메뉴 건너뛰기




Volumn 25, Issue 4, 2009, Pages 367-394

Efficient markov network discovery using particle filters

Author keywords

Graphical model structure learning; Markov networks; Particle filters; Sequential Monte Carlo

Indexed keywords

DISTRIBUTED DATA; GRAPHICAL MODEL STRUCTURE LEARNING; INDEPENDENCE TESTS; INFORMATION GAIN; MARKOV NETWORKS; PARTICLE FILTER; PARTICLE FILTERS; POSTERIOR PROBABILITY; POTENTIAL ERRORS; SEQUENTIAL MONTE CARLO; VERY LARGE DATUM;

EID: 70449455407     PISSN: 08247935     EISSN: 14678640     Source Type: Journal    
DOI: 10.1111/j.1467-8640.2009.00347.x     Document Type: Article
Times cited : (22)

References (46)
  • 1
    • 33747670266 scopus 로고    scopus 로고
    • Learning factor graphs in polynomial time and sample complexity
    • Abbeel, P., D. Koller, and A. Y. Ng. 2006. Learning factor graphs in polynomial time and sample complexity. Journal of Machine Learning Research, 7 : 1743 1788.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1743-1788
    • Abbeel, P.1    Koller, D.2    Ng, A.Y.3
  • 6
    • 0001051761 scopus 로고
    • On the computational complexity of Ising spin glass models
    • Barahona, F. 1982. On the computational complexity of Ising spin glass models. Journal of Physics A: Mathematical and General, 15 (10 3241 3253.
    • (1982) Journal of Physics A: Mathematical and General , vol.15 , Issue.10 , pp. 3241-3253
    • Barahona, F.1
  • 8
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Benjamini, Y., and D. Yekutieli. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29 (4 1165 1188.
    • (2001) Annals of Statistics , vol.29 , Issue.4 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 9
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Besag, J. 1974. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Series B, 36 (2 192 236.
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , Issue.2 , pp. 192-236
    • Besag, J.1
  • 14
    • 0012338718 scopus 로고    scopus 로고
    • A sequential particle filter method for static models
    • Chopin, N. 2002. A sequential particle filter method for static models. Biometrika, 89 : 539 552.
    • (2002) Biometrika , vol.89 , pp. 539-552
    • Chopin, N.1
  • 15
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • Chow, C., and C. Liu. May 1968. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14 (3 462 467.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 18
    • 0003665481 scopus 로고    scopus 로고
    • Doucet, A. N. de Freitas. and. N. Gordon. Eds.). Springer Verlag. New York.
    • Doucet, A., N. de Freitas, and N. Gordon (Eds.). 2001. Sequential Monte Carlo methods in practice. Springer Verlag, New York.
    • (2001) Sequential Monte Carlo Methods in Practice.
  • 24
    • 0003704318 scopus 로고    scopus 로고
    • . Department of Information and Computer Science, University of California, Irvine.
    • Hettich, S., and S. D. Bay. 1999. UCI KDD archive. Department of Information and Computer Science, University of California, Irvine.
    • (1999) UCI KDD Archive
    • Hettich, S.1    Bay, S.D.2
  • 26
    • 0027677367 scopus 로고
    • Polynomial-time approximation algorithms for the Ising model
    • Jerrum, M., and A. Sinclair. 1993. Polynomial-time approximation algorithms for the Ising model. SIAM Journal on Computing, 22 : 1087 1116.
    • (1993) SIAM Journal on Computing , vol.22 , pp. 1087-1116
    • Jerrum, M.1    Sinclair, A.2
  • 27
    • 0030304310 scopus 로고    scopus 로고
    • Monte Carlo filter and smoother for non-Gaussian nonlinear state space models
