메뉴 건너뛰기




Volumn 24, Issue 1, 2016, Pages 28-35

EMD-based temporal and spectral features for the classification of EEG signals using supervised learning

Author keywords

Classification; Empirical mode decomposition (EMD); Feature extraction.

Indexed keywords

CLASSIFICATION (OF INFORMATION); ELECTROENCEPHALOGRAPHY; EXTRACTION; FEATURE EXTRACTION; SIGNAL ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 85018918895     PISSN: 15344320     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNSRE.2015.2441835     Document Type: Article
Times cited : (304)

References (42)
  • 1
    • 24044474732 scopus 로고    scopus 로고
    • Artificial neural network based epileptic detection using time-domain and frequency-domain features
    • V. Srinivasan, C. Eswaran, and N. Sriraam, "Artificial neural network based epileptic detection using time-domain and frequency-domain features, " J. Med. Syst., vol. 29, no. 6, pp. 647-660, 2005.
    • (2005) J. Med. Syst , vol.29 , Issue.6 , pp. 647-660
    • Srinivasan, V.1    Eswaran, C.2    Sriraam, N.3
  • 2
    • 34247217946 scopus 로고    scopus 로고
    • Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform
    • K. Polat and S. Günes, "Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform, " Appl. Math. Comput., vol. 187, no. 2, pp. 1017-1026, 2007.
    • (2007) Appl. Math. Comput , vol.187 , Issue.2 , pp. 1017-1026
    • Polat, K.1    Günes, S.2
  • 3
    • 70349410385 scopus 로고    scopus 로고
    • Epileptic seizure detection in eegs using time-frequency analysis
    • Sep
    • A. Tzallas, M. Tsipouras, and D. Fotiadis, "Epileptic seizure detection in EEGs using time-frequency analysis, " IEEE Trans. Inf. Technol. Biomed., vol. 13, no. 5, pp. 703-710, Sep. 2009.
    • (2009) IEEE Trans. Inf. Technol. Biomed , vol.13 , Issue.5 , pp. 703-710
    • Tzallas, A.1    Tsipouras, M.2    Fotiadis, D.3
  • 4
    • 84880852769 scopus 로고    scopus 로고
    • EEG-based classification of fast and slow hand movements using wavelet-csp algorithm
    • Aug
    • N. Robinson, A. Vinod, K. K. Ang, K. P. Tee, and C. Guan, "EEG-based classification of fast and slow hand movements using wavelet-CSP algorithm, " IEEE Trans. Biomed. Eng., vol. 60, no. 8, pp. 2123-2132, Aug. 2013.
    • (2013) IEEE Trans. Biomed. Eng , vol.60 , Issue.8 , pp. 2123-2132
    • Robinson, N.1    Vinod, A.2    Ang, K.K.3    Tee, K.P.4    Guan, C.5
  • 5
    • 84856904725 scopus 로고    scopus 로고
    • Automatic artifact rejection from multichannel scalp EEG by wavelet ica
    • Mar
    • N. Mammone, F. La Foresta, and F. C. Morabito, "Automatic artifact rejection from multichannel scalp EEG by wavelet ICA, " IEEE Sensors J., vol. 12, no. 3, pp. 533-542, Mar. 2012.
    • (2012) IEEE Sensors J , vol.12 , Issue.3 , pp. 533-542
    • Mammone, N.1    La Foresta, F.2    Morabito, F.C.3
  • 6
    • 35248825924 scopus 로고    scopus 로고
    • EEG signal analysis using fb expansion and second-order linear tvar process
    • R. B. Pachori and P. Sircar, "EEG signal analysis using FB expansion and second-order linear TVAR process, " Signal Process., vol. 88, no. 2, pp. 415-420, 2008.
    • (2008) Signal Process , vol.88 , Issue.2 , pp. 415-420
    • Pachori, R.B.1    Sircar, P.2
  • 7
    • 79956288045 scopus 로고    scopus 로고
    • Seizure classification in EEG signals utilizing hilbert-huang transform
    • R. J. Oweis and E. W. Abdulhay, "Seizure classification in EEG signals utilizing Hilbert-Huang transform, " Biomed. Eng. Online, vol. 10, no. 1, p. 38, 2011.
    • (2011) Biomed. Eng. Online , vol.10 , Issue.1 , pp. 38
    • Oweis, R.J.1    Abdulhay, E.W.2
