메뉴 건너뛰기




Volumn 32, Issue , 2017, Pages ii1-ii5

Prediction versus aetiology: Common pitfalls and how to avoid them

Author keywords

Aetiological research; Causality; Multivariable modelling; Prediction research; Risk prediction

Indexed keywords

HEMOGLOBIN A1C;

EID: 85019160976     PISSN: 09310509     EISSN: 14602385     Source Type: Journal    
DOI: 10.1093/ndt/gfw459     Document Type: Review
Times cited : (76)

References (50)
  • 1
    • 14644391621 scopus 로고    scopus 로고
    • Assessing the contributions of John Snow to epidemiology: 150 years after removal of the broad street pump handle
    • Paneth N. Assessing the contributions of John Snow to epidemiology: 150 years after removal of the broad street pump handle. Epidemiology 2004; 15: 514-516
    • (2004) Epidemiology , vol.15 , pp. 514-516
    • Paneth, N.1
  • 2
    • 84956419283 scopus 로고
    • Lung cancer and other causes of death in relation to smoking; A second report on themortality of British doctors
    • Doll R, Hill AB. Lung cancer and other causes of death in relation to smoking; a second report on themortality of British doctors. Br Med J 1956; 2: 1071-1081
    • (1956) Br Med J , vol.2 , pp. 1071-1081
    • Doll, R.1    Hill, A.B.2
  • 3
    • 84951787075 scopus 로고    scopus 로고
    • Risk of postoperative acute kidney injury in patients undergoing orthopaedic surgery-development and validation of a risk score and effect of acute kidney injury on survival: Observational cohort study
    • Bell S, Dekker FW, Vadiveloo T, et al. Risk of postoperative acute kidney injury in patients undergoing orthopaedic surgery-development and validation of a risk score and effect of acute kidney injury on survival: observational cohort study. BMJ 2015; 351: h5639
    • (2015) BMJ , vol.351 , pp. h5639
    • Bell, S.1    Dekker, F.W.2    Vadiveloo, T.3
  • 4
    • 84860259543 scopus 로고    scopus 로고
    • Prognostic model for total mortality in patients with haemodialysis from the Assessments of Survival and Cardiovascular Events (AURORA) study
    • Holme I, Fellstrom BC, Jardin AG, et al. Prognostic model for total mortality in patients with haemodialysis from the Assessments of Survival and Cardiovascular Events (AURORA) study. J Intern Med 2012; 271: 463-471
    • (2012) J Intern Med , vol.271 , pp. 463-471
    • Holme, I.1    Fellstrom, B.C.2    Jardin, A.G.3
  • 5
    • 58149102972 scopus 로고    scopus 로고
    • A simple algorithmto predict incident kidney disease
    • Kshirsagar AV, Bang H, Bomback AS, et al. A simple algorithmto predict incident kidney disease. Arch Intern Med 2008; 168: 2466-2473
    • (2008) Arch Intern Med , vol.168 , pp. 2466-2473
    • Kshirsagar, A.V.1    Bang, H.2    Bomback, A.S.3
  • 6
    • 84940650546 scopus 로고    scopus 로고
    • Looking to the future: Predicting renal replacement outcomes in a large community cohort with chronic kidney disease
    • Marks A, Fluck N, Prescott GJ, et al. Looking to the future: predicting renal replacement outcomes in a large community cohort with chronic kidney disease. Nephrol Dial Transplant 2015; 30: 1507-1517
    • (2015) Nephrol Dial Transplant , vol.30 , pp. 1507-1517
    • Marks, A.1    Fluck, N.2    Prescott, G.J.3
  • 7
    • 84930467356 scopus 로고    scopus 로고
    • Evaluating risk of ESRD in the urban poor
    • Maziarz M, Black RA, Fong CT, et al. Evaluating risk of ESRD in the urban poor. J Am Soc Nephrol 2015; 26: 1434-1442
    • (2015) J Am Soc Nephrol , vol.26 , pp. 1434-1442
    • Maziarz, M.1    Black, R.A.2    Fong, C.T.3
  • 8
    • 84857222910 scopus 로고    scopus 로고
    • A risk score for chronic kidney disease in the general population
    • O'Seaghdha CM, Lyass A, Massaro JM, et al. A risk score for chronic kidney disease in the general population. Am JMed 2012; 125: 270-277
