-
1
-
-
33747670266
-
Learning factor graphs in polynomial time and sample complexity
-
Abbeel, P., D. Koller, and A. Y. Ng. 2006. Learning factor graphs in polynomial time and sample complexity. Journal of Machine Learning Research, 7 : 1743 1788.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1743-1788
-
-
Abbeel, P.1
Koller, D.2
Ng, A.Y.3
-
3
-
-
14344265835
-
HITON, a novel Markov blanket algorithm for optimal variable selection
-
In. Washington, DC
-
Aliferis, C. F., I. Tsamardinos, and A. Statnikov. 2003. HITON, a novel Markov blanket algorithm for optimal variable selection. In Proceedings of the American Medical Informatics Association (AMIA) Fall Symposium, Washington, DC, pp. 21 25.
-
(2003)
Proceedings of the American Medical Informatics Association (AMIA) Fall Symposium
, pp. 21-25
-
-
Aliferis, C.F.1
Tsamardinos, I.2
Statnikov, A.3
-
4
-
-
0037262814
-
An introduction to MCMC for machine learning
-
Andrieu, C., N. de Freitas, A. Doucet, and M. Jordan. 2003. An introduction to MCMC for machine learning. Machine Learning, 50 : 5 43.
-
(2003)
Machine Learning
, vol.50
, pp. 5-43
-
-
Andrieu, C.1
De Freitas, N.2
Doucet, A.3
Jordan, M.4
-
5
-
-
24644490260
-
Discriminative learning of Markov random fields for segmentation of 3D range data
-
San Diego, CA
-
Anguelov, D., B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, G. Heitz, and A. Ng. 2005. Discriminative learning of Markov random fields for segmentation of 3D range data. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, pp. 169 176.
-
(2005)
Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 169-176
-
-
Anguelov, D.1
Taskar, B.2
Chatalbashev, V.3
Koller, D.4
Gupta, D.5
Heitz, G.6
Ng, A.7
-
6
-
-
0001051761
-
On the computational complexity of Ising spin glass models
-
Barahona, F. 1982. On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General, 15 (10 3241 3253.
-
(1982)
Journal of Physics A: Mathematical and General
, vol.15
, Issue.10
, pp. 3241-3253
-
-
Barahona, F.1
-
7
-
-
0001677717
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological), 57 (1 289 300.
-
(1995)
Journal of the Royal Statistical Society, Series B (Methodological)
, vol.57
, Issue.1
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
8
-
-
0035733108
-
The control of the false discovery rate in multiple testing under dependency
-
Benjamini, Y., and D. Yekutieli. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29 (4 1165 1188.
-
(2001)
Annals of Statistics
, vol.29
, Issue.4
, pp. 1165-1188
-
-
Benjamini, Y.1
Yekutieli, D.2
-
9
-
-
0000913755
-
Spatial interaction and the statistical analysis of lattice systems
-
Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36 (2 192 236.
-
(1974)
Journal of the Royal Statistical Society, Series B
, vol.36
, Issue.2
, pp. 192-236
-
-
Besag, J.1
-
11
-
-
33745441891
-
Efficient Markov network structure discovery using independence tests
-
Bethesda, MD
-
Bromberg, F., D. Margaritis, and V. Honavar. 2006. Efficient Markov network structure discovery using independence tests. In SIAM International Conference on Data Mining, Bethesda, MD, pp. 141 152.
-
(2006)
SIAM International Conference on Data Mining
, pp. 141-152
-
-
Bromberg, F.1
Margaritis, D.2
Honavar, V.3
-
12
-
-
4043138379
-
Population Monte Carlo
-
Cappé, O., A. Guillin, J.-M. Marin, and C. P. Robert. 2004. Population Monte Carlo. Journal of Computational and Graphical Statistics, 13 (4 907 929.
-
(2004)
Journal of Computational and Graphical Statistics
, vol.13
, Issue.4
, pp. 907-929
-
-
Cappé, O.1
Guillin, A.2
Marin, J.-M.3
Robert, C.P.4
-
13
-
-
0032626544
-
An improved particle filter for non-linear problems
-
Carpenter, J., P. Clifford, and P. Fearnhead. 1999. An improved particle filter for non-linear problems. IEE proceedings, Radar, Sonar and Navigation, 146 : 2 7.
-
(1999)
IEE Proceedings, Radar, Sonar and Navigation
, vol.146
, pp. 2-7
-
-
Carpenter, J.1
Clifford, P.2
Fearnhead, P.3
-
14
-
-
0012338718
-
A sequential particle filter method for static models
-
Chopin, N. 2002. A sequential particle filter method for static models. Biometrika, 89 : 539 552.