  • 8
    • 84885157742 scopus 로고    scopus 로고
    • Detection of seizure and epilepsy using higher-order statistics in the emd domain
    • Mar
    • S. Alam and M. Bhuiyan, "Detection of seizure and epilepsy using higher-order statistics in the EMD domain, " IEEE J. Biomed. Health Inform., vol. 17, no. 2, pp. 312-318, Mar. 2013.
    • (2013) IEEE J. Biomed. Health Inform , vol.17 , Issue.2 , pp. 312-318
    • Alam, S.1    Bhuiyan, M.2
  • 9
    • 77949695400 scopus 로고    scopus 로고
    • Emotion recognition from EEG using higher order crossings
    • Mar
    • P. C. Petrantonakis and L. J. Hadjileontiadis, "Emotion recognition from EEG using higher order crossings, " IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 2, pp. 186-197, Mar. 2010.
    • (2010) IEEE Trans. Inf. Technol. Biomed , vol.14 , Issue.2 , pp. 186-197
    • Petrantonakis, P.C.1    Hadjileontiadis, L.J.2
  • 10
    • 84865980798 scopus 로고    scopus 로고
    • Classification of seizure and non-seizure EEG signals using empirical mode decomposition
    • Nov
    • V. Bajaj and R. Pachori, "Classification of seizure and non-seizure EEG signals using empirical mode decomposition, " IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 6, pp. 1135-1142, Nov. 2012.
    • (2012) IEEE Trans. Inf. Technol. Biomed , vol.16 , Issue.6 , pp. 1135-1142
    • Bajaj, V.1    Pachori, R.2
  • 11
    • 33845386973 scopus 로고    scopus 로고
    • Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction
    • A. Subasi, "Application of adaptive neuro-fuzzy inference system for epileptic seizure detection using wavelet feature extraction, " Comput. Biol. Med., vol. 37, no. 2, pp. 227-244, 2007.
    • (2007) Comput. Biol. Med , vol.37 , Issue.2 , pp. 227-244
    • Subasi, A.1
  • 12
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • A. Subasi, "EEG signal classification using wavelet feature extraction and a mixture of expert model, " Expert Syst. Appl., vol. 32, no. 4, pp. 1084-1093, 2007.
    • (2007) Expert Syst. Appl , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 13
    • 77956932514 scopus 로고    scopus 로고
    • An EEG-based bci system for 2-d cursor control by combining mu/beta rhythm and p300 potential
    • Oct. 2010
    • Y. Li et al., "An EEG-based BCI system for 2-D cursor control by combining mu/beta rhythm and p300 potential, " IEEE Trans. Biomed. Eng., vol. 57, no. 10, pp. 2495-2505, Oct. 2010.
    • IEEE Trans. Biomed. Eng , vol.57 , Issue.10 , pp. 2495-2505
    • Li, Y.1
  • 14
    • 84870528934 scopus 로고    scopus 로고
    • The seizure prediction problem in epilepsy: Cellular nonlinear networks
    • R. Tetzlaff and V. Senger, "The seizure prediction problem in epilepsy: Cellular nonlinear networks, " IEEE Circuits Syst. Mag., vol. 12, no. 4, pp. 8-20, 2012.
    • (2012) IEEE Circuits Syst. Mag , vol.12 , Issue.4 , pp. 8-20
    • Tetzlaff, R.1    Senger, V.2
  • 15
    • 0031744007 scopus 로고    scopus 로고
    • Is the underlying cause of epilepsy a major prognostic factor for recurrence?
    • F. Semah et al., "Is the underlying cause of epilepsy a major prognostic factor for recurrence?, " Neurology, vol. 51, no. 5, pp. 1256-1262, 1998.
    • (1998) Neurology , vol.51 , Issue.5 , pp. 1256-1262
    • Semah, F.1
  • 16
    • 34047120243 scopus 로고    scopus 로고
    • Seizure detection in EEG signals: A comparison of different approaches
    • H. R. Mohseni, A. Maghsoudi, and M. B. Shamsollahi, "Seizure detection in EEG signals: A comparison of different approaches, " in Proc. IEEE EMBS Conf., 2006, pp. 6724-7.
    • (2006) Proc. IEEE EMBS Conf , pp. 6724-6727