    • Kitagawa, G. 1996. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5 (1 1 25.
    • (1996) Journal of Computational and Graphical Statistics , vol.5 , Issue.1 , pp. 1-25
    • Kitagawa, G.1
  • 28
    • 0028482006 scopus 로고
    • Learning Bayesian belief networks: An approach based on the MDL principle
    • Lam, W., and F. Bacchus. 1994. Learning Bayesian belief networks: An approach based on the MDL principle. Computational Intelligence, 10 : 269 293.
    • (1994) Computational Intelligence , vol.10 , pp. 269-293
    • Lam, W.1    Bacchus, F.2
  • 30
    • 0032359151 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods for dynamic systems
    • Liu, J., and R. Chen. 1998. Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association, 93 (443 1032 1044.
    • (1998) Journal of the American Statistical Association , vol.93 , Issue.443 , pp. 1032-1044
    • Liu, J.1    Chen, R.2
  • 31
    • 29344470807 scopus 로고    scopus 로고
    • Distribution-free learning of Bayesian network structure in continuous domains
    • In. AAAI Press/MIT Press. Menlo Park, CA. pp.
    • Margaritis, D. 2005. Distribution-free learning of Bayesian network structure in continuous domains. In National Conference on Artificial Intelligence (AAAI). AAAI Press/MIT Press, Menlo Park, CA, pp. 825 830.
    • (2005) National Conference on Artificial Intelligence (AAAI). , pp. 825-830
    • Margaritis, D.1
  • 32
    • 84898996215 scopus 로고    scopus 로고
    • Bayesian network induction via local neighborhoods
    • . In. Edited by. S. Solla. T. Leen. and. K.-R. Müller. MIT Press. Cambridge, MA. pp.
    • Margaritis, D., and S. Thrun. 2000. Bayesian network induction via local neighborhoods. In Advances in Neural Information Processing Systems 12. Edited by S. Solla, T. Leen, and K.-R. Müller. MIT Press, Cambridge, MA, pp. 505 511.
    • (2000) Advances in Neural Information Processing Systems 12. , pp. 505-511
    • Margaritis, D.1    Thrun, S.2
  • 38
    • 0042456355 scopus 로고
    • The recovery of causal poly-trees from statistical data
    • . In. Edited by. L. N. Kanal. T. S. Levitt. and. J. F. Lemmer. North-Holland. Amsterdam. pp.
    • Rebane, G., and J. Pearl. 1989. The recovery of causal poly-trees from statistical data. In Uncertainty in Artificial Intelligence 3. Edited by L. N. Kanal, T. S. Levitt, and J. F. Lemmer. North-Holland, Amsterdam, pp. 175 182.
    • (1989) Uncertainty in Artificial Intelligence 3. , pp. 175-182
    • Rebane, G.1    Pearl, J.2
  • 39
    • 6344276411 scopus 로고    scopus 로고
    • Trends in spatial data mining
    • . In. Edited by. H. Kargupta. A. Joshi. K. Sivakumar. and. Y. Yesha. AAAI Press/The MIT Press. Menlo Park, CA. pp.
    • Shekhar, S., P. Zhang, Y. Huang, and R. Vatsavai. 2004. Trends in spatial data mining. In Data Mining: Next Generation Challenges and Future Directions. Edited by H. Kargupta, A. Joshi, K. Sivakumar, and Y. Yesha. AAAI Press/The MIT Press, Menlo Park, CA, pp. 357 379.
    • (2004) Data Mining: Next Generation Challenges and Future Directions. , pp. 357-379
    • Shekhar, S.1    Zhang, P.2    Huang, Y.3    Vatsavai, R.4
  • 41
    • 64049102502 scopus 로고    scopus 로고
    • Learning Markov networks: Maximum bounded tree-width graphs
    • . In. Washington, DC. pp.
    • Srebro, N., and D. Karger. 2001. Learning Markov networks: Maximum bounded tree-width graphs. In ACM-SIAM Symposium on Discrete Algorithms, Washington, DC, pp. 392 401.
    • (2001) ACM-SIAM Symposium on Discrete Algorithms , pp. 392-401
    • Srebro, N.1    Karger, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.