    • (2012) Am J Med , vol.125 , pp. 270-277
    • O'Seaghdha, C.M.1    Lyass, A.2    Massaro, J.M.3
  • 9
    • 84925013638 scopus 로고    scopus 로고
    • Comparison ofmethods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36)
    • Riphagen IJ, Kleefstra N, Drion I, et al. Comparison ofmethods for renal risk prediction in patients with type 2 diabetes (ZODIAC-36). PLOS One 2015; 10: e0120477
    • (2015) PLOS One , vol.10 , pp. e0120477
    • Riphagen, I.J.1    Kleefstra, N.2    Drion, I.3
  • 10
    • 79955015634 scopus 로고    scopus 로고
    • A predictive model for progression of chronic kidney disease to kidney failure
    • Tangri N, Stevens LA, Griffith J, et al. A predictive model for progression of chronic kidney disease to kidney failure. JAMA 2011; 305: 1553-1559
    • (2011) JAMA , vol.305 , pp. 1553-1559
    • Tangri, N.1    Stevens, L.A.2    Griffith, J.3
  • 11
    • 79956356135 scopus 로고    scopus 로고
    • Predicting mortality in incident dialysis patients: An analysis of the United Kingdom Renal Registry
    • Wagner M, Ansell D, Kent DM, et al. Predicting mortality in incident dialysis patients: an analysis of the United Kingdom Renal Registry. Am J Kidney Dis 2011; 57: 894-902
    • (2011) Am J Kidney Dis , vol.57 , pp. 894-902
    • Wagner, M.1    Ansell, D.2    Kent, D.M.3
  • 12
    • 84924356846 scopus 로고    scopus 로고
    • Development and validation of a model to predict 5-year risk of death without ESRD among older adults with CKD
    • Bansal N, Katz R, De Boer IH, et al. Development and validation of a model to predict 5-year risk of death without ESRD among older adults with CKD. Clin J Am Soc Nephrol 2015; 10: 363-371
    • (2015) Clin J Am Soc Nephrol , vol.10 , pp. 363-371
    • Bansal, N.1    Katz, R.2    De Boer, I.H.3
  • 13
    • 67650089602 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Application and impact of prognostic models in clinical practice
    • Moons KG, Altman DG, Vergouwe Y, et al. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ 2009; 338: b606
    • (2009) BMJ , vol.338 , pp. b606
    • Moons, K.G.1    Altman, D.G.2    Vergouwe, Y.3
  • 14
    • 84971357232 scopus 로고
    • Commentary: Prognostic models: Clinically useful or quickly forgotten?
    • Wyatt JC, Altman DG. Commentary: prognostic models: clinically useful or quickly forgotten? BMJ 1995; 311: 1539-1541
    • (1995) BMJ , vol.311 , pp. 1539-1541
    • Wyatt, J.C.1    Altman, D.G.2
  • 15
    • 67650082402 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Validating a prognosticmodel
    • Altman DG, Vergouwe Y, Royston P, et al. Prognosis and prognostic research: validating a prognosticmodel. BMJ 2009; 338: b605
    • (2009) BMJ , vol.338 , pp. b605
    • Altman, D.G.1    Vergouwe, Y.2    Royston, P.3
  • 16
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15: 361-387
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 17
    • 84860159431 scopus 로고    scopus 로고
    • Risk prediction models: II External validation, model updating, and impact assessment
    • Moons KG, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart 2012; 98: 691-698
    • (2012) Heart , vol.98 , pp. 691-698
    • Moons, K.G.1    Kengne, A.P.2    Grobbee, D.E.3
  • 18
    • 84860113852 scopus 로고    scopus 로고
    • Risk prediction models: I Development, internal validation, and assessing the incremental value of a new (bio)marker
    • Moons KG, Kengne AP, Woodward M, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart 2012; 98: 683-690
    • (2012) Heart , vol.98 , pp. 683-690
    • Moons, K.G.1    Kengne, A.P.2    Woodward, M.3
  • 19
    • 67650022801 scopus 로고    scopus 로고
    • Prognosis and prognostic research: What, why, and how?