    • Mohseni, H.R.1    Maghsoudi, A.2    Shamsollahi, M.B.3
  • 19
    • 70350070225 scopus 로고    scopus 로고
    • Independent component analysis of short-time fourier transforms for spontaneous EEG/meg analysis
    • A. Hyvärinen, P. Ramkumar, L. Parkkonen, and R. Hari, "Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis, " Neuroimage, vol. 49, no. 1, pp. 257-271, 2010.
    • (2010) Neuroimage , vol.49 , Issue.1 , pp. 257-271
    • Hyvärinen, A.1    Ramkumar, P.2    Parkkonen, L.3    Hari, R.4
  • 20
    • 33747727601 scopus 로고    scopus 로고
    • Wavelet-based statistical signal processing using hidden markov models
    • Apr
    • M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, "Wavelet-based statistical signal processing using hidden Markov models, " IEEE Trans. Signal Process., vol. 46, no. 4, pp. 886-902, Apr. 1998.
    • (1998) IEEE Trans. Signal Process , vol.46 , Issue.4 , pp. 886-902
    • Crouse, M.S.1    Nowak, R.D.2    Baraniuk, R.G.3
  • 21
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Jul
    • S. G. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 24
    • 0028960610 scopus 로고
    • Detection of ECG characteristic points using wavelet transforms
    • Jan
    • C. Li, C. Zheng, and C. Tai, "Detection of ECG characteristic points using wavelet transforms, " IEEE Trans. Biomed. Eng., vol. 42, no. 1, pp. 21-28, Jan. 1995.
    • (1995) IEEE Trans. Biomed. Eng , vol.42 , Issue.1 , pp. 21-28
    • Li, C.1    Zheng, C.2    Tai, C.3
  • 25
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • H. Adeli, Z. Zhou, and N. Dadmehr, "Analysis of EEG records in an epileptic patient using wavelet transform, " J. Neurosci. Methods, vol. 123, no. 1, pp. 69-87, 2003.
    • (2003) J. Neurosci. Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 26
    • 0036648502 scopus 로고    scopus 로고
    • Musical genre classification of audio signals
    • Jul
    • G. Tzanetakis and P. Cook, "Musical genre classification of audio signals, " IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293-302, Jul. 2002.
    • (2002) IEEE Trans. Speech Audio Process , vol.10 , Issue.5 , pp. 293-302
    • Tzanetakis, G.1    Cook, P.2
  • 27
    • 0027842082 scopus 로고
    • Low bit rate transparent audio compression using adapted wavelets
    • Dec
    • D. Sinha and A. H. Tewfik, "Low bit rate transparent audio compression using adapted wavelets, " IEEE Trans. Signal Process., vol. 41, no. 12, pp. 3463-3479, Dec. 1993.
    • (1993) IEEE Trans. Signal Process , vol.41 , Issue.12 , pp. 3463-3479
    • Sinha, D.1    Tewfik, A.H.2
  • 28
    • 0033688848 scopus 로고    scopus 로고
    • High resolution speech feature parametrization for monophone-based stressed speech recognition
    • Jul
    • R. Sarikaya and J. H. Hansen, "High resolution speech feature parametrization for monophone-based stressed speech recognition, " IEEE Signal Process. Lett., vol. 7, no. 7, pp. 182-185, Jul. 2000.
    • (2000) IEEE Signal Process. Lett , vol.7 , Issue.7 , pp. 182-185
    • Sarikaya, R.1    Hansen, J.H.2
  • 30
    • 0037441741 scopus 로고    scopus 로고
    • Analysis of EEG records in an epileptic patient using wavelet transform
    • H. Adeli, Z. Zhou, and N. Dadmehr, "Analysis of EEG records in an epileptic patient using wavelet transform, " J. Neurosci. Methods, vol. 123, no. 1, pp. 69-87, 2003.
    • (2003) J. Neurosci. Methods , vol.123 , Issue.1 , pp. 69-87
    • Adeli, H.1    Zhou, Z.2    Dadmehr, N.3
  • 31
    • 0442326792 scopus 로고    scopus 로고
    • Empirical mode decomposition as a filter bank
    • Feb
