistics. J. of Machine Learning Research, 13: 307-361, 2012.
    • (2012) J. of Machine Learning Research , vol.13 , pp. 307-361
    • Gutmann, M.U.1    Hyvärinen, A.2
  • 12
  • 13
    • 35348818718 scopus 로고    scopus 로고
    • Learning multiple layers of representation
    • G. E. Hinton. Learning multiple layers of representation. Trends Cogn. Sci., 11: 428-434, 2007.
    • (2007) Trends Cogn. Sci. , vol.11 , pp. 428-434
    • Hinton, G.E.1
  • 14
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length, and helmholtz free energy
    • G. E. Hinton and R. S. Zemel. Autoencoders, minimum description length, and helmholtz free energy. Adv. Neural Inf. Process. Syst., 1994.
    • (1994) Adv. Neural Inf. Process. Syst.
    • Hinton, G.E.1    Zemel, R.S.2
  • 15
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • A. Hyvärinen. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw., 10(3): 626-634, 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 16
    • 0035506142 scopus 로고    scopus 로고
    • Blind source separation by nonstationarity of variance: A cumulant-based approach
    • A. Hyvärinen. Blind source separation by nonstationarity of variance: A cumulant-based approach. IEEE Transactions on Neural Networks, 12(6): 1471-1474, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1471-1474
    • Hyvärinen, A.1
  • 18
    • 0041435860 scopus 로고    scopus 로고
    • Nonlinear independent component analysis: Existence and uniqueness results
    • A. Hyvärinen and P. Pajunen. Nonlinear independent component analysis: Existence and uniqueness results. Neural Netw., 12(3): 429-439, 1999.
    • (1999) Neural Netw. , vol.12 , Issue.3 , pp. 429-439
    • Hyvärinen, A.1    Pajunen, P.2
  • 19
    • 84973287466 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167, 2015.
    • (2015) CoRR, Abs/1502.03167
    • Ioffe, S.1    Szegedy, C.2
  • 22
    • 0029064164 scopus 로고
    • A neural net for blind separation of nonstationary signals
    • K. Matsuoka, M. Ohya, and M. Kawamoto. A neural net for blind separation of nonstationary signals. Neural Netw., 8(3): 411-419, 1995.
    • (1995) Neural Netw. , vol.8 , Issue.3 , pp. 411-419
    • Matsuoka, K.1    Ohya, M.2    Kawamoto, M.3
  • 24
    • 0035448026 scopus 로고    scopus 로고
    • Blind separation of instantaneous mixtures of non stationary sources
    • D.-T. Pham and J.-F. Cardoso. Blind separation of instantaneous mixtures of non stationary sources. IEEE Trans. Signal Processing, 49(9): 1837-1848, 2001.
    • (2001) IEEE Trans. Signal Processing , vol.49 , Issue.9 , pp. 1837-1848
    • Pham, D.-T.1    Cardoso, J.-F.2
  • 25
    • 84862269359 scopus 로고    scopus 로고
    • Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis
    • P. Ramkumar, L. Parkkonen, R. Hari, and A. Hyvärinen. Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis. Hum. Brain Mapp., 33(7): 1648-1662, 2012.
    • (2012) Hum. Brain Mapp. , vol.33 , Issue.7 , pp. 1648-1662
    • Ramkumar, P.1    Parkkonen, L.2    Hari, R.3    Hyvärinen, A.4
  • 26
    • 84899790321 scopus 로고    scopus 로고
    • An extension of slow feature analysis for nonlinear blind source separation
    • H. Sprekeler, T. Zito, and L. Wiskott. An extension of slow feature analysis for nonlinear blind source separation. J. of Machine Learning Research, 15(1): 921-947, 2014.
    • (2014) J. of Machine Learning Research , vol.15 , Issue.1 , pp. 921-947
    • Sprekeler, H.1    Zito, T.2    Wiskott, L.3
  • 27
    • 84869028832 scopus 로고    scopus 로고
    • Learning temporal coherent features through life-time sparsity
    • Springer
    • J. T. Springenberg and M. Riedmiller. Learning temporal coherent features through life-time sparsity. In Neural Information Processing, pages 347-356. Springer, 2012.
    • (2012) Neural Information Processing , pp. 347-356
    • Springenberg, J.T.1    Riedmiller, M.2
  • 29
    • 0035112152 scopus 로고    scopus 로고
    • Nonlinear blind source separation using a radial basis function network
    • Y. Tan, J. Wang, and J.M. Zurada. Nonlinear blind source separation using a radial basis function network. IEEE Transactions on Neural Networks, 12(1): 124-134, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.1 , pp. 124-134
    • Tan, Y.1    Wang, J.2    Zurada, J.M.3
  • 31
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11: 3371-3408, 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 32
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L. Wiskott and T. J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural Comput., 14(4): 715-770, 2002.
    • (2002) Neural Comput. , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.