    • Moons KG, Royston P, Vergouwe Y, et al. Prognosis and prognostic research: what, why, and how? BMJ 2009; 338: b375
    • (2009) BMJ , vol.338 , pp. b375
    • Moons, K.G.1    Royston, P.2    Vergouwe, Y.3
  • 20
    • 67650045441 scopus 로고    scopus 로고
    • Prognosis and prognostic research: Developing a prognosticmodel
    • Royston P, Moons KG, Altman DG, et al. Prognosis and prognostic research: developing a prognosticmodel. BMJ 2009; 338: b604
    • (2009) BMJ , vol.338 , pp. b604
    • Royston, P.1    Moons, K.G.2    Altman, D.G.3
  • 22
    • 84905656517 scopus 로고    scopus 로고
    • Towards better clinical prediction models: Seven steps for development and an ABCD for validation
    • Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J 2014; 35: 1925-1931
    • (2014) Eur Heart J , vol.35 , pp. 1925-1931
    • Steyerberg, E.W.1    Vergouwe, Y.2
  • 23
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: A framework for traditional and novel measures
    • Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21: 128-138
    • (2010) Epidemiology , vol.21 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3
  • 24
    • 77951684092 scopus 로고    scopus 로고
    • Statistical methods for the assessment of prognostic biomarkers (part I): Discrimination
    • Tripepi G, Jager KJ, Dekker FWet al. Statistical methods for the assessment of prognostic biomarkers (part I): discrimination. Nephrol Dial Transplant 2010; 25: 1399-1401
    • (2010) Nephrol Dial Transplant , vol.25 , pp. 1399-1401
    • Tripepi, G.1    Jager, K.J.2    Dekker, F.W.3
  • 25
    • 77951688419 scopus 로고    scopus 로고
    • Statistical methods for the assessment of prognostic biomarkers (part II): Calibration and re-classification
    • Tripepi G, Jager KJ, Dekker FWet al. Statistical methods for the assessment of prognostic biomarkers (part II): calibration and re-classification. Nephrol Dial Transplant 2010; 25: 1402-1405
    • (2010) Nephrol Dial Transplant , vol.25 , pp. 1402-1405
    • Tripepi, G.1    Jager, K.J.2    Dekker, F.W.3
  • 26
    • 84871618126 scopus 로고    scopus 로고
    • Assessing risk in chronic kidney disease: A methodological review
    • Grams ME, Coresh J. Assessing risk in chronic kidney disease: a methodological review. Nat Rev Nephrol 2013; 9: 18-25
    • (2013) Nat Rev Nephrol , vol.9 , pp. 18-25
    • Grams, M.E.1    Coresh, J.2
  • 27
    • 0031017667 scopus 로고    scopus 로고
    • Clinical prediction rules A review and suggested modifications of methodological standards
    • Laupacis A, Sekar N, Stiell IG. Clinical prediction rules. A review and suggested modifications of methodological standards. JAMA 1997; 277: 488-494
    • (1997) JAMA , vol.277 , pp. 488-494
    • Laupacis, A.1    Sekar, N.2    Stiell, I.G.3
  • 28
    • 84861556816 scopus 로고    scopus 로고
    • Reporting and methods in clinical prediction research: A systematic review
    • Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLOSMed 2012; 9: 1-12
    • (2012) PLOSMed , vol.9 , pp. 1-12
    • Bouwmeester, W.1    Zuithoff, N.P.2    Mallett, S.3
  • 29
    • 84942134570 scopus 로고    scopus 로고
    • Methodological issues in current practice may lead to bias in the development of biomarker combinations for predicting acute kidney injury
    • Meisner A, Kerr KF, Thiessen-Philbrook H, et al. Methodological issues in current practice may lead to bias in the development of biomarker combinations for predicting acute kidney injury. Kidney Int 2016; 89: 429-438