    • P. Flandrin, G. Rilling, and P. Goncalves, "Empirical mode decomposition as a filter bank, " IEEE Signal Process. Lett., vol. 11, no. 2, pp. 112-114, Feb. 2004.
    • (2004) IEEE Signal Process. Lett , vol.11 , Issue.2 , pp. 112-114
    • Flandrin, P.1    Rilling, G.2    Goncalves, P.3
  • 32
    • 78549254986 scopus 로고    scopus 로고
    • Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition
    • R. B. Pachori, "Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition, " Res. Lett. Signal Process., vol. 2008, p. 14, 2008.
    • (2008) Res. Lett. Signal Process , vol.2008 , pp. 14
    • Pachori, R.B.1
  • 33
    • 84937035392 scopus 로고
    • Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals
    • Apr
    • B. Boashash, "Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals, " Proc. IEEE, vol. 80, no. 4, pp. 520-538, Apr. 1992.
    • (1992) Proc. IEEE , vol.80 , Issue.4 , pp. 520-538
    • Boashash, B.1
  • 35
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
    • N. E. Huang et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, " Proc. R. Soc. London. Ser. A, Math., Phys. Eng. Sci., vol. 454, no. 1971, pp. 903-995, 1998.
    • (1998) Proc. R. Soc. London. Ser. A, Math., Phys. Eng. Sci , vol.454 , Issue.1971 , pp. 903-995
    • Huang, N.E.1
  • 36
    • 0037104756 scopus 로고    scopus 로고
    • Decreased neuronal synchronization during experimental seizures
    • T. I. Netoff and S. J. Schiff, "Decreased neuronal synchronization during experimental seizures, " J. Neurosci., vol. 22, no. 16, pp. 7297-7307, 2002.
    • (2002) J. Neurosci , vol.22 , Issue.16 , pp. 7297-7307
    • Netoff, T.I.1    Schiff, S.J.2
  • 37
    • 38749083808 scopus 로고    scopus 로고
    • Automatic seizure detection based on time-frequency analysis and artificial neural networks
    • A. Tzallas, M. Tsipouras, and D. Fotiadis, "Automatic seizure detection based on time-frequency analysis and artificial neural networks, " Comput. Intell. Neurosci., vol. 2007, p. 18, 2007.
    • (2007) Comput. Intell. Neurosci , vol.2007 , pp. 18
    • Tzallas, A.1    Tsipouras, M.2    Fotiadis, D.3
  • 38
    • 33846672121 scopus 로고    scopus 로고
    • A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
    • Feb
    • H. Adeli, S. Ghosh-Dastidar, and N. Dadmehr, "A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy, " IEEE Trans. Biomed. Eng., vol. 54, no. 2, pp. 205-211, Feb. 2007.
    • (2007) IEEE Trans. Biomed. Eng , vol.54 , Issue.2 , pp. 205-211
    • Adeli, H.1    Ghosh-Dastidar, S.2    Dadmehr, N.3
  • 39
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification using support vector machines, " Mach. Learn., vol. 46, no. 1-3, pp. 389-422, 2002.
    • (2002) Mach. Learn , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 40
    • 0038605681 scopus 로고    scopus 로고
    • A survey on pattern recognition applications of support vector machines
    • H. Byun and S.-W. Lee, "A survey on pattern recognition applications of support vector machines, " Int. J. Pattern Recognit. Artif. Intell., vol. 17, no. 3, pp. 459-486, 2003.
    • (2003) Int. J. Pattern Recognit. Artif. Intell , vol.17 , Issue.3 , pp. 459-486
    • Byun, H.1    Lee, S.-W.2
  • 42
    • 34047114775 scopus 로고    scopus 로고
    • Multiclass support vector machines for EEG-signals classification
    • Mar
    • I. Guler and E. D. Ubeyli, "Multiclass support vector machines for EEG-signals classification, " IEEE Trans. Inf. Technol. Biomed., vol. 11, no. 2, pp. 117-126, Mar. 2007.
    • (2007) IEEE Trans. Inf. Technol. Biomed , vol.11 , Issue.2 , pp. 117-126
    • Guler, I.1    Ubeyli, E.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.