-
(2002)
Biometrika
, vol.89
, pp. 539-552
-
-
Chopin, N.1
-
15
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
Chow, C., and C. Liu. May 1968. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14 (3 462 467.
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, Issue.3
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
16
-
-
33646684004
-
Sequential Monte Carlo samplers
-
Del Moral, P., A. Doucet, and A. Jasra. 2006. Sequential Monte Carlo samplers. Journal of the Royal Statistical Society, Series B (Methodological), 68 : 411 436.
-
(2006)
Journal of the Royal Statistical Society, Series B (Methodological)
, vol.68
, pp. 411-436
-
-
Del Moral, P.1
Doucet, A.2
Jasra, A.3
-
17
-
-
0031120321
-
Inducing features of random fields
-
Della Pietra, S., V. Della Pietra, and J. Lafferty. 1997. Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (4 390 393.
-
(1997)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.19
, Issue.4
, pp. 390-393
-
-
Della Pietra, S.1
Della Pietra, V.2
Lafferty, J.3
-
18
-
-
0003665481
-
-
Doucet, A. N. de Freitas. and. N. Gordon. Eds.). Springer Verlag. New York.
-
Doucet, A., N. de Freitas, and N. Gordon (Eds.). 2001. Sequential Monte Carlo methods in practice. Springer Verlag, New York.
-
(2001)
Sequential Monte Carlo Methods in Practice.
-
-
-
20
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian relation of images
-
Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian relation of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6 : 721 741.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
22
-
-
0027580559
-
Novel approach to nonlinear/non-Gaussian Bayesian state estimation
-
Gordon, N., D. Salmond, and A. F. Smith. 1993. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F, Radar and Signal Processing, 140 (2 107 113.
-
(1993)
IEE Proceedings F, Radar and Signal Processing
, vol.140
, Issue.2
, pp. 107-113
-
-
Gordon, N.1
Salmond, D.2
Smith, A.F.3
-
24
-
-
0003704318
-
-
. Department of Information and Computer Science, University of California, Irvine.
-
Hettich, S., and S. D. Bay. 1999. UCI KDD archive. Department of Information and Computer Science, University of California, Irvine.
-
(1999)
UCI KDD Archive
-
-
Hettich, S.1
Bay, S.D.2
-
26
-
-
0027677367
-
Polynomial-time approximation algorithms for the Ising model
-
Jerrum, M., and A. Sinclair. 1993. Polynomial-time approximation algorithms for the Ising model. SIAM Journal on Computing, 22 : 1087 1116.
-
(1993)
SIAM Journal on Computing
, vol.22
, pp. 1087-1116
-
-
Jerrum, M.1
Sinclair, A.2
-
27
-
-
0030304310
-
Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
-
Kitagawa, G. 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5 (1 1 25.
-
(1996)
Journal of Computational and Graphical Statistics
, vol.5
, Issue.1
, pp. 1-25
-
-
Kitagawa, G.1
-
28
-
-
0028482006
-
Learning Bayesian belief networks: An approach based on the MDL principle
-
Lam, W., and F. Bacchus. 1994. Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence, 10 : 269 293.
-
(1994)
Computational Intelligence
, vol.10
, pp. 269-293
-
-
Lam, W.1
Bacchus, F.2
-
29
-
-
70049111780
-
1-regularization
-
. In. Edited by. B. Schölkopf. J. Platt. and. T. Hoffman. MIT Press. Cambridge, MA. pp.
-
1-regularization. In Advances in Neural Information Processing Systems 19. Edited by B. Schölkopf, J. Platt, and T. Hoffman. MIT Press, Cambridge, MA, pp. 817 824.
-
(2007)
Advances in Neural Information Processing Systems 19.
, pp. 817-824
-
-
Lee, S.-I.1
Ganapahthi, V.2
Koller, D.3
-
30
-
-
0032359151
-
Sequential Monte Carlo methods for dynamic systems
-
Liu, J., and R. Chen. 1998. Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association, 93 (443 1032 1044.
-
(1998)
Journal of the American Statistical Association
, vol.93
, Issue.443
, pp. 1032-1044
-
-
Liu, J.1
Chen, R.2
-
31
-
-
29344470807
-
Distribution-free learning of Bayesian network structure in continuous domains
-
In. AAAI Press/MIT Press. Menlo Park, CA. pp.
-
Margaritis, D. 2005. Distribution-free learning of Bayesian network structure in continuous domains. In National Conference on Artificial Intelligence (AAAI). AAAI Press/MIT Press, Menlo Park, CA, pp. 825 830.
-
(2005)
National Conference on Artificial Intelligence (AAAI).