    • (2016) Kidney Int , vol.89 , pp. 429-438
    • Meisner, A.1    Kerr, K.F.2    Thiessen-Philbrook, H.3
  • 30
    • 0027534004 scopus 로고
    • The risk of determining risk with multivariablemodels
    • Concato J, Feinstein AR, Holford TR. The risk of determining risk with multivariablemodels. Ann Intern Med 1993; 118: 201-210
    • (1993) Ann Intern Med , vol.118 , pp. 201-210
    • Concato, J.1    Feinstein, A.R.2    Holford, T.R.3
  • 31
    • 84872797683 scopus 로고    scopus 로고
    • A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriatemethods
    • Collins GS, Omar O, Shanyinde M, et al. A systematic review finds prediction models for chronic kidney disease were poorly reported and often developed using inappropriatemethods. J Clin Epidemiol 2013; 66: 268-277
    • (2013) J Clin Epidemiol , vol.66 , pp. 268-277
    • Collins, G.S.1    Omar, O.2    Shanyinde, M.3
  • 32
    • 84923923813 scopus 로고    scopus 로고
    • Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD statement
    • Collins GS, Reitsma JB, Altman DG, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med 2015; 162: 55-63
    • (2015) Ann Intern Med , vol.162 , pp. 55-63
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3
  • 33
    • 84937548548 scopus 로고    scopus 로고
    • Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): Explanation and elaboration
    • Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med 2015; 162:W1-W73
    • (2015) Ann Intern Med , vol.162 , pp. W1-W73
    • Moons, K.G.1    Altman, D.G.2    Reitsma, J.B.3
  • 34
    • 84892575232 scopus 로고    scopus 로고
    • Reducing waste from incomplete or unusable reports of biomedical research
    • Glasziou P, Altman DG, Bossuyt P, et al. Reducing waste from incomplete or unusable reports of biomedical research. Lancet 2014; 383: 267-276
    • (2014) Lancet , vol.383 , pp. 267-276
    • Glasziou, P.1    Altman, D.G.2    Bossuyt, P.3
  • 35
    • 57049139247 scopus 로고    scopus 로고
    • Testing for causality and prognosis: Etiological and prognosticmodels
    • Tripepi G, Jager KJ, Dekker FW, et al. Testing for causality and prognosis: etiological and prognosticmodels. Kidney Int 2008; 74: 1512-1515
    • (2008) Kidney Int , vol.74 , pp. 1512-1515
    • Tripepi, G.1    Jager, K.J.2    Dekker, F.W.3
  • 36
    • 34748833984 scopus 로고    scopus 로고
    • Measures of effect: Relative risks, odds ratios, risk difference, and 'number needed to treat'
    • Tripepi G, Jager KJ, Dekker FWet al. Measures of effect: relative risks, odds ratios, risk difference, and 'number needed to treat'. Kidney Int 2007; 72: 789-791
    • (2007) Kidney Int , vol.72 , pp. 789-791
    • Tripepi, G.1    Jager, K.J.2    Dekker, F.W.3
  • 37
    • 38149071735 scopus 로고    scopus 로고
    • Confounding: What it is and how to deal with it
    • Jager KJ, Zoccali C, Macleod A, et al. Confounding: what it is and how to deal with it. Kidney Int 2008; 73: 256-260
    • (2008) Kidney Int , vol.73 , pp. 256-260
    • Jager, K.J.1    Zoccali, C.2    Macleod, A.3
  • 38
    • 84940652295 scopus 로고    scopus 로고
    • Graphical presentation of confounding in directed acyclic graphs
    • Suttorp MM, Siegerink B, Jager KJ, et al. Graphical presentation of confounding in directed acyclic graphs. Nephrol Dial Transplant 2015; 30: 1418-1423
    • (2015) Nephrol Dial Transplant , vol.30 , pp. 1418-1423
    • Suttorp, M.M.1    Siegerink, B.2    Jager, K.J.3
