메뉴 건너뛰기




Volumn , Issue , 2016, Pages 4473-4481

Ancestral causal inference

Author keywords

[No Author keywords available]

Indexed keywords

ASYMPTOTIC CONSISTENCIES; BACK-GROUND KNOWLEDGE; CAUSAL INFERENCES; COMBINATORIAL EXPLOSION; CONSTRAINT-BASED; INDEPENDENCE TESTS; ORDERS OF MAGNITUDE; STATE OF THE ART;

EID: 85019170605     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (60)

References (26)
  • 1
    • 84888194311 scopus 로고    scopus 로고
    • Incorporating causal prior knowledge as path-constraints in Bayesian networks and maximal ancestral graphs
    • G. Borboudakis and I. Tsamardinos. Incorporating causal prior knowledge as path-constraints in Bayesian networks and Maximal Ancestral Graphs. In ICML, pages 1799-1806, 2012.
    • (2012) ICML , pp. 1799-1806
    • Borboudakis, G.1    Tsamardinos, I.2
  • 2
    • 80053159201 scopus 로고    scopus 로고
    • A logical characterization of constraint-based causal discovery
    • T. Claassen and T. Heskes. A logical characterization of constraint-based causal discovery. In UAI, pages 135-144, 2011.
    • (2011) UAI , pp. 135-144
    • Claassen, T.1    Heskes, T.2
  • 3
    • 84885985995 scopus 로고    scopus 로고
    • A Bayesian approach to constraint-based causal inference
    • T. Claassen and T. Heskes. A Bayesian approach to constraint-based causal inference. In UAI, pages 207-216, 2012.
    • (2012) UAI , pp. 207-216
    • Claassen, T.1    Heskes, T.2
  • 4
    • 84867677322 scopus 로고    scopus 로고
    • Learning high-dimensional directed acyclic graphs with latent and selection variables
    • D. Colombo, M. H. Maathuis, M. Kalisch, and T. S. Richardson. Learning high-dimensional directed acyclic graphs with latent and selection variables. The Annals of Statistics, 40(1): 294-321, 2012.
    • (2012) The Annals of Statistics , vol.40 , Issue.1 , pp. 294-321
    • Colombo, D.1    Maathuis, M.H.2    Kalisch, M.3    Richardson, T.S.4
  • 5
    • 84862287246 scopus 로고    scopus 로고
    • Exact Bayesian structure learning from uncertain interventions
    • D. Eaton and K. Murphy. Exact Bayesian structure learning from uncertain interventions. In AISTATS, pages 107-114, 2007.
    • (2007) AISTATS , pp. 107-114
    • Eaton, D.1    Murphy, K.2
  • 8
    • 84923292776 scopus 로고    scopus 로고
    • Constraint-based causal discovery: Conflict resolution with answer set programming
    • A. Hyttinen, F. Eberhardt, and M. Järvisalo. Constraint-based causal discovery: Conflict resolution with Answer Set Programming. In UAI, pages 340-349, 2014.
    • (2014) UAI , pp. 340-349
    • Hyttinen, A.1    Eberhardt, F.2    Järvisalo, M.3
  • 9
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. Journal of Machine Learning Research, 8: 613-636, 2007.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 12
    • 57749112937 scopus 로고    scopus 로고
    • What is answer set programming?
    • V. Lifschitz. What is Answer Set Programming? In AAAI, pages 1594-1597, 2008.
    • (2008) AAAI , pp. 1594-1597
    • Lifschitz, V.1
  • 13
    • 70449455407 scopus 로고    scopus 로고
    • Efficient Markov network discovery using particle filters
    • D. Margaritis and F. Bromberg. Efficient Markov network discovery using particle filters. Computational Intelligence, 25(4): 367-394, 2009.
    • (2009) Computational Intelligence , vol.25 , Issue.4 , pp. 367-394
    • Margaritis, D.1    Bromberg, F.2
  • 14
    • 84862634658 scopus 로고    scopus 로고
    • Probabilistic soft interventions in conditional Gaussian networks
    • F. Markowetz, S. Grossmann, and R. Spang. Probabilistic soft interventions in conditional Gaussian networks. In AISTATS, pages 214-221, 2005.
    • (2005) AISTATS , pp. 214-221
    • Markowetz, F.1    Grossmann, S.2    Spang, R.3
  • 15
    • 84888153835 scopus 로고    scopus 로고
    • Cyclic causal discovery from continuous equilibrium data
    • J. M. Mooij and T. Heskes. Cyclic causal discovery from continuous equilibrium data. In UAI, pages 431-439, 2013.
    • (2013) UAI , pp. 431-439
    • Mooij, J.M.1    Heskes, T.2
  • 18
    • 80053209343 scopus 로고    scopus 로고
    • Adjacency-faithfulness and conservative causal inference
    • J. Ramsey, J. Zhang, and P. Spirtes. Adjacency-faithfulness and conservative causal inference. In UAI, pages 401-408, 2006.
    • (2006) UAI , pp. 401-408
    • Ramsey, J.1    Zhang, J.2    Spirtes, P.3
  • 19
    • 84965107424 scopus 로고    scopus 로고
    • BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions
    • D. Rothenhäusler, C. Heinze, J. Peters, and N. Meinshausen. BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions. In NIPS, pages 1513-1521, 2015.
    • (2015) NIPS , pp. 1513-1521
    • Rothenhäusler, D.1    Heinze, C.2    Peters, J.3    Meinshausen, N.4
  • 21
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • K. Sachs, O. Perez, D. Pe'er, D. Lauffenburger, and G. Nolan. Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308: 523-529, 2005.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.4    Nolan, G.5
  • 22
    • 0742300590 scopus 로고    scopus 로고
    • An anytime algorithm for causal inference
    • P. Spirtes. An anytime algorithm for causal inference. In AISTATS, pages 121-128, 2001.
    • (2001) AISTATS , pp. 121-128
    • Spirtes, P.1
  • 24
    • 33749550611 scopus 로고    scopus 로고
    • Causal discovery from changes
    • J. Tian and J. Pearl. Causal discovery from changes. In UAI, pages 512-521, 2001.
    • (2001) UAI , pp. 512-521
    • Tian, J.1    Pearl, J.2
  • 25
    • 84962317458 scopus 로고    scopus 로고
    • Constraint-based causal discovery from multiple interventions over overlapping variable sets
    • S. Triantafillou and I. Tsamardinos. Constraint-based causal discovery from multiple interventions over overlapping variable sets. Journal of Machine Learning Research, 16: 2147-2205, 2015.
    • (2015) Journal of Machine Learning Research , vol.16 , pp. 2147-2205
    • Triantafillou, S.1    Tsamardinos, I.2
  • 26
    • 52949097616 scopus 로고    scopus 로고
    • On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias
    • J. Zhang. On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias. Artifical Intelligence, 172(16-17): 1873-1896, 2008.
    • (2008) Artifical Intelligence , vol.172 , Issue.16-17 , pp. 1873-1896
    • Zhang, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.