, pp. 825-830
-
-
Margaritis, D.1
-
32
-
-
84898996215
-
Bayesian network induction via local neighborhoods
-
. In. Edited by. S. Solla. T. Leen. and. K.-R. Müller. MIT Press. Cambridge, MA. pp.
-
Margaritis, D., and S. Thrun. 2000. Bayesian network induction via local neighborhoods. In Advances in Neural Information Processing Systems 12. Edited by S. Solla, T. Leen, and K.-R. Müller. MIT Press, Cambridge, MA, pp. 505 511.
-
(2000)
Advances in Neural Information Processing Systems 12.
, pp. 505-511
-
-
Margaritis, D.1
Thrun, S.2
-
36
-
-
33745834241
-
-
. Department of Information and Computer Sciences, University of California, Irvine.
-
Newman, D. J., S. Hettich, C. L. Blake, and C. Merz. 1998. UCI repository of machine learning databases. Department of Information and Computer Sciences, University of California, Irvine.
-
(1998)
UCI Repository of Machine Learning Databases
-
-
Newman, D.J.1
Hettich, S.2
Blake, C.L.3
Merz, C.4
-
38
-
-
0042456355
-
The recovery of causal poly-trees from statistical data
-
. In. Edited by. L. N. Kanal. T. S. Levitt. and. J. F. Lemmer. North-Holland. Amsterdam. pp.
-
Rebane, G., and J. Pearl. 1989. The recovery of causal poly-trees from statistical data. In Uncertainty in Artificial Intelligence 3. Edited by L. N. Kanal, T. S. Levitt, and J. F. Lemmer. North-Holland, Amsterdam, pp. 175 182.
-
(1989)
Uncertainty in Artificial Intelligence 3.
, pp. 175-182
-
-
Rebane, G.1
Pearl, J.2
-
39
-
-
6344276411
-
Trends in spatial data mining
-
. In. Edited by. H. Kargupta. A. Joshi. K. Sivakumar. and. Y. Yesha. AAAI Press/The MIT Press. Menlo Park, CA. pp.
-
Shekhar, S., P. Zhang, Y. Huang, and R. Vatsavai. 2004. Trends in spatial data mining. In Data Mining: Next Generation Challenges and Future Directions. Edited by H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha. AAAI Press/The MIT Press, Menlo Park, CA, pp. 357 379.
-
(2004)
Data Mining: Next Generation Challenges and Future Directions.
, pp. 357-379
-
-
Shekhar, S.1
Zhang, P.2
Huang, Y.3
Vatsavai, R.4
-
40
-
-
0003614273
-
Causation, Prediction, and Search
-
. (2nd ed.). MIT Press. Cambridge, MA.
-
Spirtes, P., C. Glymour, and R. Scheines. January 2000. Causation, Prediction, and Search. Adaptive Computation and Machine Learning Series (2nd ed.). MIT Press, Cambridge, MA.
-
(2000)
Adaptive Computation and Machine Learning Series
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
41
-
-
64049102502
-
Learning Markov networks: Maximum bounded tree-width graphs
-
. In. Washington, DC. pp.
-
Srebro, N., and D. Karger. 2001. Learning Markov networks: Maximum bounded tree-width graphs. In ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, pp. 392 401.
-
(2001)
ACM-SIAM Symposium on Discrete Algorithms
, pp. 392-401
-
-
Srebro, N.1
Karger, D.2
-
43
-
-
1642397083
-
Algorithms for large scale Markov blanket discovery
-
. In. St. Augustine, FL. pp.
-
Tsamardinos, I., C. F. Aliferis, and A. Statnikov. 2003a. Algorithms for large scale Markov blanket discovery. In Proceedings of the 16th International FLAIRS Conference, St. Augustine, FL, pp. 376 381.
-
(2003)
Proceedings of the 16th International FLAIRS Conference
, pp. 376-381
-
-
Tsamardinos, I.1
Aliferis, C.F.2
Statnikov, A.3
-
44
-
-
26944470217
-
Time and sample efficient discovery of Markov blankets and direct causal relations
-
. In. Washington, DC. pp.
-
Tsamardinos, I., C. F. Aliferis, and A. Statnikov. 2003b. Time and sample efficient discovery of Markov blankets and direct causal relations. In Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC, pp. 673 678.
-
(2003)
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 673-678
-
-
Tsamardinos, I.1
Aliferis, C.F.2
Statnikov, A.3
-
45
-
-
33746035971
-
-
. Machine Learning
-
Tsamardinos, I., L. E. Brown, and C. F. Aliferis. 2006. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65 (1 31 78.
-
(2006)
The Max-min Hill-climbing Bayesian Network Structure Learning Algorithm
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
|