  • 39
    • 85019086744 scopus 로고    scopus 로고
    • Relative risk versus absolute risk: One cannot be interpreted without the other
    • Noordzij M, van Diepen M, Caskey FC, et al. Relative risk versus absolute risk: one cannot be interpreted without the other. Nephrol Dial Transplant 2017; 32 (Suppl 2): ii13-ii18
    • (2017) Nephrol Dial Transplant , vol.32 , pp. ii13-ii18
    • Noordzij, M.1    Van Diepen, M.2    Caskey, F.C.3
  • 41
    • 84858999435 scopus 로고    scopus 로고
    • Clinical prediction rules
    • Adams ST, Leveson SH. Clinical prediction rules. BMJ 2012; 344: d8312
    • (2012) BMJ , vol.344 , pp. d8312
    • Adams, S.T.1    Leveson, S.H.2
  • 42
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med 2000; 19: 453-473
    • (2000) Stat Med , vol.19 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 43
    • 0141514712 scopus 로고    scopus 로고
    • External validation is necessary in prediction research: A clinical example
    • Bleeker SE, Moll HA, Steyerberg EW, et al. External validation is necessary in prediction research: a clinical example. J Clin Epidemiol 2003; 56: 826-832
    • (2003) J Clin Epidemiol , vol.56 , pp. 826-832
    • Bleeker, S.E.1    Moll, H.A.2    Steyerberg, E.W.3
  • 44
    • 84952631019 scopus 로고    scopus 로고
    • Prediction models need appropriate internal, internal-external, and external validation
    • Steyerberg EW, Harrell Jr. F.E. Prediction models need appropriate internal, internal-external, and external validation. J Clin Epidemiol 2016; 69: 245-247
    • (2016) J Clin Epidemiol , vol.69 , pp. 245-247
    • Steyerberg, E.W.1    Harrell, F.E.2
  • 46
    • 41049117563 scopus 로고    scopus 로고
    • Linear and logistic regression analysis
    • Tripepi G, Jager KJ, Dekker FW, et al. Linear and logistic regression analysis. Kidney Int 2008; 73: 806-810
    • (2008) Kidney Int , vol.73 , pp. 806-810
    • Tripepi, G.1    Jager, K.J.2    Dekker, F.W.3
  • 47
    • 50849141314 scopus 로고    scopus 로고
    • The analysis of survival data in nephrology: Basic concepts and methods of Cox regression
    • van Dijk PC, Jager KJ, Zwinderman AH, et al. The analysis of survival data in nephrology: basic concepts and methods of Cox regression. Kidney Int 2008; 74: 705-709
    • (2008) Kidney Int , vol.74 , pp. 705-709
    • Van Dijk, P.C.1    Jager, K.J.2    Zwinderman, A.H.3
  • 48
    • 39549093148 scopus 로고    scopus 로고
    • General cardiovascular risk profile for use in primary care: The Framingham Heart Study
    • D'Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008; 117: 743-753
    • (2008) Circulation , vol.117 , pp. 743-753
    • D'Agostino, R.B.1    Vasan, R.S.2    Pencina, M.J.3
  • 49
    • 84931565291 scopus 로고    scopus 로고
    • Model for end-stage liver disease score and MELD exceptions: 15 years later
    • Asrani SK, Kamath PS. Model for end-stage liver disease score and MELD exceptions: 15 years later. Hepatol Int 2015; 9: 346-354
    • (2015) Hepatol Int , vol.9 , pp. 346-354
    • Asrani, S.K.1    Kamath, P.S.2
  • 50
    • 0035146422 scopus 로고    scopus 로고
    • A model to predict survival in patients with end-stage liver disease
    • Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with end-stage liver disease. Hepatology 2001; 33: 464-470
    • (2001) Hepatology , vol.33 , pp. 464-470
    • Kamath, P.S.1    Wiesner, R.H.2    Malinchoc, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.